JPS5848740A - Method of controlling air-fuel ratio of internal- combustion engine - Google Patents

Method of controlling air-fuel ratio of internal- combustion engine

Info

Publication number
JPS5848740A
JPS5848740A JP13875581A JP13875581A JPS5848740A JP S5848740 A JPS5848740 A JP S5848740A JP 13875581 A JP13875581 A JP 13875581A JP 13875581 A JP13875581 A JP 13875581A JP S5848740 A JPS5848740 A JP S5848740A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
idle state
negative pressure
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13875581A
Other languages
Japanese (ja)
Inventor
Kiyoshi Asada
浅田 潔
Takayoshi Nakagawa
中川 孝義
Hisao Nishiguchi
西口 尚男
Takeshi Shiozawa
塩沢 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13875581A priority Critical patent/JPS5848740A/en
Publication of JPS5848740A publication Critical patent/JPS5848740A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent overcompensation and to improve control on the air-fuel ratio and performance of engine, by effecting switching of an integration constant used for feedback control of the air-fuel ratio by use of an O2-sensor a predetermined time later after the engine operation is shifted from idling operation to off-idling operation. CONSTITUTION:Output of a rich-lean judging means 14, to which output signal of an O2-sensor 10 is applied, is afforded to integrators 16, 18 having integration constants K0, K1, respectively, and an air-fuel ratio controlling actuator 12 is controlled via a switching circuit 30 on the basis of the output signals of the two integrators 16, 18. On the other hand, output signal of a vacuum operated switch 26 for detecting the negative pressure at a throttle valve port 24 is applied, via a delay valve 34, to a condition judging means 28 which controls the switching circuit 30. At the time of idling operation, negative pressure in an intake pipe is increased and resultantly the switch 26 is turned ON, so that integration is executed by use of the integration constant K0. However, when the engine operation is shifted to off-idling operation and a predetermined time is passed via the delay valve 34, the switch 26 is turned OFF, so that integration is executed by use of another integration constant K1.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比制御方法に係シ、特に、三
元触媒を用い゛て排気ガス浄化対策が施された自動車用
内燃機関に用いるに好適表、触媒流入ガス中の残存酸素
濃度を感知する酸素濃度センナと、混合気或いは触媒流
入ガスの空燃比を制御する空−比制御アクチェエータと
を用い、前記酸素濃度セン゛すO出力に対して積分を含
む旭理を施すことによって得られる帰還制御信号により
前記空燃比制御アクチェエータを帰還制御して、混合気
或いは触媒流入ガスの空燃比を所望空燃比とする内燃機
関の空燃比制御方法の改真に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine, and in particular, to a method for controlling an air-fuel ratio of an internal combustion engine, and in particular to a method for controlling an air-fuel ratio of an internal combustion engine. An oxygen concentration sensor that senses the residual oxygen concentration in the inflow gas and an air-ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas are used, and an integral is included for the oxygen concentration sensing O output. The present invention relates to an improvement of an air-fuel ratio control method for an internal combustion engine, in which the air-fuel ratio control actuator is feedback-controlled by a feedback control signal obtained by applying a control signal to bring the air-fuel ratio of the air-fuel mixture or catalyst inflow gas to a desired air-fuel ratio.

内燃機関、轡に、厳しい排気ガス浄化対策が要求される
自動車用内燃機関においては、近年、積置な空燃比制御
を行なうことが必要となってシシ、例えば、触1m流入
ガス中の残存酸素濃度を感知すゐ酸素濃度センナと、混
合気或い拡触媒流入ガスO空燃比を制御する空燃比制御
アクチェエータとを備え、前記酸素濃度センナの出力に
対して積分を含むlI&理を施すことKよって得られる
*m制御信号によ)前記空燃比制御アクチェエータを帰
還制御して、触媒流入ガス中の残存酸素濃度を、理論空
燃比O混合気を燃鉤させた場合の残存酸素濃度と等しく
するようにし丸ものが実用化されている・ このような空燃比制御によれば、エンジン運転状態の変
化に拘らず、良好な排気ガス浄化性能を得ることかで1
i為という特徴を有する〇一般に、このような空燃比制
御においては、アイドル状U<適し九積分定数とオフア
イドル状態に適した積分定数が異まる九め、アイドル状
態とオアアイドル状態で積分定数を切換えるようにされ
ているoしかしながら従来は、前記積分定数の切換えを
、例えば吸気絞シ弁下流側の吸気管負圧O有無に応じて
、アイドル状態からオフアイドル状11に移行した直後
、或いは、オフアイドル状態からアイドル状態に移行し
九直後に行なうようにしてい友ため、特に、吸入空気量
が小さく積分定数4小さいアイドル状態から、吸入空気
量が大きく積分定数も大きいオフアイドル状態に移つ九
直後、即ち、発進時に、燃料系の吐出乱れ等の影響もあ
って、−気に大きな積分定数で制御すると1過補償とな
って空燃比が直れ、走行時にシ習ツクを与えて、制御上
及び運転性能上問題が6つ九〇本発明は、前記従来の欠
点を解消するべくなされたもので1アイドル状態からオ
フアイドル状態に移行し九際の過補償を防止することが
でき、従って、制御性及び運転性を向上すゐことができ
る内燃機関の空燃比制御方法を提供することを目的とす
る。
In recent years, in automobile internal combustion engines, which require strict exhaust gas purification measures, it has become necessary to perform extensive air-fuel ratio control. It is equipped with an oxygen concentration sensor that senses the concentration, and an air-fuel ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or expansion catalyst inflow gas O, and performs lI&processing including integration on the output of the oxygen concentration sensor. Accordingly, the air-fuel ratio control actuator is feedback-controlled (by the *m control signal obtained) to make the residual oxygen concentration in the catalyst inflow gas equal to the residual oxygen concentration when a stoichiometric air-fuel ratio O mixture is ignited. The air-fuel ratio control system has been put into practical use.It is possible to obtain good exhaust gas purification performance regardless of changes in engine operating conditions.
In general, in this kind of air-fuel ratio control, the integral constant in idle state U < suitable 9 and the integral constant suitable for off-idle state are different, and the integral constant in idle state and OR idle state is different. Conventionally, however, the integration constant is switched immediately after the transition from the idle state to the off-idle state 11, or depending on the presence or absence of the intake pipe negative pressure O on the downstream side of the intake throttle valve, for example. This is done immediately after the transition from the off-idle state to the idle state, so in particular, the transition from the idle state where the intake air amount is small and the integral constant is small to the off-idle state where the intake air amount is large and the integral constant is large. Immediately after nine months, that is, at the time of starting, due to the influence of discharge disturbances in the fuel system, controlling with a particularly large integral constant results in 1 over compensation, which corrects the air-fuel ratio, giving a stiffness when driving. There are six problems in terms of control and driving performance.The present invention has been made to solve the above-mentioned drawbacks of the conventional technology, and can prevent excessive overcompensation when shifting from an idle state to an off-idle state. Therefore, it is an object of the present invention to provide an air-fuel ratio control method for an internal combustion engine that can improve controllability and drivability.

本発明は、触媒流入ガス中の残存酸素濃度を感知する酸
素濃度センサと、混合気或いは触媒流入ガスの空燃比を
制御する空燃比制御アクチュエータとを用い・前記酸素
濃度センサの出力に対して積分を含む部層を施すことに
よって得られる帰還制御信号によ)前記空燃比制御アク
チェエータを帰還制御して、混合気或いは触媒流入ガス
の空燃比を所望空燃比とする内燃機関の空燃比制御方法
において、アイドル状態からオファイド−状11に移行
し丸際の積分定数の切換えを1オアアイドル状11にな
ってから所定時間経過した後に行なうよ゛うKして、前
記目的を達成したものである〇以下図面を参照して、本
発明に係る内燃機関の空燃比制御方法が採用され九空燃
比制御装置の実施例を詳細に説明する〇 本実施例は、第1図に示す如く、エンジン燃焼室から排
気ガスが排出される排気マニホルドに配役され、該排気
マニホルドの下流側に配設嘔れる触媒、例えば三元触媒
に流入する触媒流入ガス中の残存酸素濃度を感知する酸
素濃度、センサlOと、混合気を形成するための燃料通
路或いはエアブリード通路の有効面積を制御することに
よシ、或いは、排気ガスに混入される2次空気の流量を
制御するととくよ〕、混合気或いは触媒流入ガスの空燃
比を制御する、制御電磁弁等からなる空燃比制御アクチ
ェエータ12と、前記酸素盪度センサ100出力を参照
電圧と比較し、触媒流入ガスの空燃比がリッチ状態であ
るかり一ン状態であるかを判別するりツチーリーン判定
器14と、アイドル状態に適した第1の積分定数4で前
配替ツチーリーン判定器14の出力管積分し、空燃比に
応じた帰還制御信号を作成する第1の積分器16と、オ
フアイドル状態に適した第2の積分定数Klで前記リッ
チ−リーン判定器14の出力を積分し、空燃比に応じた
帰還制御信号を作成する第2の積分器18と、気化器!
Oo吸気絞ル弁22の全閉位置直下に形成畜れた絞)弁
ポート24に発生する吸気管負圧に応じて切換えられる
負圧スイッチ26と、11JIL圧Jイツチ26の出力
状態に応じて、エンジン運転状態がアイドル状態である
かオフアイドル状態であるかを判別する条件判別器28
と、賦条件判別器28の出力に応じて、アイドル状態で
ある場合には前記積分器16出力の帰還制御信号を前記
空燃比制御アクチュエータ12に入力し、一方、オアア
イドル状態である場合には前記第2の積分器18出力の
帰還制御信号を前記空燃比制御アクチェエータ1211
C入力する切換回路3oとを有してなる内燃機関0空燃
比制御装置において、前記絞)弁ポート24と負、圧ス
イッチ26を連通する負圧管路32の途中に、逆止弁3
4m及び絞)34bからなる負圧遅延弁34を配設する
ととによって、アイドル状態からオアアイドル状11に
移行して1吸気絞夛弁22が閉じられ吸気管負圧が高め
られてから、負圧遅爾弁34の轡性によりて決まる所定
時間経過後に、負圧スイッチ26が切換えられるように
して、アイドル状態からオアアイドル状lIK移行した
際の積分定数の切換えを、オフアイドル状態になってか
ら所定時間経過した後に行なうようKしたものである。
The present invention uses an oxygen concentration sensor that senses the residual oxygen concentration in the catalyst inflow gas and an air-fuel ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas. In the air-fuel ratio control method for an internal combustion engine, the air-fuel ratio control actuator is feedback-controlled (by a feedback control signal obtained by applying a section including The above objective was achieved by changing from the idle state to the offide state 11 and switching the integral constant at the edge of the circle after a predetermined period of time had passed since the state became 1 or idle state 11. Hereinafter, with reference to the drawings, an embodiment of an air-fuel ratio control device in which the air-fuel ratio control method for an internal combustion engine according to the present invention is adopted will be described in detail. In this embodiment, as shown in FIG. An oxygen concentration sensor 10 is installed in an exhaust manifold from which exhaust gas is discharged from the exhaust manifold, and is arranged downstream of the exhaust manifold to detect the residual oxygen concentration in the catalyst inflow gas flowing into the catalyst, for example, a three-way catalyst. By controlling the effective area of the fuel passage or air bleed passage for forming the mixture, or by controlling the flow rate of secondary air mixed into the exhaust gas], the mixture or the catalyst inflow gas The air-fuel ratio control actuator 12, which controls the air-fuel ratio of the catalyst, and the output of the oxygen temperature sensor 100, which controls the air-fuel ratio of the catalyst, is compared with a reference voltage. The output pipe of the pre-allocated lean determiner 14 is integrated using a first integration constant 4 suitable for the idle state, and a feedback control signal corresponding to the air-fuel ratio is created. a second integrator 18 that integrates the output of the rich-lean determiner 14 with a second integral constant Kl suitable for an off-idle state and creates a feedback control signal according to the air-fuel ratio. , vaporizer!
A negative pressure switch 26 is formed directly below the fully closed position of the intake throttle valve 22 and a negative pressure switch 26 is switched according to the intake pipe negative pressure generated at the valve port 24, and a negative pressure switch 26 is switched depending on the output state of the , a condition discriminator 28 that discriminates whether the engine operating state is an idle state or an off-idle state.
According to the output of the condition discriminator 28, if the condition is in the idle state, the feedback control signal of the output of the integrator 16 is input to the air-fuel ratio control actuator 12; The feedback control signal of the second integrator 18 output is transmitted to the air-fuel ratio control actuator 1211.
In the internal combustion engine zero air-fuel ratio control device, which has a switching circuit 3o that inputs C, a check valve 3 is installed in the middle of a negative pressure line 32 that communicates the throttle valve port 24 with the negative pressure switch 26.
By disposing the negative pressure delay valve 34 consisting of 4m and throttle) 34b, the idle state shifts to the or-idle state 11, the first intake throttle valve 22 is closed, the intake pipe negative pressure is increased, and then the negative pressure is increased. After a predetermined period of time determined by the pressure delay valve 34 has elapsed, the negative pressure switch 26 is switched so that the integral constant is changed when the idle state shifts from the idle state to the off-idle state. This is to be carried out after a predetermined period of time has elapsed since then.

以下第2図を参照して作用を説明す名。まず吸気絞シ弁
22が閉じられておp絞シ弁ボート24に発生する吸気
管負圧が大であるアイドル状態では、負圧スイッチ26
がオンとてれており、条件判別器28K)出力によって
、切換回路30が、第1の積分器16の出力を空燃比制
御アクチェエータ1′2に出力するようにしている。従
って、このアイドル状11においては、アイドル状態に
適した第1の積分定数4によシ空燃比制御アクチュエー
タ12が制御される。
The operation will be explained below with reference to FIG. First, in an idling state where the intake throttle valve 22 is closed and the intake pipe negative pressure generated in the throttle valve boat 24 is large, the negative pressure switch 26
is turned on, and the switching circuit 30 outputs the output of the first integrator 16 to the air-fuel ratio control actuator 1'2 according to the output of the condition discriminator 28K). Therefore, in this idle state 11, the air-fuel ratio control actuator 12 is controlled by the first integral constant 4 suitable for the idle state.

一方、走行状態に移るべく、運転者が吸気絞り弁j!2
を開くと、吸気管負圧が低下し、この吸気管負圧の低下
が、第2図に夷1m桑で示す如く、負圧遅延弁34を介
して所定時間遅glれ先後、負圧スイッチ26に伝えら
れる0従って、所定時間Tだけ経過した後に切換回路3
0が切換えられ、オフアイドル状111に適し九積分定
数KsKよ多処理された第2の積分器1sの出力が、空
燃比制御アクチェエータ12に入力される。このIIに
おいて、アイドル状態からオフアイドル状11に移行す
る際に、積分定数が敷気絞〕弁22の操作と同時にオフ
アイドル状11に遍した第2の積分定数に1に切換えら
れてしまうことがないので、制御状態が円滑に移行畜れ
る・これに対して従来は、前記絞)弁ボート24の出力
が、直接、負圧スイッチ26に伝えられてい友ため、各
信号の変化状態が、第2図に破線Bで示す如くとなって
お夛、アイドル状態からオフアイドル状11に移行し走
置後に空燃比制御アクチュエータ12の制御電流値が瞬
間的に大きく表って、走行時にシ璽ツクを与えることが
あったものであゐ@ なか、前記オフアイドル状態への移行を運らせる時間T
d、オフアイドル状態に移行した後の制御の立上如を悪
化させない範囲の値とされている0なお前記実施例にお
いては、本発明が、吸気絞p弁の下流側に発生する吸気
管負圧に応じてアイドル状態とオフアイドル状態を切換
える空燃比制御装置に適用され、該空燃比制御装置にシ
ける絞ル弁ボート24と負圧スイッチ26を連通する負
圧管路320途中に負圧遅延弁34を設けることにより
、積分定数の切換えがオフアイドル状態になってから所
定時間経過した後に行なわれるようにしていたが、本発
明が遍用畜れる空燃比制御装置の種類、或いは、積分定
数の切換えを所定時間遅らせる方法はこれに限定されな
い。
Meanwhile, in order to shift to driving mode, the driver opens the intake throttle valve j! 2
When the valve is opened, the negative pressure in the intake pipe decreases, and after this decrease in the negative pressure in the intake pipe is delayed for a predetermined time via the negative pressure delay valve 34, the negative pressure switch is closed. Therefore, after the predetermined time T has elapsed, the switching circuit 3
0 is switched, and the output of the second integrator 1s, which has been processed to a nine integral constant KsK suitable for the off-idle state 111, is input to the air-fuel ratio control actuator 12. In this II, when transitioning from the idle state to the off-idle state 11, the integral constant is switched to 1, the second integral constant over the off-idle state 11, at the same time as the sill throttle valve 22 is operated. Since there is no control, the control state can be smoothly transitioned.In contrast, in the past, the output of the throttle valve boat 24 was directly transmitted to the negative pressure switch 26, so the change state of each signal was As shown by the broken line B in FIG. 2, the state shifts from the idle state to the off-idle state 11, and after the vehicle is running, the control current value of the air-fuel ratio control actuator 12 momentarily becomes large, causing a warning when the vehicle is running. The time T required for transition to the off-idle state is
d, 0, which is a value within a range that does not worsen the start-up of the control after transitioning to the off-idle state.In the above embodiment, the present invention is designed to reduce the It is applied to an air-fuel ratio control device that switches between an idle state and an off-idle state according to the pressure, and a negative pressure delay is provided in the middle of a negative pressure pipe 320 that communicates the throttle valve boat 24 and the negative pressure switch 26 connected to the air-fuel ratio control device. By providing the valve 34, the integral constant is switched after a predetermined period of time has elapsed since the off-idle state. The method of delaying the switching for a predetermined period of time is not limited to this.

以上説明した過多、本発明によれば、アイドル状態から
オフアイドル状態に移行し走置後の過補償が防止され、
空燃比制御性及び運転性が向上するという優れた効果を
有する。
According to the present invention, overcompensation after moving from an idle state to an off-idle state is prevented,
This has the excellent effect of improving air-fuel ratio controllability and drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の空燃比制御方法が採
用畜れた空燃比制御装置の実施例の構成を示すブロック
線図、82図は、前記実施例における各部動作波形を示
す線図であるO lG・・・酸素濃度センサ、 12・・・空燃比制御アクチェエータ、14−−リッチ
−リーン判定器、 16.18−積分器、2z・・・吸気絞シ弁、24−絞
ヤ弁ポート、26・・・負圧スイッチ、28・−・条件
判別器、30・・・切換回路、34−・・負圧遅延弁。 代理人  高  矢   論 (ほか1名)
FIG. 1 is a block diagram showing the configuration of an embodiment of an air-fuel ratio control device in which the air-fuel ratio control method for an internal combustion engine according to the present invention is adopted, and FIG. 12--Air-fuel ratio control actuator, 14--Rich-Lean determiner, 16.18--Integrator, 2z--Intake throttle valve, 24-- Throttle valve Valve port, 26--Negative pressure switch, 28--Condition discriminator, 30--Switching circuit, 34--Negative pressure delay valve. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  触媒流入ガス中の残存酸素濃度を感知する酸
素濃度センナと、混合気或いは触媒流入ガスの空燃比を
制御する空燃比制御アクチェエータとを用い、前記酸素
濃度センナの出力に対して積分を當む旭理を施すことに
よって得られる帰還制御信号によシ前記空燃比制御アク
チェエータを帰還制御して、混合気或いは触媒流入ガス
の空燃比を所望空燃比とする内燃機関の空燃比制御方法
において、アイドル状態からオフアイドル状IIK移行
した際の積分定数の切換えを、オフアイドル状態になっ
てから所定時間経過し九俵に行なうようにしたことを特
徴とする内燃機関の空燃比制御方法O
(1) Using an oxygen concentration sensor that senses the residual oxygen concentration in the catalyst inflow gas and an air-fuel ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas, an integral is calculated for the output of the oxygen concentration sensor. In an air-fuel ratio control method for an internal combustion engine, the air-fuel ratio control actuator is feedback-controlled by a feedback control signal obtained by applying the appropriate temperature control to bring the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas to a desired air-fuel ratio. , an air-fuel ratio control method for an internal combustion engine O, characterized in that the integral constant is switched when transitioning from an idle state to an off-idle state IIK every 9 minutes after a predetermined period of time has elapsed after the state has changed to an off-idle state.
JP13875581A 1981-09-03 1981-09-03 Method of controlling air-fuel ratio of internal- combustion engine Pending JPS5848740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13875581A JPS5848740A (en) 1981-09-03 1981-09-03 Method of controlling air-fuel ratio of internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13875581A JPS5848740A (en) 1981-09-03 1981-09-03 Method of controlling air-fuel ratio of internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS5848740A true JPS5848740A (en) 1983-03-22

Family

ID=15229420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13875581A Pending JPS5848740A (en) 1981-09-03 1981-09-03 Method of controlling air-fuel ratio of internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5848740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216045A (en) * 1988-02-24 1989-08-30 Japan Electron Control Syst Co Ltd Air-fuel ratio feedback control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216045A (en) * 1988-02-24 1989-08-30 Japan Electron Control Syst Co Ltd Air-fuel ratio feedback control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPS6256346B2 (en)
US4617900A (en) Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load
JPS6318023B2 (en)
JPS5848740A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPH0232853Y2 (en)
JPH03225044A (en) Control device for internal combustion engine
JPH01240761A (en) Exhaust gas recirculation control method for internal combustion engine
JPH0220453Y2 (en)
JPH05222997A (en) Idle engine speed control device for engine
JPH01280651A (en) Air-fuel ratio control device
JPS5877153A (en) Air-fuel ratio controller in internal-combustion engine
JPS624678Y2 (en)
JPS6321342A (en) Air fuel ratio control device for internal combustion engine
JPS6145054B2 (en)
JPS5832945A (en) Engine air-fuel ratio control method
JPS62129553A (en) Air-fuel ratio controller
JPS6255447A (en) Air-fuel ratio feedback control device for carburetor engine
JPS6210436A (en) Control device for air-fuel ratio in carburetor
JPS61132740A (en) Air-fuel ratio controller of internal-conbustion engine
JPS5848741A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPS62153552A (en) Air-fuel ratio feedback controller for engine equipped with carburetor
JPS6342095B2 (en)
JPS6210461A (en) Air-fuel ratio control device of internal combustion engine
JPS591341B2 (en) Engine EGR control device