JPS5848291B2 - Electrolytic buffing method - Google Patents

Electrolytic buffing method

Info

Publication number
JPS5848291B2
JPS5848291B2 JP8161676A JP8161676A JPS5848291B2 JP S5848291 B2 JPS5848291 B2 JP S5848291B2 JP 8161676 A JP8161676 A JP 8161676A JP 8161676 A JP8161676 A JP 8161676A JP S5848291 B2 JPS5848291 B2 JP S5848291B2
Authority
JP
Japan
Prior art keywords
polished
tool electrode
electrolytic
electrode
pressing force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8161676A
Other languages
Japanese (ja)
Other versions
JPS536998A (en
Inventor
勝恒 田宮
昭一 本田
康雄 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP8161676A priority Critical patent/JPS5848291B2/en
Publication of JPS536998A publication Critical patent/JPS536998A/en
Publication of JPS5848291B2 publication Critical patent/JPS5848291B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/10Electrodes specially adapted therefor or their manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 この発明は、電解作用による陽極金属の溶出と不働態化
酸化皮膜の生或およびパフによる研摩作用とを複合させ
、ステンレス鋼などの表面を鏡面に仕上げるようにした
電解パフ研摩方法に関する。
[Detailed Description of the Invention] This invention combines the elution of anode metal by electrolytic action, the creation of a passivating oxide film, and the polishing action by a puff, thereby producing a mirror-like finish on the surface of stainless steel, etc. Relating to a puff polishing method.

従来、ステンレス鋼などの表面仕上げの方法としては、
電解研摩法が用いられている。
Traditionally, the surface finishing methods for stainless steel, etc.
An electrolytic polishing method is used.

しかし、一般的に電解研摩法は、被研摩物と電極を対向
させて電解液浴に浸漬するいわゆる浸漬法であり、この
場合の電解液には、塩酸、硫酸など酸性の強い液を用い
、その電解液中で電流密度が0.2〜0.7A/一の電
流を流し、被研摩物の表面を鏡面に仕上げる方法である
However, in general, the electrolytic polishing method is a so-called immersion method in which the object to be polished and the electrode are immersed in an electrolyte bath while facing each other. This is a method in which a current with a current density of 0.2 to 0.7 A/1 is passed through the electrolytic solution to finish the surface of the object to be polished into a mirror surface.

したがって、この浸漬法の電解研摩法ct,比較的小面
積の小物部品などの表面処理には有効な方法であるが、
大面積を有するたとえば大形の製缶物の内面を研摩する
場合には、電源設備、電解液設備が大規模になり、かつ
電流密度に不均一を生じ、さらに、電流密度が小さいた
め研摩速度が遅いなどの問題があり、技術的、経済的の
両面から実用化が困難である。
Therefore, although this immersion electropolishing method (CT) is an effective method for surface treatment of small parts with relatively small areas,
For example, when polishing the inner surface of a large-sized canned product that has a large area, the power supply equipment and electrolyte equipment are large-scale, and the current density is uneven, and the polishing speed is low because the current density is small. There are problems such as slow speed, making it difficult to put it into practical use from both technical and economical points of view.

この発明は、前記の点に留意し、大形大面積の被研摩物
でも容易に、しかも経済的に鏡面に仕上げることができ
る電解パフ研摩方法を提供するものであり、つぎにこの
発明を、その実症例を示した図面とともに、詳細に説明
する。
This invention takes the above points into consideration and provides an electrolytic puff polishing method that can easily and economically finish even large and large-area objects to a mirror finish. This will be explained in detail along with drawings showing actual cases.

まず第1図において、1は直流電源またはパルス電源の
陰極側に接続された円板状の工具電極、2は工具電極1
の下面に接着剤3により装着された研摩材であり、電気
的絶縁体で構或されるとともに通水性を有し、かつ柔軟
性、弾力性を有し、工具電極1の放射状に露出した電極
1′と研摩材2とが工具電極1の回転方向において交互
に形成され、工具電極1の研摩面において、電極1′の
露出電極面よりも研摩材2が突出して設けられている。
First, in Fig. 1, 1 is a disk-shaped tool electrode connected to the cathode side of a DC power source or pulsed power source, and 2 is a tool electrode 1.
It is an abrasive material attached to the lower surface of the tool electrode 1 with an adhesive 3, and is made of an electrical insulator, has water permeability, and has flexibility and elasticity, and is attached to the radially exposed electrode of the tool electrode 1. 1' and abrasive material 2 are formed alternately in the direction of rotation of the tool electrode 1, and the abrasive material 2 is provided on the abrasive surface of the tool electrode 1 so as to protrude from the exposed electrode surface of the electrode 1'.

4は工具電極1に透設された電解液の供給口であり、工
具電極1の下方に対向して設置された被研摩物(図示せ
ず)と工具電極1とのギャップに、供給口4から図示矢
印の方向に電解液が供給ざれる。
Reference numeral 4 designates an electrolytic solution supply port transparently provided in the tool electrode 1, and the supply port 4 is located in the gap between the tool electrode 1 and the object to be polished (not shown), which is placed oppositely below the tool electrode 1. The electrolytic solution is supplied in the direction of the arrow shown in the figure.

5は工具電極1の回転軸であり、被研摩物には、直流電
源またはパルス電源の陽極側が接続されている。
5 is a rotating shaft of the tool electrode 1, and the anode side of a DC power source or a pulse power source is connected to the object to be polished.

そして、砥粒の混入された電解液が供給口4から工具電
極1と被研摩物とのキャップに供給されるとともに、駆
動機により回転軸5を介して工具電極1が回転され、工
具電極1の露出した電極1と被研摩物との間に直流電源
またはパルス電源が供給され、電解作用により被研摩物
の表面金属が溶出され、被研摩物の表面の凹凸部に不働
態化酸化皮膜が形成される。
Then, the electrolytic solution mixed with abrasive grains is supplied from the supply port 4 to the cap of the tool electrode 1 and the object to be polished, and the tool electrode 1 is rotated via the rotating shaft 5 by the drive machine, so that the tool electrode 1 DC power or pulse power is supplied between the exposed electrode 1 and the object to be polished, and the surface metal of the object to be polished is eluted by electrolytic action, and a passivation oxide film is formed on the uneven parts of the surface of the object to be polished. It is formed.

そして、この不働態化酸化皮膜のうち、凸部のみの不働
態化酸化皮膜が研摩材および電解液中の砥粒により除去
され、その凸部に電解作用が集中し、凸部が優先的に溶
出し、被研摩物の表面が鏡面に仕上げられる。
Of this passivated oxide film, only the convex portions of the passivated oxide film are removed by the abrasive material and the abrasive grains in the electrolyte, and the electrolytic action concentrates on the convex portions, giving priority to the convex portions. It is eluted and the surface of the object to be polished is finished to a mirror finish.

つぎに、この発明の実験結果について説明する。Next, experimental results of this invention will be explained.

工具電極1の直径が150醒l(面積177ffl)、
露出された電極1′の面積が40ml、研摩材2の厚み
が0.5〜1mNのものを使弔し、重量比で20優の硝
酸ソーダを添加した電解液を3〜5 l/mittで、
工具電極1と被研摩物のステンレス鋼( SUS27)
に供給した場合、その実験結果を第2図ないし第4図に
示す。
The diameter of the tool electrode 1 is 150 l (area 177 ffl),
An exposed electrode 1' with an area of 40 ml and an abrasive material 2 with a thickness of 0.5 to 1 mN was used, and an electrolytic solution to which sodium nitrate was added at a weight ratio of 20% was added at a rate of 3 to 5 l/mitt. ,
Tool electrode 1 and polished object made of stainless steel (SUS27)
The experimental results are shown in FIGS. 2 to 4.

第2図は、工具電極の被研摩物への押付力が0.2kg
/iの一定条件のもとにおいで、工具電極の回転周速度
をOから680m/mvtに変化させた場合の電解電流
の変化を示す。
Figure 2 shows that the pressing force of the tool electrode against the object to be polished is 0.2 kg.
2 shows the change in electrolytic current when the rotational peripheral speed of the tool electrode is changed from O to 680 m/mvt under a constant condition of /i.

同図から明らかなように、工具電極の回転周速度が低速
の場合、被研摩物の表面に生或された不働態化酸化皮膜
が除去できないため、十分な電解電流が得られない。
As is clear from the figure, when the rotation peripheral speed of the tool electrode is low, a sufficient electrolytic current cannot be obtained because the passivating oxide film formed on the surface of the object to be polished cannot be removed.

また工具電極の回転周速度が高速の場合、電解液中に気
泡が混入し、実質的な電解液電導度が低下し、電解電流
が減少する。
Furthermore, when the peripheral speed of rotation of the tool electrode is high, air bubbles are mixed into the electrolytic solution, resulting in a decrease in the substantial conductivity of the electrolytic solution and a decrease in electrolytic current.

すなわち、工具電極の最適な回転周速度は50〜450
m/wである。
That is, the optimal rotational peripheral speed of the tool electrode is 50 to 450
m/w.

また、最適回転8速度における電解電流は28〜76A
であり、電流密度(電解電流/露出電極面積)は0.7
〜1.9A/cI1lである。
In addition, the electrolytic current at the optimum rotation speed of 8 is 28 to 76 A.
and the current density (electrolytic current/exposed electrode area) is 0.7
~1.9A/cI1l.

つぎに第3図は、工具電極の回転周速度が180m/m
vtの一定条件のもとにおいで、工具電極の被研摩物へ
の押付力をOから0.7kg/crILに変化させた場
合の電解電流の変化を示す。
Next, Figure 3 shows that the rotational circumferential speed of the tool electrode is 180 m/m.
The graph shows the change in electrolytic current when the pressing force of the tool electrode against the object to be polished is changed from O to 0.7 kg/crIL under a constant vt condition.

同図から明らかなように、押付力が0.05kg/ff
lから0.2kg/cv*までは、急激に電解電流が増
大し、また、0.2kg/ぬ上の押付力を加えても電解
電流はやや増す程度でほぼ76〜80Aの一定値になる
As is clear from the figure, the pressing force is 0.05 kg/ff.
From l to 0.2 kg/cv*, the electrolytic current increases rapidly, and even if a pressing force of more than 0.2 kg/cv is applied, the electrolytic current only increases slightly and remains at a constant value of approximately 76 to 80 A. .

すなわち、電流密度(電解電流/露出電極面積)は1.
9〜2A/一の一定値になる。
That is, the current density (electrolytic current/exposed electrode area) is 1.
It becomes a constant value of 9 to 2 A/1.

さらに第4図は、工具電極の回転周速度と押付力が、研
摩に対しどのように影響するかを求めたものであり、被
研摩物に、ステンレス鋼(SUS27)の表面を3〜4
μRmaxに下仕上げされたものを使用し、研摩時間が
1分間の一定の条件のもとにおいて、押付力が0.2k
g/iの一定で、回転周速度を変化させた場合と、回転
周速度が1 8 0 m/mvtの一定で、押付力を変
化させた場合との被研摩物の表面あらさを示す。
Furthermore, Figure 4 shows how the peripheral speed of rotation and pressing force of the tool electrode affect polishing.
Using a material that has been pre-finished to μRmax, the pressing force is 0.2k under certain conditions with a polishing time of 1 minute.
The surface roughness of the object to be polished is shown when g/i is constant and the circumferential rotational speed is varied, and when the circumferential rotational speed is constant at 1 80 m/mvt and the pressing force is varied.

同図から明らかなように、押付力が0.4kgld曳上
になると、電解液中の砥粒による機械的な研削力が被研
摩物の表面に直接作用し、研摩面を悪化させる。
As is clear from the figure, when the pressing force reaches 0.4 kgld, the mechanical grinding force by the abrasive grains in the electrolyte acts directly on the surface of the object to be polished, deteriorating the polished surface.

したがって、工具電極の回転同速度が50〜45 0n
/mvt,押付力が0. 0 5 〜0. 4 kg/
d ,露出電極面の電流密度が0.7〜1.9A/cf
ILの場合、電解パフ研摩を実施するうえで最適値であ
ることが明らかである。
Therefore, the same rotational speed of the tool electrode is 50 to 450n.
/mvt, pressing force is 0. 0 5 ~ 0. 4 kg/
d, the current density on the exposed electrode surface is 0.7 to 1.9 A/cf
In the case of IL, it is clear that this is the optimum value for carrying out electrolytic puff polishing.

なお、露出電極面と研摩材の面積比が変化した場合、露
出電極面の電流密度を07〜1.9A/C11lの最適
値になるように露出した電極と被研摩物との印加電圧を
適切に変化すればよく、また、電解液は不働態化酸化皮
膜の形戊ざれるものであれば、濃度、供給量等に応じ前
記電流密度となるように印加電圧を変化すればよい。
In addition, if the area ratio of the exposed electrode surface and the abrasive material changes, the voltage applied between the exposed electrode and the object to be polished should be adjusted appropriately so that the current density on the exposed electrode surface becomes the optimum value of 0.7 to 1.9 A/C11l. Further, as long as the electrolytic solution can form a passivation oxide film, the applied voltage may be changed depending on the concentration, supply amount, etc. so that the current density is as described above.

以上のように、この発明の電解パフ研摩方法によると、
工具電極と被研摩物との相対速度を50〜4 5 0
m /rnvt,工具電極の被研摩物への押付力を0.
05〜0. 4 kg/cyyt.,露出電極面の電流
密度を0.7〜1.9/fflにすることにより、従来
不可能とされていた大面積を有する被研摩物を、効果的
に鏡面に仕上げすることができ、しかも研摩速度が太き
いため、ステンレス鋼の3〜4μRma xの下仕上げ
ざれたものから、1工程で0.2〜0.4μRma x
の鏡面仕上を行なうことができ、この発明は、きわめて
効果的な電解パフ研摩方法を提供するものである。
As described above, according to the electrolytic puff polishing method of the present invention,
The relative speed between the tool electrode and the object to be polished is set to 50 to 450.
m/rnvt, the pressing force of the tool electrode to the object to be polished is 0.
05~0. 4 kg/cyt. By setting the current density on the exposed electrode surface to 0.7 to 1.9/ffl, it is possible to effectively finish a polished object with a large area to a mirror surface, which was previously considered impossible. Because the polishing speed is high, the polishing speed is 0.2-0.4μRmax in one process, from 3-4μRmax rough finish of stainless steel.
The present invention provides a highly effective electrolytic puff polishing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電解パフ研摩方法の工具電極の1実
施例を示し、同a図は下面図、同b図はa図のA−A’
線断面図、第2図は工具電極の回転周速度と電解電流の
関係図、第3図は工具電極の押付力と電解電流の関係図
、第4図は工具電極の回転周速度、押付力と表面あらさ
の関係図である0 1・・・・・・工具電極、 2・・・・・・研摩材。
FIG. 1 shows an embodiment of the tool electrode of the electrolytic puff polishing method of the present invention, in which FIG. 1A is a bottom view and FIG.
Line sectional view, Figure 2 is a relationship between the rotational peripheral speed of the tool electrode and electrolytic current, Figure 3 is a relationship between the tool electrode pressing force and electrolysis current, and Figure 4 is the rotational peripheral speed of the tool electrode and pressing force. 1...Tool electrode, 2...Abrasive material.

Claims (1)

【特許請求の範囲】[Claims] 1 工具電極の研摩面に、露出電極面と、該露出電極面
よりも突出した絶縁性と柔軟性を有する研摩材とを設け
、電解により陽極性の被研摩物の表面の凹凸部に形威サ
れた不働態化酸化皮膜のうち、凸部の不働態化酸化皮膜
をパフなどの機械的方法で除去し、被研摩物の表面の前
記凸部に電解作用を集中させ、前記凸部を優先的に溶出
して平滑化する電解パフ研摩方法において、工具電極と
被研摩物との相対速度を5 0 m /mviないし4
5 0 m/mvtにし、工具電極の被研摩物への押
付力を0.05kg/CrILないしo.4y,’=に
し、かつ露出電極面の電流密変を0.7A/fflない
し1.9A/cfflにすることを特徴とする電解パフ
研摩方法。
1. An exposed electrode surface and an abrasive material having insulating properties and flexibility that protrude from the exposed electrode surface are provided on the polished surface of the tool electrode, and electrolysis is applied to the irregularities on the surface of the anodic object to be polished. Among the worn passivation oxide films, the passivation oxide films on the convex parts are removed by a mechanical method such as a puff, and the electrolytic action is concentrated on the convex parts on the surface of the object to be polished. In the electrolytic puff polishing method that preferentially elutes and smoothes, the relative speed between the tool electrode and the object to be polished is set to 50 m/mvi to 4
50 m/mvt, and the pressing force of the tool electrode against the object to be polished was 0.05 kg/CrIL or o. 4y,'= and the current density variation on the exposed electrode surface is 0.7 A/ffl to 1.9 A/cffl.
JP8161676A 1976-07-07 1976-07-07 Electrolytic buffing method Expired JPS5848291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8161676A JPS5848291B2 (en) 1976-07-07 1976-07-07 Electrolytic buffing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8161676A JPS5848291B2 (en) 1976-07-07 1976-07-07 Electrolytic buffing method

Publications (2)

Publication Number Publication Date
JPS536998A JPS536998A (en) 1978-01-21
JPS5848291B2 true JPS5848291B2 (en) 1983-10-27

Family

ID=13751243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8161676A Expired JPS5848291B2 (en) 1976-07-07 1976-07-07 Electrolytic buffing method

Country Status (1)

Country Link
JP (1) JPS5848291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288620A (en) * 1987-05-22 1988-11-25 Kobe Steel Ltd Electrolytic compound supermirror machining method for aluminum

Also Published As

Publication number Publication date
JPS536998A (en) 1978-01-21

Similar Documents

Publication Publication Date Title
US2939825A (en) Sharpening, shaping and finishing of electrically conductive materials
US3873512A (en) Machining method
JPS5848291B2 (en) Electrolytic buffing method
Bruckenstein et al. Effect of polishing with different size abrasives on the current response at a rotating disk electrode
JPS5819412B2 (en) Electrolytic buffing processing equipment
JPS5819413B2 (en) Electrolytic buffing processing equipment
JPS5835823B2 (en) Electrolytic buffing processing equipment
JPS5819411B2 (en) Electrolytic buffing method
US3401103A (en) Electrochemical machining process and electrolyte composition of chloride and sulfates
JPH0531628A (en) Electrolytic combined grinding method for cylindrical workpiece
JPS5835662Y2 (en) Electrode tool for electrolytic composite mirror polishing
JPS5819410B2 (en) Mirror finishing method using electrolytic buffing
JPS60186318A (en) Mirror-face finishing for titanium and its alloy
JPH07185940A (en) Method for electrolytic polishing of member made of stainless steel
JPH02500374A (en) Cathode surface treatment for electroforming metal foils or strips
JPWO2005000512A1 (en) Rotational surface reduction head, electrolytic surface reduction device, and electrolytic surface reduction method
JP2950064B2 (en) Electrolytic dressing type grinding machine
JP2002292525A (en) High speed electrolytic polishing method for inner surface of small diameter hole
JPS5822626A (en) Method of compound super finishing of electrolysis and grinding
JPS58137525A (en) Superprecision electrolytic compound grinding grain processing method
JP2693432B2 (en) Mirror polishing method for titanium material
JPS6130328A (en) Method and device for mirror surface like polishing stainless steel
JPS629823A (en) Electrolytic complex polishing method
JPS5822627A (en) Method of compound machining of electrolysis and grinding of cylindrical inner surface
JP3304163B2 (en) Electrolytic in-process dressing grinding machine