JPS5848989B2 - Focusing device in electron beam equipment - Google Patents

Focusing device in electron beam equipment

Info

Publication number
JPS5848989B2
JPS5848989B2 JP53006911A JP691178A JPS5848989B2 JP S5848989 B2 JPS5848989 B2 JP S5848989B2 JP 53006911 A JP53006911 A JP 53006911A JP 691178 A JP691178 A JP 691178A JP S5848989 B2 JPS5848989 B2 JP S5848989B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
scanning
focusing device
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53006911A
Other languages
Japanese (ja)
Other versions
JPS54100661A (en
Inventor
隆男 生江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP53006911A priority Critical patent/JPS5848989B2/en
Publication of JPS54100661A publication Critical patent/JPS54100661A/en
Publication of JPS5848989B2 publication Critical patent/JPS5848989B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は例えば走査電子顕微鏡等の電子線装置における
焦点合わせ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focusing device in an electron beam apparatus such as a scanning electron microscope.

一般に電子線装置においては電子線束を試料上に所望の
細さに収束して照射する必要がある。
In general, in an electron beam apparatus, it is necessary to irradiate a sample with an electron beam bundle converging to a desired narrowness.

例えば走査電子顕微鏡にあっては電子線束をいかに細く
できるかによって分解能が決定される。
For example, in a scanning electron microscope, the resolution is determined by how narrow the electron beam flux can be.

電子線束を細く収束するための最も重要な要素としては
電子レンズの焦点合わせがあり、従来その操作は操作者
の経験に頼っていた。
The most important element for converging an electron beam into a narrow beam is focusing the electron lens, and conventionally its operation has relied on the operator's experience.

即ち走査電子顕微鏡では2次電子走査像や反射電子像を
観察して、それがいかにきめ細かな像になっているかを
操作者が判断して電子レンズの焦点合わせの目安として
おり、従って操作が繁雑となり又熟練を必要とした。
In other words, in a scanning electron microscope, the operator observes a secondary electron scanning image or a backscattered electron image, and judges how detailed the image is to use as a guide for focusing the electron lens, which makes the operation complicated. It also required skill.

そこで近時焦点合わせを自動化する研究がさかんに行わ
れ、その一例として検出信号を時間微分してその微分値
が最犬になるように電子レンズの励磁電流を制御する装
置や、所定時間内における検出信号の変化分の大きさを
積算しその積算値が最犬になるように電子レンズの励磁
電流を制御する装置が提案されている。
Therefore, research on automating focusing has been actively conducted recently, and examples include a device that differentiates the detection signal over time and controls the excitation current of an electron lens so that the differential value is the best value, and A device has been proposed that integrates the magnitude of the change in the detection signal and controls the excitation current of an electronic lens so that the integrated value becomes the largest value.

しかしながらこの様な自動焦点合わせ装置では非点性の
収差が存在し、その方向が電子線の走査方向に垂直な方
向に近いと、その方向の電子線束の太さが最も小さい時
即ち電子線束が焦線を結ぶ状態のとき上記微分値や積分
値が最大となってしまい、その結果得られる走査像は一
方向に流れた非点性収差を含んでしまうという不都合が
あった。
However, in such an automatic focusing device, astigmatic aberration exists, and if the direction is close to the direction perpendicular to the scanning direction of the electron beam, the thickness of the electron beam in that direction is the smallest, that is, the electron beam When the focal line is connected, the differential value and the integral value become maximum, and the resulting scanned image contains an astigmatic aberration that flows in one direction.

本発明は上述した従来の問題点に鑑みてなされたもので
あり、電子線束が非点性収差を含んでいても常に試料に
最小錯乱円の状態で電子線束を照射することのできる焦
点合わせ装置を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned conventional problems, and is a focusing device that can always irradiate a sample with an electron beam in a state of a circle of least confusion even if the electron beam contains astigmatism. The purpose is to provide the following.

この様な目的を達成するために本発明では電子線を円形
走査しながら焦点合わせ操作を行うことを特徴としてい
る。
In order to achieve such an object, the present invention is characterized in that a focusing operation is performed while circularly scanning the electron beam.

次に図面を用いて本発明を詳説する。Next, the present invention will be explained in detail using the drawings.

第1図は非点性収差がある場合の電子線束の焦点付近に
おける形状の変化をあらわす。
FIG. 1 shows changes in the shape of the electron beam near the focal point when there is astigmatism.

同図において1は磁界レンズの絞り穴であり、該絞り穴
1はZ=OにおいてX−Y平面上の円であらわされる。
In the figure, 1 is an aperture hole of a magnetic field lens, and the aperture hole 1 is represented by a circle on the XY plane at Z=O.

この絞り面においてX軸上から出た電子線はZ=Fxの
位置で焦点を結びY軸上から出た電子線はZ=Fの位置
で焦点を結ぶ。
In this aperture plane, the electron beam emitted from the X-axis focuses at the position Z=Fx, and the electron beam emitted from the Y-axis focuses at the position Z=F.

従って電子線はZ二FxでY方向の焦線2を、Z−F
でX方向の焦線3を形成する。
Therefore, the electron beam has a focal line 2 in the Y direction at Z2Fx, and a focal line 2 in the Y direction at Z2Fx.
A focal line 3 in the X direction is formed.

そしてこの2つの焦線の中間に最小錯乱円4が存在する
A circle of least confusion 4 exists between these two focal lines.

この時第1図で8の位置に試料があるとすれば磁界レン
ズの励磁電流を増加させてレンズ強度を強くしてゆくと
、試料面上の電子線束の形状は第2図に示す様に楕円8
→焦線2→楕円γ→最小錯乱円4→楕円6→焦線3→楕
円5と連続的に変化する。
At this time, if the sample is located at position 8 in Figure 1, if the excitation current of the magnetic field lens is increased to strengthen the lens strength, the shape of the electron beam on the sample surface will become as shown in Figure 2. ellipse 8
→ focal line 2 → ellipse γ → circle of least confusion 4 → ellipse 6 → focal line 3 → ellipse 5.

そこで今第3図に示すような楕円形の電子線束を試料面
上で円形走査しながら前述した自動焦点合わせ装置を働
かせる場合について考える。
Now, let us consider the case where the above-mentioned automatic focusing device is operated while circularly scanning an elliptical electron beam beam on the sample surface as shown in FIG.

ここで楕円軸X,yに対して任意の角度θ傾いた方向t
に走査する場合を仮定すると、そのl方向における電子
線束の太さは楕円からt軸に下ろした垂線とt軸との交
点A,A’間の距離Xλ″に相当する。
Here, a direction t tilted at an arbitrary angle θ with respect to the ellipse axes X and y
Assuming that scanning is performed, the thickness of the electron beam in the l direction corresponds to the distance Xλ'' between the intersections A and A' of the perpendicular line drawn from the ellipse to the t-axis and the t-axis.

そしてこの様な電子線束を円形走査することはθが00
から3600まで変化することに相当する。
And when scanning such an electron beam in a circular manner, θ is 00
This corresponds to a change from 3600 to 3600.

そのためλλ1の長さをθ== o Oからθ二360
0まで積分することを考えると、その積分値は楕円の長
径と短径の長さが一致した時に最小値となることが判る
Therefore, the length of λλ1 is θ== o O to θ2360
Considering the integration up to 0, it can be seen that the integral value becomes the minimum value when the length of the major axis and the minor axis of the ellipse match.

従って電子線束を繰返し円形(楕円を含む)走査し、1
回の円形走査毎に磁界レンズの励磁電流を徐々に段階的
に変化させると共に、1回の円形走査毎の前記積算値を
監視し、該積算値が最小となる励磁電流値を求めればそ
の値が電子線束に最小錯乱円を与えるための電流値であ
る。
Therefore, by repeatedly scanning the electron beam in a circular direction (including an ellipse),
The excitation current of the magnetic field lens is gradually changed step by step for each circular scan, and the integrated value is monitored for each circular scan, and the excitation current value that minimizes the integrated value is determined. is the current value to give the minimum circle of confusion to the electron beam flux.

第4図は上述した本発明の原理に基づいた走査電子顕微
鏡の一例を示す構或図であり、同図において11は被観
察試料である。
FIG. 4 is a structural diagram showing an example of a scanning electron microscope based on the principle of the present invention described above, and in the figure, 11 is a sample to be observed.

該試料11には図示しない電子銃から発生した電子線E
Bが対物レンズ12によって細く集束される。
The sample 11 contains an electron beam E generated from an electron gun (not shown).
B is narrowly focused by the objective lens 12.

13X,13Yは上記電子線EBを試料11上で走査す
るための偏向コイルである。
Denoted at 13X and 13Y are deflection coils for scanning the sample 11 with the electron beam EB.

電子線照射によって試料11から発生した2次電子等の
情報は検出器14によって検出され、得られた検出信号
は増巾器15を介して自動焦点合わせ装置16及び表示
装置17へ送られる。
Information such as secondary electrons generated from the sample 11 by electron beam irradiation is detected by a detector 14, and the obtained detection signal is sent to an automatic focusing device 16 and a display device 17 via an amplifier 15.

該自動焦点合わせ装置16はタイミング回路18からの
同期信号aによって動作を行い、逆に停止信号bを七記
タイミング回路18へ送って動作を終了する。
The automatic focusing device 16 operates according to the synchronizing signal a from the timing circuit 18, and conversely sends a stop signal b to the timing circuit 18 to complete the operation.

動作中、自動焦点合わせ装置16は対物レンズ電流指定
信号Cを対物レンズ駆動回路19へ送り、対物レンズ電
流を徐々に段階的に変化させる。
During operation, the automatic focusing device 16 sends an objective lens current designation signal C to the objective lens drive circuit 19 to gradually change the objective lens current in steps.

20X,20Yは鋸歯状波形を有するX,Y走査信号を
発生するX,Y走査回路であり、該走査信号は夫々切換
回路21X,21Y及び駆動回路22X,22Yを介し
て前記偏向コイル13X,13Yへ送られる。
20X, 20Y are X, Y scanning circuits that generate X, Y scanning signals having sawtooth waveforms, and the scanning signals are transmitted to the deflection coils 13X, 13Y via switching circuits 21X, 21Y and drive circuits 22X, 22Y, respectively. sent to.

23は円形走査用のsine信号とcosine信号を
発生する発振器であり、該発振器22より得られたsi
ne信号及びcosin信号は夫々切換回路21X,2
1Yを介して偏向コイル13X,13Yへ送られる。
23 is an oscillator that generates a sine signal and a cosine signal for circular scanning;
The ne signal and the cosin signal are sent to switching circuits 21X and 2, respectively.
It is sent to deflection coils 13X and 13Y via 1Y.

又前記タイミング回路18は上記切換回路21X,21
Yを制御すると共に上記sine信号又はcosine
信号に基づいて前記同期信号aを作成している。
Further, the timing circuit 18 is connected to the switching circuits 21X, 21
Y and the above sine signal or cosine
The synchronization signal a is created based on the signal.

上述の如き構成において通常は切換回路21X,21Y
は夫々■の状態になされており、従って電子線EBは試
料面上でラスク走査されている。
In the above configuration, normally the switching circuits 21X, 21Y
The electron beams EB and EB are respectively placed in the state shown in FIG.

そして操作者によってスタートが指令されると、タイミ
ング回路18は切換回路21X,21Yを■の状態にし
て偏向コイル13X,13Yに夫々sine信号、co
s ine信号を送り電子線EBを試料上で繰返し円形
乃至楕円形走査させると共に、該円形走査に同期した同
期信号aを自動焦点合わせ装置16に送り動作を開始さ
せる。
When a start is commanded by the operator, the timing circuit 18 sets the switching circuits 21X and 21Y to the state (■) and sends a sine signal and a co to the deflection coils 13X and 13Y, respectively.
A sine signal is sent to cause the electron beam EB to repeatedly scan the sample in a circular or elliptical manner, and a synchronization signal a synchronized with the circular scanning is sent to the automatic focusing device 16 to start the operation.

即ち自動焦点合わせ装置16は電子線EBが1回円形走
査される毎に対物レンズ電流を徐々に段階的に変化させ
ると共に、1回の.円形走査の間に検出器14から得ら
れる検出信号の変化分の大きさを積算し、この積算値が
最も小さくなる対物レンズ電流値の時に停止信号bを発
して対物レンズ電流をその値例えば■。
That is, the automatic focusing device 16 gradually changes the objective lens current step by step each time the electron beam EB is scanned in a circular manner, and also changes the objective lens current in stages each time the electron beam EB is scanned once. The magnitude of the change in the detection signal obtained from the detector 14 during circular scanning is integrated, and when the integrated value reaches the smallest objective lens current value, a stop signal b is issued and the objective lens current is changed to that value, for example, ■ .

に固定する。この対物レンズ電流値■。が先に説明した
様に最小錯乱円を与えるものであり、試料上には最小錯
乱円の状態で電子線が照射されている。
Fixed to. This objective lens current value■. As explained earlier, this gives the circle of least confusion, and the sample is irradiated with the electron beam in the state of the circle of least confusion.

従って停止信号bに同期して切換回路21X,21Yを
■の状態に戻し、最小錯乱円の状態で電子線をラスク走
査すれば、該ラスク走査に同期した表示装置17の画面
には一方向に流れることのない鮮明な走査電子顕微鏡像
を得ることができる。
Therefore, if the switching circuits 21X and 21Y are returned to the state (2) in synchronization with the stop signal b and the electron beam is scanned in a rask manner in the state of the circle of least confusion, the screen of the display device 17 synchronized with the rask scan will be displayed in one direction. It is possible to obtain clear scanning electron microscopy images without bleeding.

尚、上述した実施例では自動焦点合わせ装置として検出
信号の変化分の大きさを積算する方式のものを用いたが
、これに限らずその他の方式例えば検出信号を時間微分
する方式のものでも用いることができることは言うまで
もない。
In the above-described embodiments, an automatic focusing device that integrates the magnitude of change in the detection signal is used, but the present invention is not limited to this, and other methods such as a method that differentiates the detection signal over time may also be used. Needless to say, it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は非点性収差を説明するための図、第
3図は電子線束の太さを説明するための図、第4図は本
発明を実施した装置の一例を示す構成図である。 12:対物レンズ、13X,13Y:偏向コイル、14
:検出器、16:自動焦点合わせ装置、18:タイミン
グ回路、20X,20Y:走査回路、 21X,21Y:切換回路、 23:発振器。
Figures 1 and 2 are diagrams for explaining astigmatism, Figure 3 is a diagram for explaining the thickness of the electron beam, and Figure 4 is a configuration showing an example of an apparatus implementing the present invention. It is a diagram. 12: Objective lens, 13X, 13Y: Deflection coil, 14
: Detector, 16: Automatic focusing device, 18: Timing circuit, 20X, 20Y: Scanning circuit, 21X, 21Y: Switching circuit, 23: Oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 電子線を集束レンズにより試料上に細く集束させて
照射する電子線装置において、電子線を試料上で繰返し
円形走査する手段と、各円形走査毎に前記集束レンズの
電流値を変化させる手段と、各円形走査期間中に試料よ
り発生する情報の比較に基づいて試料上に最小錯乱円の
状態で電子線を照射することのできる集束レンズ電流値
を求める手段とを設けたことを特徴とする焦点合わせ装
置。
1. An electron beam device that narrowly focuses an electron beam onto a sample using a focusing lens and irradiates the sample, comprising means for repeatedly scanning the electron beam in a circular manner on the sample, and means for changing the current value of the focusing lens for each circular scan. , a means for determining a focusing lens current value that allows the electron beam to be irradiated onto the sample in a state of a circle of least confusion based on a comparison of information generated by the sample during each circular scanning period. Focusing device.
JP53006911A 1978-01-25 1978-01-25 Focusing device in electron beam equipment Expired JPS5848989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53006911A JPS5848989B2 (en) 1978-01-25 1978-01-25 Focusing device in electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53006911A JPS5848989B2 (en) 1978-01-25 1978-01-25 Focusing device in electron beam equipment

Publications (2)

Publication Number Publication Date
JPS54100661A JPS54100661A (en) 1979-08-08
JPS5848989B2 true JPS5848989B2 (en) 1983-11-01

Family

ID=11651414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53006911A Expired JPS5848989B2 (en) 1978-01-25 1978-01-25 Focusing device in electron beam equipment

Country Status (1)

Country Link
JP (1) JPS5848989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942750A (en) * 1982-08-31 1984-03-09 Shimadzu Corp Focal point detector for charged particle beam scanning type microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834477A (en) * 1971-09-06 1973-05-18
JPS50141266A (en) * 1974-04-24 1975-11-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834477A (en) * 1971-09-06 1973-05-18
JPS50141266A (en) * 1974-04-24 1975-11-13

Also Published As

Publication number Publication date
JPS54100661A (en) 1979-08-08

Similar Documents

Publication Publication Date Title
JP2006032107A (en) Reflection image forming electron microscope and pattern defect inspection device using it
JP2000243338A (en) Transmission electron microscope device and transmitted electron examination device and examination method
JP2003331773A (en) Electron microscope
US6677585B2 (en) Scanning charged particle microscope, and focal distance adjusting method and astigmatism correction method thereof
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
US4214163A (en) Method and apparatus for correcting astigmatism in a scanning electron microscope or the like
JPH0244103B2 (en)
JP3101114B2 (en) Scanning electron microscope
JP2002134059A (en) Focused ion beam device
JPS614144A (en) Diffraction pattern display method by electron microscope
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JP3400608B2 (en) Scanning electron microscope
JPS5848989B2 (en) Focusing device in electron beam equipment
JPH07302564A (en) Scanning electron microscope
JPH0756786B2 (en) Electron microscope focusing device
JP2002015691A (en) Scanning electron microscope
JP3488075B2 (en) Thin film sample preparation method and system
JPS6134222B2 (en)
JPS6151377B2 (en)
JPH05128989A (en) Scanning electron microscope for observing three-dimensional figure
JPS5816746B2 (en) Focusing method and device in electron beam equipment
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPH0963937A (en) Charged beam drawing system
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method