JPS5848601A - Production of sintered parts - Google Patents

Production of sintered parts

Info

Publication number
JPS5848601A
JPS5848601A JP56145593A JP14559381A JPS5848601A JP S5848601 A JPS5848601 A JP S5848601A JP 56145593 A JP56145593 A JP 56145593A JP 14559381 A JP14559381 A JP 14559381A JP S5848601 A JPS5848601 A JP S5848601A
Authority
JP
Japan
Prior art keywords
powder
sintered
electrodes
sintering
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56145593A
Other languages
Japanese (ja)
Inventor
Tadashi Morita
忠 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56145593A priority Critical patent/JPS5848601A/en
Publication of JPS5848601A publication Critical patent/JPS5848601A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of products in the stage of producing Mo sintered products as electrodes for semiconductors by using fine powder of specific grain sizes for raw material Mo. CONSTITUTION:In the stage of producing glass-molded diodes, etc., Mo having a cofft. of thermal expansion similar to that of glass and silicon is used as metallic electrodes. Here, in order to produce said electrodes as sintered parts having high flatness and dimesnional accuracy such as electrodes for lead-mount type diodes by molding and sintering the powder of Mo, the Mo is used as fine granular powder of 20-200mu grain sizes and <=45 deg. angle of repose by a spray granulating method. The Mo powder is molded with an org. binder and is calcined to allow the org. binder to scatter; thereafter, the moldings are sintered at 1,700-1,900 deg.C, whereby the sintered products as electrodes are produced.

Description

【発明の詳細な説明】 本発明は焼結部品の製造方法に係シ、更に詳しくは寸法
111度の^い焼結部品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a sintered part, and more particularly to a method of manufacturing a sintered part with a dimension of 111 degrees.

民生用電気機器の電源*a回路又は制御回路用素子など
としてシリコン整流ダイオードが汎用されている。仁の
うち、実用上、比較的電気容量の小さな素子を)(ツケ
ージしたものとして、リードマウント形ダイオードがあ
る。このダイオードは、pm*合を1つ有する円柱状の
シリコン半導体ウェハから成る素子の内子面部に夫々、
通常同径の円柱状金属電極の一方の平面部を圧接浴接又
はろう付は表とにより接合し、これら0@惚O他の平面
部に同様に圧接溶接などによりリード線を取付け、ウェ
ハ及び電極の全体をガラスモールド又は樹脂モールドな
どで気密封止して成る素子である。
Silicon rectifier diodes are widely used as elements for power supply*a circuits or control circuits of consumer electrical equipment. A lead-mounted diode is an element that has a relatively small capacitance in practical use. On the inner surface,
Usually, one plane part of the cylindrical metal electrodes of the same diameter is joined by pressure welding or brazing, and a lead wire is attached to the other plane part by pressure welding, etc., and the wafer and This is an element in which the entire electrode is hermetically sealed with a glass mold or resin mold.

これらの、素子、 特にガラスモールドしたダイオード
においては、動作時に素子の半導体抵抗に基づいて発生
する熱が、素子内部に蓄積される傾向にある。そこで、
前記金属電極に−は、ウェハ内部に蓄積される熱を外部
に導出する役Inあるのだが、該素子と金属電極との熱
&張係数の差に起因して素子の内部応力が^まり、熱膨
張破壊を起こすなどした。
In these devices, especially glass-molded diodes, heat generated due to the semiconductor resistance of the device during operation tends to accumulate inside the device. Therefore,
The metal electrode has the role of leading the heat accumulated inside the wafer to the outside, but due to the difference in heat and tensile coefficient between the element and the metal electrode, the internal stress of the element decreases. This caused thermal expansion failure.

そこで、この内部応力の低減を主目的として、熱膨張係
数がシリコン及びガラスに近いモリプデy (Sl 7
.6 x 10−’ K−” (40C)K対しテMO
5,28l O−’に−1(0〜100IZ’)の線膨
張係数を有する〕等を電極材料として用いたものが開発
された。
Therefore, with the main purpose of reducing this internal stress, we developed molybdenum (Sl 7), whose thermal expansion coefficient is close to that of silicon and glass.
.. 6 x 10-' K-” (40C) Te MO for K
5,28lO-' having a coefficient of linear expansion of -1 (0 to 100IZ') was developed as an electrode material.

このリードマウント形ダイオードに用いられるモリブデ
ン電極には、素子の特性安定化の為に、動作時に素子の
平向部の全域に亘って均一な電位及び電流密度が得られ
る様に、該素子平面部のみならず、電極の素子との接合
面が平面度及び寸法精度の萬い平滑な面となっているこ
とが必要とされている。及び製造上からも、例えば自動
溶接機を用いて電極平面部にリード廖を圧接溶接などに
よシ取付ける場合に、これらの接続部の溶接不良を防止
するために、電極の長さ方向感高い寸法精度となってい
ることが必要とされている。例えば電流容量1アンペア
級のリードマウント形ダイオードに用いられる径1.5
111%長さ2.0−の円柱状モリブデン電極の場合、
一般に平向部における5μI以下の平面度、及び径±0
.05■、長さ士(kl〜0.005mmの寸法精度が
必要とされている。
In order to stabilize the characteristics of the element, the molybdenum electrode used in this lead-mounted diode is designed to have a uniform potential and current density over the entire flat area of the element during operation. In addition, it is necessary that the bonding surface of the electrode with the element be a smooth surface with excellent flatness and dimensional accuracy. Also, from a manufacturing standpoint, for example, when attaching a lead hole to a flat surface of an electrode by pressure welding or the like using an automatic welding machine, the length of the electrode should have a high sense of direction in order to prevent welding defects at these connections. Dimensional accuracy is required. For example, diameter 1.5 used in lead-mounted diodes with a current capacity of 1 ampere class.
In the case of a cylindrical molybdenum electrode with a length of 111% and 2.0-
Generally flatness of 5 μI or less in the flat part and diameter ±0
.. 05■, length accuracy (kl~0.005mm dimensional accuracy is required).

従来かかるモリブデン電4にの製造方法としては1通常
粉末冶金法によ)モリブデン粉末を成形、焼結し、得ら
れた焼結体インゴットに鍛造、伸線加工を施こしたもの
を切断加工して所望の形状の製品を得る方法が用いられ
ていた。この方法によれば、焼結後の鍛造、伸線加工な
どの処理を施している為に1略理論密度に近い緻密な組
織を有し、且つ寸法′1IItLの高い製品が得られる
のであるが、かかる焼結後の処理操作及び装置が煩雑で
あり、従ってコスト高となる等製造上の難点があった。
Conventionally, such a molybdenum electric wire 4 is manufactured by forming and sintering molybdenum powder (usually by a powder metallurgy method), then forging and wire-drawing the obtained sintered body ingot, and cutting the resulting product. A method was used to obtain a product with a desired shape. According to this method, because of the processing such as forging and wire drawing after sintering, it is possible to obtain a product that has a dense structure close to the theoretical density and has a high dimension '1IItL. However, the processing operations and equipment after sintering are complicated, resulting in high costs and other manufacturing difficulties.

そこでかかる製造上の難点を解消して、焼結の段階で緻
密でしかも高寸法精度の製品を得る方法が開発された。
Therefore, a method has been developed to overcome these manufacturing difficulties and obtain a product that is dense and has high dimensional accuracy at the sintering stage.

その−例として、原料のモリブデン粉末として微細で均
一な粒径のものを用いるなど工夫がなされている。従来
かがるモリブデン粉末としては通常平均粒径3〜10μ
mのものが用いられていたのであるが、この粒径のもの
では、得られる焼結体の緻密化はある程度達成されるの
であるが、表面形状が不安定であり、製品の平面度及び
寸法精度にばらつきが生じた。従って前述した1アンペ
ア級リードマウント形ダイオード用電極など高平面度、
高寸法MUを必要とされる製品が得難いという難点かあ
つ九。
For example, efforts have been made to use molybdenum powder as a raw material with a fine and uniform particle size. Conventional molybdenum powder usually has an average particle size of 3 to 10μ.
With this particle size, the resulting sintered body can be densified to some extent, but the surface shape is unstable and the flatness and dimensions of the product are unstable. There were variations in accuracy. Therefore, high flatness, such as the electrode for the 1 ampere class lead mount type diode mentioned above,
The problem is that it is difficult to obtain products that require high-dimensional MU.

そこで、更に微細なモリブデン粉末を用いて安定な表面
形状を有する緻密な焼結製品を得る試みがなされ九。と
ころが、平均粒径10μm以下の粉末を用いた場合には
、焼結体の緻密度は更に尚まるのであるが、成形の際の
充填ばらつきなどによシ、必ずしも十分な平面度、寸法
精度を有する焼結製品が得られないのであった。
Therefore, attempts have been made to obtain a dense sintered product with a stable surface shape by using even finer molybdenum powder. However, when powder with an average particle size of 10 μm or less is used, the density of the sintered body becomes even higher, but it is not always possible to maintain sufficient flatness and dimensional accuracy due to filling variations during molding. Therefore, it was not possible to obtain a sintered product with the following characteristics.

本発明者は、前述のり一ドマウント形ダイオード用電極
など編い平面度、高寸法n嵐が必要とされる焼結部品の
製造方法を開発すべく鋭意研究した結果、成形時の粉末
の流動性(安息角)が前記の特性に大きく影響すること
およびモリブデン粉末を成形するに先立って造粒すると
とKより、成形の際の充填ばらつきなどが低減゛し、従
って緻密で安定した配向の、組織を有すると共に高い平
面度及び高寸法精度の焼結製品が得られることを見出し
、本発明を完成するに至った。
As a result of intensive research to develop a manufacturing method for sintered parts that require high knitting flatness and high dimensions, such as the electrodes for glued-mounted diodes mentioned above, the present inventor discovered that the fluidity of the powder during molding was (Angle of repose) greatly affects the above properties, and if molybdenum powder is granulated prior to molding, filling variations during molding will be reduced, and therefore a dense and stably oriented structure will be created. The present inventors have discovered that a sintered product with high flatness and high dimensional accuracy can be obtained, and have completed the present invention.

本発明の目的は、製品寸法精度の高い焼結部品の製造方
法を提供することにある。
An object of the present invention is to provide a method for manufacturing sintered parts with high product dimensional accuracy.

すなわち本発明の一\XMe\鴇−焼結部品の製造方法
は、安息角45°以下のモリブデン粉末を成形、焼結す
ることを特徴とする。
That is, a method of manufacturing a \XMe\ sintered part of the present invention is characterized by molding and sintering molybdenum powder having an angle of repose of 45 degrees or less.

モリブデン粉末の安息角が45°を越えると、粉末の成
形製への充填が安定せず、寸法精度、平面度にばらつき
を生ずる。かかる安息角の測定は、通常は、所間注入角
法、と夛わけ自由堆積法と呼ばれる方法によル測定され
る。これは、漏斗などのオリアイス(olifle・)
から、粉末を静かに板上に落下して、円錐状に堆積した
粉体の、該円錐の傾斜角を求める方法である。またモリ
ブデン粉末は造粒して粒径20〜200μmの造粒粉末
であることがよい。造粒方法としては、スプレー造粒が
よい。仁の造粒方法は、有機結合剤等によシ泥漿状とし
たモリブデン粉末を、スプレーし熱風にて急速に乾燥さ
せるものであるが、得ら些た造粒粉末は、球状を呈して
おシ、流動性にと)わけ優れている。また、造粒粉末の
原料は、平均粒径3〜lOμm程度゛の微細なモリブデ
ン粉末であることが好まし゛い。次いで、′必要があれ
ば得られた造粒粉末をふるい別けして最終的に粒径20
〜200μmの造粒粉末を得る。なお、充填状態を考慮
すると粒径が、30〜150μmの範囲であることがよ
い。
If the angle of repose of the molybdenum powder exceeds 45°, the filling of the powder into the molded product will not be stable, resulting in variations in dimensional accuracy and flatness. The angle of repose is usually measured by a method called an interpolation angle method or a multiple free deposition method. This is an orifle, such as a funnel.
In this method, the powder is gently dropped onto a plate and the inclination angle of the cone of the powder deposited in a cone is determined. Further, the molybdenum powder is preferably granulated into a granulated powder having a particle size of 20 to 200 μm. As a granulation method, spray granulation is preferable. The granulation method for keratin is to spray molybdenum powder into a slurry with an organic binder and dry it rapidly with hot air. It has particularly good liquidity. Further, the raw material for the granulated powder is preferably fine molybdenum powder with an average particle size of about 3 to 10 μm. Next, if necessary, the obtained granulated powder is sieved to a final particle size of 20.
A granulated powder of ~200 μm is obtained. In addition, considering the filling state, the particle size is preferably in the range of 30 to 150 μm.

かくして得られ九造粒粉末を成形して、所望の形状の成
形体を得る。この成形によって、得られる成形体の密度
(圧粉密度)が6.5〜7.59〜となる仁とが好まし
い。というのは、密度i)X 6.59/cm”未満で
あると得られる焼結体が十分に緻密なものとならず成形
体強度が不足し、寸法n度がばらつくとともに取扱中に
破損することとなる。7.59/lx”を超えると仮焼
又は焼結時において成形体中のガスが抜けK<(な夛却
って焼結体の密度が低下する。
The thus obtained granulated powder is molded to obtain a molded body of a desired shape. It is preferable that the density (green density) of the molded product obtained by this molding is 6.5 to 7.59. This is because if the density is less than 6.59/cm", the resulting sintered body will not be sufficiently dense, the strength of the compact will be insufficient, the dimensions will vary, and it will break during handling. If it exceeds 7.59/lx, gas will escape from the compact during calcination or sintering, and the density of the sintered compact will decrease.

次いで得られた成形体を゛仮焼して成形体に含まれる有
機結合剤を飛散せしめる。仮焼は、成形体表面の酸化を
防止する為に、還元雰囲気中。
Next, the obtained molded body is calcined to scatter the organic binder contained in the molded body. Calcination is performed in a reducing atmosphere to prevent oxidation of the surface of the molded product.

通常水素雰囲気中で行うのが好ましい。仮焼温度及び時
間は%400〜500C,60分程度であれば良い。
It is usually preferable to carry out the reaction in a hydrogen atmosphere. The calcination temperature and time may be %400 to 500C and about 60 minutes.

かくして仮焼した成形体を焼結させる。焼結方法として
は、炉焼結がよい。焼結は、還元性雰囲気中1通常は、
水素雰囲気中で行うのが好ましい。ま九焼結温度は、 
 1700〜1900 C或はこれ以上の温度域で行わ
れるのが好ましい。というのは、1700C以下である
と目的とする焼結体の緻密化が十分に達成され得ない為
である。
The thus calcined molded body is sintered. Furnace sintering is preferred as the sintering method. Sintering is usually carried out in a reducing atmosphere.
Preferably, this is carried out in a hydrogen atmosphere. Maku sintering temperature is
It is preferable to carry out the process at a temperature range of 1700 to 1900 C or higher. This is because if the temperature is below 1700C, the desired densification of the sintered body cannot be achieved sufficiently.

焼結時間は焼結方法又は焼結温度などによって異なるが
、通常は3〜7時間である。
The sintering time varies depending on the sintering method, sintering temperature, etc., but is usually 3 to 7 hours.

本発明方法によれば、安息角45°以下の流動性のよい
モリブデン粉末を用いることKよシ、および出発物質と
して粒径3〜lOμmの均一で倣細なモリブデン粉末を
用い、この粉末を成形するに先立ち造粒して粒径20〜
200μmの造粒粉末としているために、成形時の充填
ばらつきなどが低減し、従って緻密で安定した配向含有
すると共に高い平面度及び高寸法n度の焼結製品が得ら
れる。且つ、焼結後の鍛造、線引き及び切断加工などの
処理操作及・び装置が省略できる為に低コストであるな
ど工業的に有利な方法と言える◎ 本発明方法は、前述のシリコン整流素子又はシリコン制
御整流素子(サイリスタ)等の半導体素子用電極或は基
板などに用いられるモリブデン小物焼結部品のように、
′成形に際しての充填粉末量の少ないものの製造方法と
して%に優れる。また接点材或はX線のターゲットなど
として用いられるモリブデン焼結製品の製造方法として
も有用である。
According to the method of the present invention, a molybdenum powder with good fluidity and an angle of repose of 45° or less is used, and a uniform and fine molybdenum powder with a particle size of 3 to 10 μm is used as a starting material, and this powder is molded. Prior to this, granulation is performed to obtain a particle size of 20~
Since it is a granulated powder of 200 μm, filling variations during molding are reduced, and a sintered product containing dense and stable orientation, high flatness, and high dimensions n degrees can be obtained. In addition, it can be said that it is an industrially advantageous method because it is low cost because processing operations and equipment such as forging, wire drawing, and cutting after sintering can be omitted. Small molybdenum sintered parts used for electrodes or substrates for semiconductor devices such as silicon controlled rectifiers (thyristors),
'Excellent as a manufacturing method for products that require a small amount of filler powder during molding. It is also useful as a method for manufacturing molybdenum sintered products used as contact materials or X-ray targets.

実施例 未発明方法を用いて、焼結径径1.5 wm 、長さ2
.0wamの円柱状の焼結部品上作製した。
Example Using an uninvented method, the sintered diameter was 1.5 wm and the length was 2.
.. A 0 wam cylindrical sintered part was manufactured.

平均粒径3μmのモリブデン粉末と、ポリビニルアルコ
ール(13%濃度)とを混練し、モリブデンが約70%
の溶液(比重2.7 f/an” )を用いて、スプレ
ー造粒を行なった。スプレー造粒は、スプレー速度3ノ
/時間で行なった。得られた造粒粉末をふるい別けして
粒径20〜200μmO造粒粉末を得た。
Molybdenum powder with an average particle size of 3 μm is kneaded with polyvinyl alcohol (13% concentration), and the molybdenum content is about 70%.
Spray granulation was carried out using a solution (specific gravity 2.7 f/an"). Spray granulation was carried out at a spray rate of 3 no/hour. The obtained granulated powder was sieved and granulated. O granulated powder with a diameter of 20 to 200 μm was obtained.

かくして得られた造粒粉末を、プレス型に充填し、安息
角と充填重量を調べるとともにこれをプレス型を用いて
圧力2 tOQ/ex’で成形し得られた成形体を水素
雰囲気炉で室温から1000 C迄8時間で仮焼して有
機結合剤を飛散せしめ、次いでこの成形体を炉焼結によ
り尿素雰囲気中1800G15時間焼結させた。
The granulated powder thus obtained was filled into a press mold, the angle of repose and the filling weight were examined, and the molded product was molded using the press mold at a pressure of 2 tOQ/ex', and the resulting molded body was heated at room temperature in a hydrogen atmosphere furnace. The molded body was calcined for 8 hours from 1000C to 1000C to scatter the organic binder, and then this molded body was sintered in a urea atmosphere at 1800G for 15 hours by furnace sintering.

比較例として、粒vk3〜lOμmのモリブデン粉末を
用い、これを造粒しないで、本発明方法と同一条件にで
成形、焼結して同一形状の焼結部品を得た。成形に際し
ての充填重量及びモリブデン粉末の安息角を測定し、結
果を表に示した。
As a comparative example, molybdenum powder with particles of vk 3 to 10 μm was used, without being granulated, and molded and sintered under the same conditions as the method of the present invention to obtain sintered parts of the same shape. The filling weight and the angle of repose of the molybdenum powder during molding were measured, and the results are shown in the table.

かくして得られた本発明に係るモリブデン小物焼結部品
10個及び比較例10個の焼結書度、寸法精度及び平面
度を測定した。結果を表に示した〇 表 上記の結果からも明らかなとおり、本発明に係るモリブ
デン小物焼結部品は、従来例と比べても、充填重量のば
らつきが少なく製品寸法精度の^いものである。
The sintering accuracy, dimensional accuracy, and flatness of the 10 molybdenum small sintered parts according to the present invention and the 10 comparative examples thus obtained were measured. Results are shown in Table ○ As is clear from the above results, the small molybdenum sintered parts according to the present invention have less variation in filling weight and higher product dimensional accuracy than conventional examples.

Claims (1)

【特許請求の範囲】 1 安息キ45°以下のモリブデン粉末を成形、焼結す
ることを特徴とする焼結部品の製造方法。 2、 モリブデン粉末は、造粒してなる粒i20〜20
0μの粉末である特許請求の範囲91項記載の焼結部品
の製造方法。 5、 モリブデン粉末は、粒径30〜150μである特
許請求の範囲#!2項記載の焼結部品の製造方法。 4、 造粒が、スプレー造粒による特許請求の範囲第1
項記載の焼結部品の製造方法。 5、焼結部品が、半導体素子用電極である特許請求の範
囲第1項記載の焼結部品の製造方法。
[Claims] 1. A method for manufacturing a sintered part, which comprises molding and sintering molybdenum powder having a repose angle of 45° or less. 2. Molybdenum powder is granulated into grains i20-20
92. The method of manufacturing a sintered part according to claim 91, wherein the powder is 0μ. 5. Claim # where the molybdenum powder has a particle size of 30 to 150μ! 2. A method for manufacturing a sintered part according to item 2. 4. The granulation is performed by spray granulation according to Claim 1
2. Method for manufacturing sintered parts described in Section 1. 5. The method for manufacturing a sintered part according to claim 1, wherein the sintered part is an electrode for a semiconductor element.
JP56145593A 1981-09-17 1981-09-17 Production of sintered parts Pending JPS5848601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145593A JPS5848601A (en) 1981-09-17 1981-09-17 Production of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145593A JPS5848601A (en) 1981-09-17 1981-09-17 Production of sintered parts

Publications (1)

Publication Number Publication Date
JPS5848601A true JPS5848601A (en) 1983-03-22

Family

ID=15388662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145593A Pending JPS5848601A (en) 1981-09-17 1981-09-17 Production of sintered parts

Country Status (1)

Country Link
JP (1) JPS5848601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173545A (en) * 1987-01-13 1988-07-18 Nippon Nousan Kogyo Kk Granular feed for piglet
CN102699329A (en) * 2012-01-04 2012-10-03 洛阳科威钨钼有限公司 Process for manufacturing large-sized molybdenum rods
CN103442829A (en) * 2011-05-19 2013-12-11 株式会社东芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173545A (en) * 1987-01-13 1988-07-18 Nippon Nousan Kogyo Kk Granular feed for piglet
JPH0332986B2 (en) * 1987-01-13 1991-05-15 Nihon Nosan Kogyo
CN103442829A (en) * 2011-05-19 2013-12-11 株式会社东芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
CN102699329A (en) * 2012-01-04 2012-10-03 洛阳科威钨钼有限公司 Process for manufacturing large-sized molybdenum rods

Similar Documents

Publication Publication Date Title
WO2007043520A1 (en) Composite structure
JPS5848601A (en) Production of sintered parts
CN102745977B (en) Method for quickly preparing high-density magnesium oxide nanometer ceramics
JP2001295035A (en) Sputtering target and its manufacturing method
JP2006278103A (en) Manufacturing method of coating getter film for electron tube
JPH09263440A (en) Alumina sintered compact and its production
JPH0931587A (en) Solid-phase sintered tungsten-copper substrate and its production
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
AU615964B2 (en) Copper-tungsten metal mixture and process
JP2003193111A (en) Method for manufacturing tungsten sputtering target
JP2007173852A (en) Method of manufacturing thermoelectric material
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH0931586A (en) Solid-phase-sintered tungsten-copper alloy
JPH0515668B2 (en)
JPH06100358A (en) Production of mullite sintered compact
JPH05214520A (en) Sputtering target for titanium
JP3303729B2 (en) Aluminum nitride based sintered body and method for producing the same
JP2001262248A (en) Zn-Sb SERIES MATERIAL, ITS PRODUCING METHOD AND METHOD FOR SUPPRESSING CRACK IN Zn-Sb SERIES MATERIAL
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
JP2005076119A (en) Composite material for substrate incorporated with semiconductor device, and its production method
JPH08253833A (en) Copper-molybdenum alloy and its production
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP2004292267A (en) Alumina sintered body and its production method
KR101661025B1 (en) Maunfacturing method of semiconducting ceramics compositions and ceramics substrate thereof