JPS5848961A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5848961A
JPS5848961A JP56147405A JP14740581A JPS5848961A JP S5848961 A JPS5848961 A JP S5848961A JP 56147405 A JP56147405 A JP 56147405A JP 14740581 A JP14740581 A JP 14740581A JP S5848961 A JPS5848961 A JP S5848961A
Authority
JP
Japan
Prior art keywords
transistor
gate electrode
region
drain region
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56147405A
Other languages
Japanese (ja)
Other versions
JPH0325945B2 (en
Inventor
Toru Tsujiide
辻出 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56147405A priority Critical patent/JPS5848961A/en
Publication of JPS5848961A publication Critical patent/JPS5848961A/en
Publication of JPH0325945B2 publication Critical patent/JPH0325945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a transistor, couple capacitance between a gate electrode and a drain region thereof is small, by forming at least the drain region in offset structure to the gate electrode and geometrically making a source region and the drain region asymmetrical to the gate electrode. CONSTITUTION:The gate electrode 402, which uses a gate oxide film 401 as an underlay and consists of polycrystal Si, is shaped onto a P type Si substrate 400, As ions 403 are implanted at an angle theta to a vertical surface, and the N type drain region 404 in offset structure to the electrode 402 is formed through heat treatment at a high temperature. The N type source region 405 geometrically asymmetrical to the region 404 is shaped into a region holding the electrode 402 at the same time. Accordingly, the couple capacitance between the gate electrode 402 and the drain region 404 is reduced without lowering the capability of the transistor.

Description

【発明の詳細な説明】 本発明は半導体装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor device.

MO8電界効果型トランジスタを用いたスタテック型記
憶回路装置の高速化は最近目覚しいものがある。これま
でのスタテック型記憶回路装置ではメモリセルからの情
報はデータ線へY側のアドレス入力により選択された信
号によジオン、オフするスイッチングトランジスタ(ト
ランスファゲートトランジスタ)t−通して導ひかれる
のが一般的であった。
Recently, there has been a remarkable increase in the speed of static memory circuit devices using MO8 field effect transistors. In conventional static type memory circuit devices, information from a memory cell is conducted through a switching transistor (transfer gate transistor) that is turned on and turned off by a signal selected by the address input on the Y side to the data line. It was common.

本方式は桁41(ビy ) 11 )毎にセンスアンプ
を入れる方式に比してチア1面積が小さくなるという利
点を有している。しかし1981年国際固体回路会議(
IS8CC)ダイジェストオプ・テクニカル・ペイバー
ズ(Digest of Technical Pap
erすVol  24.PI3に述べられているように
、桁線に差動増巾器を入れることによシ速度の改良を大
巾に計ることができる。
This method has the advantage that the area of the cheer 1 is smaller than the method of inserting a sense amplifier every digit 41 (biy) 11 ). However, the 1981 International Solid State Circuits Conference (
IS8CC) Digest of Technical Pavers
Ersu Vol 24. As described in PI3, significant improvements in speed can be achieved by including differential amplifiers in the spar lines.

第1図に従来のメモリ回路を示す。ここではメモリセル
100〜1o2.各々の桁線103〜108゜桁線信号
を増巾するための差動増巾器109〜111、 データ
バス”12el13*データアウト増巾器114が含ま
れる。従来のMOS トランジスタは第2図に示すよう
にゲート電極200に対してソース201 Thよびド
レイン202の各領域は対称でアシかつゲート電極とソ
ースおよびドレイン領域は一部重 している、この為ゲ
ート電極とドレイン領域の間にはカップル容量が存在す
る。
FIG. 1 shows a conventional memory circuit. Here, memory cells 100 to 1o2. It includes differential amplifiers 109 to 111 for amplifying the digit line signals of each digit line 103 to 108 degrees, and a data bus "12el13*data out amplifier 114. Conventional MOS transistors are shown in FIG. As shown, the source 201 Th and drain 202 regions are symmetrical with respect to the gate electrode 200, and the gate electrode and the source and drain regions partially overlap, so there is a couple between the gate electrode and the drain region. Capacity exists.

この容量は、使い方によっては利点とすることができる
が一般的には弊害となる。第1図に示す差動増巾器に用
いられたときも後者の場合である。
This capacity can be an advantage depending on how it is used, but it is generally a disadvantage. The latter case also applies when used in the differential amplifier shown in FIG.

桁線103,105,107 に連らなる差動増巾器の
トランジスタのゲート電極とデータバスに連らなるトラ
ンジスタのドレイン領域の間には115゜116.11
7の容量が又同様に桁線104,106゜108とデー
タバス113の間には118,119゜120のカップ
ル容量が存在する。ある行線xi。
There is a distance of 115°116.11 between the gate electrode of the transistor of the differential amplifier connected to the digit lines 103, 105, 107 and the drain region of the transistor connected to the data bus.
Likewise, there is a couple capacitance of 118,119°120 between the digit lines 104, 106°108 and the data bus 113. A certain row line xi.

121が選択されるとメモリセル100〜102のスイ
ッチトランジスタ(トランスファゲートトランジスタ)
がONI、各メモリセル情報が各桁線に出てくる。この
行線に連らなるメモリセルの情報が同一であり、例えば
一方の桁線103,105゜107が丁べてハイ(ハ)
他方の桁線104,106゜108が丁ぺてロー(ト)
であったとする。この状態であるY側のアドレス信号に
よシ選択された例えばYI に連らなる差動増巾器のト
ランジスタをONするとデータ線112の方がLowに
なろうとする。しかしYi−H〜YNは選択されていな
いので残りの桁線とデータバスのカップル容量によシデ
ータバス113の方がLowになろうとする。
When 121 is selected, the switch transistors (transfer gate transistors) of memory cells 100 to 102
is ONI, and each memory cell information appears on each digit line. The information of the memory cells connected to this row line is the same, for example, one column line 103, 105°107 is all high (c).
The other girder line 104, 106°108 is
Suppose it was. In this state, when a transistor of a differential amplifier connected to YI, selected by the address signal on the Y side, is turned on, the data line 112 tends to go low. However, since Yi-H to YN are not selected, the data bus 113 tends to go low due to the couple capacitance between the remaining digit lines and the data bus.

個々のカップル容量値はデータバスにつく寄生の容量に
比して小さいがこの例のようにすべてのメモリセルが同
一情報の場合は無視できない程カップル容量の値は大き
くなる。このため読出そうとする情報の両データバス1
12,113の間の信号差は上記のカップル容量によシ
小さくなるか、場合によっては逆転してしまい、読出し
速度の遅れや誤動作につながる。この問題を解決する為
に第3図に示すようにデータバスと桁線に連らなるトラ
ンジスタを分離する為のトランジスタを挿入し、これt
−Y選択信号で選ぶ方式が用いられている。
The individual couple capacitance value is small compared to the parasitic capacitance attached to the data bus, but when all the memory cells have the same information as in this example, the value of the couple capacitance becomes so large that it cannot be ignored. Therefore, both data buses 1 of the information to be read are
The signal difference between 12 and 113 is reduced by the above couple capacitance, or in some cases is reversed, leading to a delay in read speed and malfunction. To solve this problem, we inserted a transistor to separate the transistors connected to the data bus and the digit line, as shown in Figure 3.
- A selection method using a Y selection signal is used.

しかし本方式では桁線増巾器が大きくなりてしまうとい
う欠点を有する。従って必要なところだけゲート電極と
ドレイン領域のカップル容量が少ないトランジスタが使
用できれば有効となる。
However, this method has the disadvantage that the digit line amplifier becomes large. Therefore, it would be effective if a transistor with a small coupling capacitance between the gate electrode and the drain region could be used only where necessary.

本発明の第1目的は従来のトランジスタの製造技術を大
きく変更することなくゲート電極とドレイン領域のカッ
プル容量を小さくできるトランジスタを提供することで
ある。
A first object of the present invention is to provide a transistor in which the coupling capacitance between the gate electrode and the drain region can be reduced without significantly changing the conventional transistor manufacturing technology.

本発明によるトランジスタはゲート電極に対し少なくと
もドレイン領域はオフセット構造となっており、かつソ
ース領域とドレイン領域はゲート電極に対し幾何学的に
非対称となっている。また本トランジスタは電気特性の
上からも非対称性を有しておシソースとドレインを入れ
かえると本トランジスタを流れる電流値が異なるという
特徴をもっている。
In the transistor according to the present invention, at least the drain region has an offset structure with respect to the gate electrode, and the source region and the drain region are geometrically asymmetrical with respect to the gate electrode. Furthermore, this transistor has an asymmetrical electrical characteristic, and if the source and drain are interchanged, the value of the current flowing through this transistor differs.

本発明の第2の目的は上記のよう寿非対称トランジスタ
と従来の幾何学的にも又電気的にも対称なトランジスタ
のいずれをも有した半導体集積回路装置を提供すること
にある。
A second object of the present invention is to provide a semiconductor integrated circuit device having both the above-mentioned lifetime asymmetric transistor and a conventional geometrically and electrically symmetric transistor.

本発明の一実施例によるトランジスタを第4図Ta)〜
(C) t−用いて説明する。第4図(II)に示すよ
うにP型S1基板400上にゲート酸化膜401ポリS
t  ゲート電極402を形成後砒素イオンを垂直に対
しθの角度で打込み高温熱処理で押込むと第4図(C)
に示すような幾何学的に非対称表トランジスタができる
。領域404’tドレインに又405をソースにした場
合と逆に404 kソースに又405をドレインにした
場合のID−VD曲線は第5図に示すように異なる0曲
線500が前者の場合であシ、曲線501が後者の場合
である。第4図(C)のトランジスタは第4図(b)の
ようにポリシリコン(SI)402 i酸化し酸化膜4
02を形成した後砒素イオン注入してもよい、ポリSl
  402にはリンが高濃度にドープされている場合は
ポリSi  の周囲にできる酸化膜は8i 基板上にで
きる酸化膜よシ厚く形成され、非対称性トランジスタを
作抄易くなる。
A transistor according to an embodiment of the present invention is shown in FIG.
(C) Explain using t-. As shown in FIG. 4(II), a gate oxide film 401 is formed on a P-type S1 substrate 400.
t After forming the gate electrode 402, arsenic ions are implanted at an angle of θ with respect to the vertical and pressed in by high-temperature heat treatment, as shown in Fig. 4(C).
This results in a geometrically asymmetric table transistor as shown in . As shown in FIG. 5, the ID-VD curves when the region 404't drain and 405 are used as the source and conversely when the 404k source and 405 are used as the drain, are different 0 curves 500 in the former case. Curve 501 is the latter case. The transistor shown in FIG. 4(C) is made of polysilicon (SI) 402 i as shown in FIG. 4(b).
Arsenic ions may be implanted after forming the poly-Sl
When 402 is heavily doped with phosphorus, the oxide film formed around the poly-Si is thicker than the oxide film formed on the 8i substrate, making it easier to fabricate an asymmetric transistor.

第5図の点線502は幾何学的に対称でありソース・ド
レインがゲート電極とオフセット構造となっておらずか
つソースドレイン間のキ、りが第4図(C)のLと同一
のトランジスタに対するIDVD曲線である。勿論ソー
ス・ドレインを入れ換えても全く変らない、注目すべき
ことは曲線502と500と社飽和領域で少し異なるだ
けでほとんど同一である。すなわち第4図(C)の領域
404をドレインとした場合は対称トランジスタと同一
のトランリスタ能力を得ることができる。
The dotted line 502 in FIG. 5 corresponds to a transistor that is geometrically symmetrical, the source/drain is not in an offset structure with the gate electrode, and the gap and gap between the source and drain are the same as L in FIG. 4(C). This is an IDVD curve. Of course, there is no difference even if the source and drain are replaced.What is noteworthy is that the curves 502 and 500 are almost the same, with only a slight difference in the saturation region. That is, when the region 404 in FIG. 4(C) is used as a drain, it is possible to obtain the same transristor ability as a symmetrical transistor.

第4図(C)に示すゲートと領域404とのオフセット
量Los  がどのくらいになると非対称性がでてくる
のであろうか。第6図はソース・ドレイン間が1μm、
ゲート酸化膜が5001.チャネル巾100μm のト
ランジスタにおいて、第6図(b)。
At what level of offset Los between the gate and the region 404 shown in FIG. 4(C) becomes asymmetry occurs? In Figure 6, the distance between source and drain is 1 μm,
The gate oxide film is 5001. FIG. 6(b) shows a transistor with a channel width of 100 μm.

(C)に示すような結線で測定したドレイン電流ll5
It、* ケ−) 1ffl値を圧Vテt−Vy* f
)差ΔI 、 ΔVテをオフセット量Los  に対し
てプロットしたものである。Δ工はLos がゲート膜
厚にひとしい5ooXになると電流の非対称性がまた0
、15μ付近からゲート閾値電圧の非対称性が出始める
ことが分る。ドレインとゲート電極との容量値はLO8
=0.15μで第6図(b)の場合の場合の力が第6図
(C)の場合よfi20%小さいことが測定され九。
Drain current ll5 measured with the connection shown in (C)
It, * K-) 1ffl value as pressure Vte t-Vy* f
) The differences ΔI and ΔVte are plotted against the offset amount Los. For ΔF, when Los becomes 5ooX, which is equal to the gate film thickness, the current asymmetry becomes 0 again.
, it can be seen that asymmetry in the gate threshold voltage begins to appear around 15μ. The capacitance value between the drain and gate electrode is LO8
= 0.15μ, it was measured that the force in the case of Fig. 6(b) is 20% smaller than in the case of Fig. 6(C)9.

この様にドレインとゲート電極のみにオフ、セットがあ
る構造のトランジスタを用いることによシ両者のカップ
ル容量は小さくでき、かつトランジスタ能力を損なわな
い。また第4図で説明したように、ソース及びドレイン
の不純物を斜めに打込むだけでオフセット量有したトラ
ンジスタを形成しこれを図1に示した差動増巾器に用い
ることができる。
In this way, by using a transistor having a structure in which only the drain and gate electrodes are off and set, the coupling capacitance between the two can be reduced, and the transistor performance is not impaired. Further, as explained with reference to FIG. 4, a transistor having an offset amount can be formed by simply implanting source and drain impurities obliquely, and this can be used in the differential amplifier shown in FIG.

ソースとゲート電極Kfフセ、トヲ有したトランジスタ
を用いれば電流能力やゲート閾値電圧を容易に形成する
こ゛とができる0丁なわちどちらをドレイ/にするかに
よシ2種類のトランジスタを同一チップ内に形成するこ
とができる。さらにソースおよびドレインを斜め打込し
たトランジスタと垂直打込したトランジスタを別々に設
けこれらのトランジスタを必要に応、じて使い分けする
ことも可能である。
By using a transistor with source and gate electrodes, the current capability and gate threshold voltage can be easily formed. can be formed into Furthermore, it is also possible to separately provide a transistor whose source and drain are implanted diagonally and a transistor whose source and drain are implanted vertically, and use these transistors as required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非対称性トランジスタを用いる必要性
を示す記憶回路図、第2図は従来の対称トランジスタ、
第3図は第1図を改良した桁線差動増巾器、第4図(a
)〜(C)は本発明の非対称性トランジスタを説明する
図、第5図はID  VD曲線、第6図(a)〜(C)
は電流およびゲート閾値電圧のゲート電極とソース又は
ドレインのオフセット量依存性を示す図である。 109〜111・・・・・・センスアンプ、100−1
02−3( ’i−+図 り・′3図 4ρ3 蓼クーヴ
Figure 1 is a memory circuit diagram showing the necessity of using the asymmetric transistor of the present invention, Figure 2 is a conventional symmetric transistor,
Figure 3 shows a beam line differential amplifier that is an improved version of Figure 1, and Figure 4 (a).
) to (C) are diagrams explaining the asymmetric transistor of the present invention, FIG. 5 is an ID VD curve, and FIG. 6 (a) to (C)
FIG. 2 is a diagram showing the dependence of current and gate threshold voltage on the amount of offset between the gate electrode and the source or drain. 109-111...Sense amplifier, 100-1
02-3 ( 'i-+ plan・'3 figure 4ρ3 蓼couve

Claims (1)

【特許請求の範囲】[Claims] ゲート電極とソースあるいはドレイン領域がオフセット
構造となり、かつ該ゲート電極に対し該ソースおよび該
ドレイン領域が非対称に配置された電界効果型トランジ
スタを有することを特徴とする半導体装置。
1. A semiconductor device comprising a field effect transistor in which a gate electrode and a source or drain region have an offset structure, and the source and drain regions are arranged asymmetrically with respect to the gate electrode.
JP56147405A 1981-09-18 1981-09-18 Semiconductor device Granted JPS5848961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147405A JPS5848961A (en) 1981-09-18 1981-09-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147405A JPS5848961A (en) 1981-09-18 1981-09-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5848961A true JPS5848961A (en) 1983-03-23
JPH0325945B2 JPH0325945B2 (en) 1991-04-09

Family

ID=15429545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147405A Granted JPS5848961A (en) 1981-09-18 1981-09-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5848961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622343B2 (en) 1992-10-30 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Laser processing method, method for forming a flash memory, insulated gate semiconductor device and method for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622343B2 (en) 1992-10-30 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Laser processing method, method for forming a flash memory, insulated gate semiconductor device and method for forming the same

Also Published As

Publication number Publication date
JPH0325945B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
US4495693A (en) Method of integrating MOS devices of double and single gate structure
US5341013A (en) Semiconductor device provided with sense circuits
JPH01255269A (en) Semiconductor storage device
JP2789931B2 (en) Semiconductor device
JPH08213564A (en) Semiconductor device
KR910009548B1 (en) Semiconductor memory device
JPS6043693B2 (en) drive circuit
US4132903A (en) CCD output circuit using thin film transistor
KR19980080856A (en) Semiconductor devices
JPS5848961A (en) Semiconductor device
JPS59143360A (en) One device memory cell
JPS586234B2 (en) semiconductor storage device
JPH0586864B2 (en)
JPS6235559A (en) Semiconductor memory
KR930001733B1 (en) Semiconductor memory device
JPH0555487A (en) Semiconductor device
JPH11297961A (en) Precharge circuit and semiconductor memory device
JP2525708B2 (en) Method for manufacturing thin film transistor
JPS5937589B2 (en) transistor circuit device
JPS6113389B2 (en)
JPS58119B2 (en) semiconductor storage device
EP0061202A1 (en) Semiconductor memory device
JPH0555486A (en) Semiconductor device
JPS60246670A (en) Semiconductor memory cell
JPH0382074A (en) Semiconductor device