JPS5848603B2 - Manufacturing method of atomized iron powder - Google Patents

Manufacturing method of atomized iron powder

Info

Publication number
JPS5848603B2
JPS5848603B2 JP53048090A JP4809078A JPS5848603B2 JP S5848603 B2 JPS5848603 B2 JP S5848603B2 JP 53048090 A JP53048090 A JP 53048090A JP 4809078 A JP4809078 A JP 4809078A JP S5848603 B2 JPS5848603 B2 JP S5848603B2
Authority
JP
Japan
Prior art keywords
molten steel
tundish
iron powder
atomized iron
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53048090A
Other languages
Japanese (ja)
Other versions
JPS54139870A (en
Inventor
照昭 上野
伸泰 河合
完至 納富
和郎 緒方
誠矢 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP53048090A priority Critical patent/JPS5848603B2/en
Publication of JPS54139870A publication Critical patent/JPS54139870A/en
Publication of JPS5848603B2 publication Critical patent/JPS5848603B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明はアトマイズ鉄粉の製法に関し、殊に非金属介在
物の混入量を可及的に低減し高品質のアトマイズ鉄粉が
得られるように工夫された方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing atomized iron powder, and in particular to a method devised to reduce the amount of nonmetallic inclusions as much as possible and obtain high quality atomized iron powder. It is.

本発明においてアトマイズ鉄粉とは、純鉄、炭素鋼、合
金鋼或は鋳鉄等を噴霧法によって微紛末化したものを総
称する。
In the present invention, atomized iron powder is a general term for pure iron, carbon steel, alloy steel, cast iron, etc., which are finely pulverized by a spraying method.

アトマイズ鉄粉は粉末治金用の材料として比較的新しい
ものであり、量産に適しており品質も安定している等の
利点を有するところから最近注目されている。
Atomized iron powder is a relatively new material for powder metallurgy, and has recently attracted attention because it has advantages such as being suitable for mass production and having stable quality.

そしてその製法にはガスアトマイズ法と水アトマイズ法
があり、前者は溶鋼をタンディッシュノズルから流下し
つつこれに窒素ガス等の高圧ガスを当て、溶鋼を噴霧化
した後急冷凝固させる方法、後者は溶鋼をタンディッシ
ュノズルから流化しつつこれに高圧水を当て、溶鋼を噴
霧化した後急冷凝附させる方法であり、両者の方法は、
溶鋼を取鍋に取りタンディッシュを介して流下しつつ噴
霧化する点で共通している。
There are two manufacturing methods: the gas atomization method and the water atomization method.The former is a method in which high-pressure gas such as nitrogen gas is applied to the molten steel as it flows down from a tundish nozzle, and the molten steel is atomized and then rapidly solidified, while the latter is a method in which the molten steel is rapidly solidified after being atomized. This is a method in which high-pressure water is applied to the molten steel while flowing it from a tundish nozzle, and the molten steel is atomized and then rapidly cooled and solidified.
They are common in that molten steel is placed in a ladle and atomized while flowing down through a tundish.

これらアトマイズ鉄粉の原料となる溶剤は転炉或は電気
炉によって溶製されるが、本発明は電気炉で溶製された
溶鋼を原料とする高品質アトマイズ鉄粉の製法に関する
ものである。
The solvent used as a raw material for these atomized iron powders is melted in a converter or an electric furnace, and the present invention relates to a method for producing high-quality atomized iron powder using molten steel melted in an electric furnace as a raw material.

電気炉による溶鋼製造作業は、溶解期工程、酸化期工程
、除滓工程、還元期工程を順次実施することにより行な
われ、酸化期工程では溶解した鉄原料にスラグの塩基度
調整用として生石灰等を添加した後酸素を吹込み、脱炭
しつつ酸化精錬し酸化性の有害不純物を滓化除去する。
Molten steel production using an electric furnace is carried out by sequentially performing a melting stage process, an oxidizing stage process, a slag removal process, and a reducing stage process. In the oxidizing stage process, quicklime etc. are added to the molten iron raw material to adjust the basicity of slag. After adding , oxygen is blown in to decarburize and oxidize and refine, removing harmful oxidizing impurities as sludge.

また還元期工程は塩基性還元スラグの存在下で精錬し、
酸化期に富化された溶鋼中の酸素を除去すると共に脱硫
等を行なうもので、電気炉溶製の最終工程であり、還元
処理を終えた溶鋼は取鍋に取出された後噴霧工程に送ら
れる。
In addition, in the reduction stage process, smelting is carried out in the presence of basic reducing slag,
This process removes the oxygen enriched in the molten steel during the oxidation stage and also performs desulfurization, etc., and is the final process in electric furnace melting. After the reduction process, the molten steel is taken out into a ladle and sent to the spraying process. It will be done.

ところで電気炉溶鋼における還元期の処理温度は通常1
600〜1660℃が最適とされているが、この溶鋼を
引続いて噴霧工程に付すとタンディッシュノズル部分で
溶鋼が冷却凝固してノズル閉鎖を起こすことがある。
By the way, the treatment temperature during the reduction period in electric furnace molten steel is usually 1
Although 600 to 1660°C is considered to be optimal, if this molten steel is subsequently subjected to a spraying process, the molten steel may cool and solidify at the tundish nozzle, causing the nozzle to close.

このため従来では出鋼直前に溶鋼を1730−1750
℃程度まで昇温することにより、タンディッシュノズル
の閉鎖を防止している。
For this reason, in the past, molten steel was heated to 1730-1750 just before tapping.
By raising the temperature to about ℃, the tundish nozzle is prevented from closing.

ところがこの昇温過程で溶鋼表面のスラグが一部分解し
て溶鋼中のガス量が増大し、取鍋中で沸騰現象を生じ作
業上極めて危険であるから、これを防止するために取鍋
中にA7やFSi等の強力脱酸剤を添加するのが通例で
ある。
However, during this temperature rising process, the slag on the surface of the molten steel partially decomposes and the amount of gas in the molten steel increases, causing boiling in the ladle, which is extremely dangerous to work with. It is customary to add a strong deoxidizing agent such as A7 or FSi.

即ち溶鋼中に残った酸素は、AlやFSi等の強力脱酸
剤と反応して可及的に除去されるから、溶鋼の沸騰現象
はほとんど防止され、同時に還元期工程で残った酸素も
除去される。
In other words, the oxygen remaining in the molten steel is removed as much as possible by reacting with strong deoxidizers such as Al and FSi, so the boiling phenomenon of the molten steel is almost prevented, and at the same time, the oxygen remaining in the reduction stage process is also removed. be done.

しかしこの過程で生成したAl203やS 102等が
浮上分離されないまま溶鋼と共にタンデイツシュに注入
されると、これらはそのまま非金属介在物となってアト
マイズ鉄粉中に混入し、鉄粉の品質が著しく損なわれる
However, if Al203, S102, etc. generated in this process are injected into the tundish together with molten steel without being floated and separated, they will become non-metallic inclusions and mix into the atomized iron powder, significantly impairing the quality of the iron powder. It will be done.

従ってアトマイズ鉄粉の品質を高める立場からすれば、
前記強力脱酸剤は使用しない方が望ましい。
Therefore, from the standpoint of improving the quality of atomized iron powder,
It is preferable not to use the strong deoxidizing agent.

本発明は前述のような事情に着目してなされたものであ
って、その目的は、電気炉で溶製された溶鋼を原料にし
て、非金属介在物の少ない高品質のアトマイズ鉄粉を製
造する方法を提供しようとするにあり、その具体策とし
て、取鍋に強力脱酸剤を添加することなく出湯時の沸騰
現象を防止し、強力脱酸剤に起因する非金属介在物の混
入を未然に防止し得るような方法を提供しようとするに
ある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to produce high-quality atomized iron powder with few nonmetallic inclusions using molten steel melted in an electric furnace as a raw material. As a concrete measure, we aim to prevent the boiling phenomenon during tapping without adding a strong deoxidizing agent to the ladle, and to prevent the contamination of non-metallic inclusions caused by the strong deoxidizing agent. We are trying to provide a method that can prevent this from happening.

このような目的を効果的に達成し得た本発明の構戒とは
、電気炉で処理された溶鋼をタンディッシュ内に注入し
、タンディッシュノズルを介して溶鋼を落下させながら
アトマイズ鉄粉を製造する方法であって、電気炉におけ
る還元期の処理温度を1 700〜1750℃として十
分還元させるところに要旨が存在する。
The structure of the present invention that effectively achieves this purpose is to inject molten steel treated in an electric furnace into a tundish, and drop atomized iron powder through the tundish nozzle. The gist of this manufacturing method is that the treatment temperature during the reduction period in an electric furnace is set at 1,700 to 1,750°C to ensure sufficient reduction.

本発明では、電気炉溶制時の最終工程たる還元期の温度
を当初から出鋼時の適温たる1700〜1750℃に高
めておき、高温効果によって還元反応を十分に進行させ
る。
In the present invention, the temperature in the reduction period, which is the final step during electric furnace melting, is raised from the beginning to 1700 to 1750° C., which is the appropriate temperature for tapping, so that the reduction reaction sufficiently proceeds due to the high temperature effect.

この溶製法を採用すれば、従来例の如く出鋼直前の昇温
によるスラグの分解が防止され、溶鋼中のガス量増加現
象が可及的に抑制されるから、そのまま取鍋に出鋼して
も沸騰現象を起こすことがない。
If this melting method is adopted, decomposition of slag due to temperature rise just before tapping as in conventional methods is prevented, and the increase in gas amount in the molten steel is suppressed as much as possible, so the steel can be tapped directly into the ladle. No boiling phenomenon occurs.

しかも還元期工程では高温功果によって十分還元されて
いるから、溶鋼が脱酸不足になる恐れもない。
Moreover, in the reduction stage process, the molten steel is sufficiently reduced due to the high temperature effect, so there is no fear that the molten steel will be insufficiently deoxidized.

かくして取鍋中の溶鋼に対する脱酸剤の添加を省略し得
ることになり、その結果脱酸剤に起因する非金属介在物
の混入を皆無にし得ることになった。
In this way, the addition of a deoxidizing agent to the molten steel in the ladle can be omitted, and as a result, the contamination of non-metallic inclusions caused by the deoxidizing agent can be completely eliminated.

尚還元期工程では当然CaOやCaF2等の造滓剤と共
に炭粉等の還元剤が使用されるが、これらは出鋼過程で
溶鋼から分離除去されるから、非金属介在物の混入原因
になることはなく、出鋼後に添加される脱酸剤(或は還
元剤)が介在物混入原因の主なものである。
Naturally, reducing agents such as coal powder are used in the reduction stage process along with slag-forming agents such as CaO and CaF2, but since these are separated and removed from the molten steel during the tapping process, they can cause non-metallic inclusions to be mixed in. This is not the case, and the main cause of inclusions is the deoxidizing agent (or reducing agent) added after tapping.

ところでアトマイズ鉄粉中への非金属介在物の混入原因
としては、上記の他タンディッシュ内に浮遊させるスラ
グの巻込みがある。
In addition to the above, other causes of nonmetallic inclusions in the atomized iron powder include entrainment of slag suspended in the tundish.

即ちタンディッシュ内における溶鋼の空気酸化を防止し
且つ保温を行なうために、タンディッシュ内の溶鋼表面
にスラグ層を浮遊存在させておくのが通例であるが、こ
のスラグは溶鋼をタンデイツシュに注入するとき溶鋼流
に巻込まれることがあり、これが溶鋼と共にタンディッ
シュノズルから流出するとこのスラグは非金属介在物と
してアトマイズ鉄粉中に混入する。
That is, in order to prevent air oxidation of the molten steel in the tundish and to keep it warm, it is customary to leave a layer of slag floating on the surface of the molten steel in the tundish. When this slag flows out of the tundish nozzle together with the molten steel, the slag is mixed into the atomized iron powder as non-metallic inclusions.

従って本発明の効果を一段と高めるためには、溶鋼をタ
ンディッシュに注入する際表層部のスラグを巻込まない
ようにすることが望まれる。
Therefore, in order to further enhance the effects of the present invention, it is desirable not to involve the slag in the surface layer when pouring molten steel into the tundish.

本発明者はこの巻込み防止対策についても併行して実験
を進めてきたが、その結果、クンディッシュ内に筒体を
立設して該筒体内に表層部のスラグが流入しないように
し、溶鋼を、該筒体を通じてタンディッシュ内に注入す
ればその目的が簡単に達成できることを知った。
The present inventor has also carried out experiments on measures to prevent entrainment, and as a result, a cylinder was installed upright inside the kundish to prevent surface slag from flowing into the cylinder, and molten steel was prevented from flowing into the cylinder. It was found that the purpose could be easily achieved by injecting the liquid into the tundish through the cylinder.

このことは第1,2図の例からも容易に理解できる。This can be easily understood from the examples in FIGS. 1 and 2.

即ち第1図は従来の注入法を示す概略縦断面説明図で、
電気炉1で溶製された溶鋼2は一旦取鍋3に取出された
後タンディッシュ4内に注入され、タンディッシュノズ
ル5から落下しつつ、これに噴射装置6から高圧水や高
圧ガスを噴射して溶鋼2を噴霧化し、必要により水槽1
で冷却凝固をすすめてアトマイズ鉄粉8を得る≦ここで
タンディッシュ5内の溶鋼表面には酸化防止と保温を兼
ねてスラグ9を浮遊させておくのが通例であり、この上
部から溶鋼2を注入するとスラグ9が溶鋼流に巻き込ま
れて深部に分散し、一部が溶鋼2と共にノズル5から流
出する。
That is, FIG. 1 is a schematic longitudinal cross-sectional view showing the conventional injection method.
The molten steel 2 melted in the electric furnace 1 is once taken out into the ladle 3 and then injected into the tundish 4, and falls from the tundish nozzle 5, and is injected with high pressure water or high pressure gas from the injection device 6. to atomize the molten steel 2, and add it to the water tank 1 if necessary.
Proceed with cooling and solidification to obtain atomized iron powder 8 ≦Here, it is customary to suspend slag 9 on the surface of the molten steel in the tundish 5 for both oxidation prevention and heat retention, and the molten steel 2 is poured from the top of this slag 9. When injected, the slag 9 is caught up in the molten steel flow and dispersed deep, and a part of it flows out from the nozzle 5 together with the molten steel 2.

この結果アトマイズ鉄粉8内にスラグが非金属介在物と
して混入することになり、高品質のアトマイズ鉄粉が得
られ難くなる。
As a result, slag is mixed into the atomized iron powder 8 as a nonmetallic inclusion, making it difficult to obtain high quality atomized iron powder.

これに対し第2図の例では、タンディッシュ4内に筒体
10を立設し、筒体10の内にはスラグ9が流入しない
ようにして該筒体10を通じて溶鋼2を注入する。
On the other hand, in the example shown in FIG. 2, a cylindrical body 10 is set upright in the tundish 4, and the molten steel 2 is injected through the cylindrical body 10 while preventing the slag 9 from flowing into the cylindrical body 10.

こうしておけばスラグ9は筒体10にさえぎられて溶鋼
流に巻き込まれる恐れがなく、比重差によって常時表層
部に浮上しているから、タンディッシュノズル5からは
溶鋼2のみが選択的に流出する。
By doing this, there is no danger that the slag 9 will be blocked by the cylinder 10 and caught in the molten steel flow, and will always float to the surface layer due to the difference in specific gravity, so that only the molten steel 2 will selectively flow out from the tundish nozzle 5. .

かくしてスラグの巻込みによる非金属介在物の混入も可
及的に防止できる。
In this way, non-metallic inclusions due to slag entrainment can be prevented as much as possible.

但し第2図の方法を採用する場合でも、注入さゆ*れる
溶鋼2自体に還元剤に起因する非金属介在物が混入して
いると、これらは筒体の有無に関係なく溶鋼2と共にノ
ズル5方向に流出するが、本発明では電炉溶製された溶
鋼をそのまま(還元剤を添加することなく)取鍋を経て
タンディッシュ4に注入するから、非金属介在物の混入
量を最小限に抑制できる。
However, even if the method shown in Fig. 2 is adopted, if the injected molten steel 2 itself contains non-metallic inclusions caused by the reducing agent, these will be mixed into the nozzle 5 along with the molten steel 2 regardless of the presence or absence of a cylinder. However, in the present invention, the molten steel melted in the electric furnace is directly poured into the tundish 4 through the ladle (without adding a reducing agent), so the amount of non-metallic inclusions is minimized. can.

前記した本発明の効果は以下に示す実験列によって確認
することができる。
The effects of the present invention described above can be confirmed by the following experimental series.

即ち第1表に示す還元期条件及び出鍋条件等を採用し、
取鍋及びタンディッシュ.を経た後噴霧処理してアトマ
イズ鉄粉を得、同アトマイズ鉄粉を原料粉末として、通
常の粉末鍛造プロセスを用いて、真密度粉末鍛造材を作
製し、同粉末材の清浄度及び介在物の大きさ並びに数を
比較した。
That is, by adopting the reducing period conditions and hotpot conditions shown in Table 1,
Ladle and tundish. After that, atomized iron powder is obtained by spraying, and using the atomized iron powder as a raw material powder, a true density powder forging material is produced using a normal powder forging process, and the cleanliness and inclusions of the powder material are evaluated. We compared the size and number.

結果を第2表に一括して示す。The results are summarized in Table 2.

第2表の結果からも明らかな如く、従来法で得たアトマ
イズ鉄粉の清浄度の値は極めて高く、且つ介在物も極め
て多い。
As is clear from the results in Table 2, the value of the cleanliness of the atomized iron powder obtained by the conventional method is extremely high, and the amount of inclusions is also extremely large.

これに対し実施例1(取鍋脱酸剤を省略した例)では清
浄度の値を約4割弱減少でき、且つ介在物の減少も顕著
である。
On the other hand, in Example 1 (an example in which the ladle deoxidizing agent was omitted), the cleanliness value could be reduced by about 40%, and the reduction in inclusions was also remarkable.

そして特にタンディッシュ内に筒体を立設してスラグの
巻込みを防止した実施例2では、清浄度が更に減少し、
介在物の量も一段と減少している。
In particular, in Example 2, in which a cylindrical body was installed upright in the tundish to prevent slag from being entrained, the cleanliness was further reduced.
The amount of inclusions has also been further reduced.

殊に21μ以上の大型介在物は皆無になっている。In particular, there are no large inclusions of 21μ or more.

本発明は概略以上のように構成されているが、要は還元
期の温度を当初からノズル閉鎖を起こさず且つ十分に還
元させる程度の高温にしているから、電気炉から溶鋼を
出鋼する際或は取鍋内で沸騰現象を起こすことがない。
The present invention is roughly configured as described above, but the point is that the temperature during the reduction period is set to a high enough temperature to prevent nozzle closure from the beginning and to achieve sufficient reduction, so that when tapping molten steel from an electric furnace, Or no boiling phenomenon occurs in the ladle.

従って沸騰防止のためにAlやFSi等の強力脱酸剤を
添加する必要がないから、溶鋼に対する非金属介在物の
混入量が可及的に低減され、高品質のアトマイズ鉄粉を
得ることができる。
Therefore, there is no need to add strong deoxidizing agents such as Al or FSi to prevent boiling, so the amount of non-metallic inclusions mixed into the molten steel is reduced as much as possible, making it possible to obtain high-quality atomized iron powder. can.

即ちアトマイズ鉄粉に非金属介在物が混入すると、同粉
末を原料粉末とする高密度焼結材の衝撃強度や疲労強度
が極端に低下するから、介在物の混入量低減は高密度焼
結品の機械強度向上に著しく寄与する。
In other words, if nonmetallic inclusions are mixed into atomized iron powder, the impact strength and fatigue strength of high-density sintered materials made from the same powder will be extremely reduced. significantly contributes to improving the mechanical strength of

この場合、溶鋼を取鍋からタンディッシュに注入する際
、筒体を用いてタンディッシュスラグの混入を防止する
ことにより、アトマイズ鉄粉に対する介在物の混入量を
一段と減ずることができる。
In this case, by using the cylinder to prevent tundish slag from being mixed in when pouring molten steel from the ladle into the tundish, the amount of inclusions mixed into the atomized iron powder can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は電炉溶製された溶鋼を取鍋からタンディッ
シュに注入する工程を例示する工程説明図で第1図は従
来法、第2図は本発明で有利に使用される筒体を用いた
注入法を示している。 1・・・・・・電気炉、2・・・・・・溶鋼、3・・・
・・・取鍋、4・・・タンティッシュ、5・・・・・・
タンディッシュノズル、6・・・・・・噴射装置、1・
・・・・・水槽、8・・・・・・アトマイズ鉄粉、9・
・・・・・スラグ、10・・・・・・筒体。
Figures 1 and 2 are process explanatory diagrams illustrating the process of pouring molten steel melted in an electric furnace from a ladle into a tundish. Figure 1 is a conventional method, and Figure 2 is a cylindrical body advantageously used in the present invention. This shows an injection method using 1... Electric furnace, 2... Molten steel, 3...
... Ladle, 4... Tongue tissue, 5...
Tundish nozzle, 6... Injection device, 1.
...Aquarium, 8...Atomized iron powder, 9.
... Slag, 10 ... Cylindrical body.

Claims (1)

【特許請求の範囲】 1 電気炉で溶製した溶鋼をタンディッシュ内に注入し
、タンディッシュノズルから溶鋼を落下させて、アトマ
イズ鉄粉を製造する方法であって、電気炉における還元
期の処理温度を1700〜1750℃として十分還元さ
せることを特徴とする高品質アトマイズ鉄粉の製造法。 2 特許請求の範囲第1項において、溶鋼を電気炉から
いったん取鍋へ移すに当って、強制脱酸剤を使用しない
で行なう製造法。 3 電気炉で溶製した溶鋼をタンディッシュ内に注入し
、タンディッシュノズルから溶鋼を落下させてアトマイ
ズ鉄粉を製造する方法であって、電気炉における還元期
の処理温度を1700〜1750℃にして十分還元させ
るほか、タンディッシュ内に簡体を立設して該筒体内に
はタンディッシュスラグが流入しないようにし、該筒体
を通じて溶鋼をタンディッシュ内に注入することを特徴
とするアトマイズ鉄粉の製造法。
[Scope of Claims] 1. A method for producing atomized iron powder by injecting molten steel produced in an electric furnace into a tundish and dropping the molten steel from a tundish nozzle, the method comprising: processing during the reduction period in the electric furnace; A method for producing high-quality atomized iron powder, characterized by sufficiently reducing the temperature at 1,700 to 1,750°C. 2. A manufacturing method according to claim 1, in which molten steel is transferred from an electric furnace to a ladle without using a forced deoxidizing agent. 3 A method of producing atomized iron powder by injecting molten steel produced in an electric furnace into a tundish and letting the molten steel fall from a tundish nozzle, the process temperature being set at 1700 to 1750°C during the reduction period in the electric furnace. The atomized iron powder is characterized in that the molten steel is sufficiently reduced in the tundish by erecting a simple body in the tundish to prevent tundish slag from flowing into the cylindrical body, and the molten steel is injected into the tundish through the cylindrical body. manufacturing method.
JP53048090A 1978-04-21 1978-04-21 Manufacturing method of atomized iron powder Expired JPS5848603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53048090A JPS5848603B2 (en) 1978-04-21 1978-04-21 Manufacturing method of atomized iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53048090A JPS5848603B2 (en) 1978-04-21 1978-04-21 Manufacturing method of atomized iron powder

Publications (2)

Publication Number Publication Date
JPS54139870A JPS54139870A (en) 1979-10-30
JPS5848603B2 true JPS5848603B2 (en) 1983-10-29

Family

ID=12793614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53048090A Expired JPS5848603B2 (en) 1978-04-21 1978-04-21 Manufacturing method of atomized iron powder

Country Status (1)

Country Link
JP (1) JPS5848603B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700041618A1 (en) 2017-04-13 2018-10-13 Tenova Spa Method of production of metal powders by gas atomization and metal powder production plant according to this method.
BR112021003249B1 (en) * 2018-08-23 2023-12-26 Beemetal Corp. SYSTEMS AND METHODS FOR CONTINUOUS PRODUCTION OF GAS-ATOMIZED METAL POWDER

Also Published As

Publication number Publication date
JPS54139870A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
JP5772339B2 (en) Reuse method of slag in ladle
US3208117A (en) Casting method
CN110073161A (en) Electric furnace
US9682422B2 (en) Continuous casting method
EP3040137B1 (en) Continuous casting method
US3822735A (en) Process for casting molten silicon-aluminum killed steel continuously
JPS5848603B2 (en) Manufacturing method of atomized iron powder
EP3040138A1 (en) Continuous casting method
US4444590A (en) Calcium-slag additive for steel desulfurization and method for making same
KR100356743B1 (en) Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof
CN110892083A (en) Method for suppressing slag foaming and converter refining method
KR100411649B1 (en) Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof
TWI638895B (en) Method for suppressing slag foaming
JP3257263B2 (en) Manufacturing method of high cleanliness molten steel
SU489414A1 (en) Method of treating iron
SU446554A1 (en) Method for the production of ageless mild electrical steel
JP2004211153A (en) Composite deoxidizer and method for treating molten steel and slag using this
SU1073296A1 (en) Semikilled steel deoxidation process
KR20190089018A (en) Method of inhibiting foaming of slag
SU990828A1 (en) Method for producing nitrogen-containing steels
JPS6144118A (en) Refining method of molten metal
SU403765A1 (en) ALL-UNION. Cl. C 21c 7/06 UDK 669.183 (088.8)
JPS5890360A (en) Preventing method for reoxidation and nitrogen absortion of molten steel for cntinuous casting
RU2009207C1 (en) Composite burden material for producing high-quality steel
JP2005531687A (en) Metallurgical treatment method on molten metal bath