JPS5847692Y2 - eccentric magnetic core - Google Patents

eccentric magnetic core

Info

Publication number
JPS5847692Y2
JPS5847692Y2 JP1978050924U JP5092478U JPS5847692Y2 JP S5847692 Y2 JPS5847692 Y2 JP S5847692Y2 JP 1978050924 U JP1978050924 U JP 1978050924U JP 5092478 U JP5092478 U JP 5092478U JP S5847692 Y2 JPS5847692 Y2 JP S5847692Y2
Authority
JP
Japan
Prior art keywords
magnetic
magnet
biased
magnetic core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978050924U
Other languages
Japanese (ja)
Other versions
JPS54152957U (en
Inventor
隆 藤原
輝彦 尾島
Original Assignee
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーディーケイ株式会社 filed Critical ティーディーケイ株式会社
Priority to JP1978050924U priority Critical patent/JPS5847692Y2/en
Publication of JPS54152957U publication Critical patent/JPS54152957U/ja
Application granted granted Critical
Publication of JPS5847692Y2 publication Critical patent/JPS5847692Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Description

【考案の詳細な説明】 本考案は、非対称電流が流れる変成器又はチョークコイ
ルが、磁気飽和するのを防止するのに用いて好適な偏磁
磁心に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eccentric magnetic core suitable for use in preventing magnetic saturation in a transformer or a choke coil through which an asymmetrical current flows.

非対称電流が流れる変成器又はチョークコイルにおいて
、磁心に生ずる非対称成分の電流に相当する磁界を、磁
心を通る磁束の方向の一方向に磁化された偏磁用磁石を
磁心の空隙部に挿入保持するか、或いは長さ方向に磁化
された偏磁用磁石によって磁心の空隙部を橋絡すること
によって相殺して磁気飽和を防止するものはすでに公知
である。
In a transformer or choke coil in which an asymmetrical current flows, a magnetic field corresponding to the asymmetrical component current generated in the magnetic core is maintained by inserting a biased magnet magnetized in one direction in the direction of the magnetic flux passing through the magnetic core into the air gap of the magnetic core. Alternatively, a method is already known in which magnetic saturation is prevented by bridging the gap in the magnetic core with a biased magnet magnetized in the longitudinal direction.

しかしながら、それらのものは次のような欠点をもって
いる。
However, they have the following drawbacks.

即ち、偏磁用磁石を空隙部に挿入したもの(第1の従来
例と呼ぶ)は、磁心に巻き施されたコイルに電流を通じ
た時その電流によって磁心に発生した磁束の大半は磁心
の空隙部の磁気抵抗が小さいため磁心の空隙部を通る。
In other words, in the case where a biased magnet is inserted into the air gap (referred to as the first conventional example), when a current is passed through a coil wound around the magnetic core, most of the magnetic flux generated in the magnetic core by the current flows through the air gap of the magnetic core. It passes through the gap in the magnetic core because its magnetic resistance is small.

即ち磁心の空隙部に挿入した偏磁用磁石を通る。That is, it passes through a biased magnet inserted into the gap of the magnetic core.

この偏磁用磁石は磁心に巻き施されたコイルに流れる電
流によって、磁心に発生する磁束の方向と反対方向に磁
束が発生するように着磁されて磁心の空隙部に挿入され
ているので、コイルに流れる電流によって発生する磁心
内の磁束を相殺して磁心の磁気飽和を防止するようにし
たものであった。
This biased magnet is magnetized by a current flowing through a coil wound around the magnetic core so that magnetic flux is generated in the opposite direction to the direction of magnetic flux generated in the magnetic core, and is inserted into the gap of the magnetic core. It was designed to prevent magnetic saturation of the magnetic core by canceling out the magnetic flux within the magnetic core generated by the current flowing through the coil.

しかし磁心に巻き施されたコイルに流れる電流によって
発生する磁束の大半は偏磁用磁石の磁化方向と反対方向
に作用し、磁石が減磁したり又逆方向に磁石が磁化され
偏磁用磁石としての役をはたさなくなる等の不都合があ
った。
However, most of the magnetic flux generated by the current flowing through the coil wound around the magnetic core acts in the opposite direction to the magnetization direction of the biased magnet, causing the magnet to demagnetize or become magnetized in the opposite direction. There were some inconveniences, such as the fact that it could no longer function as an office.

また、長手方向に磁化され2個の磁極を持った偏磁用磁
石を空隙部の側面に橋絡する構成の偏磁磁心(第2の従
来例と呼ぶ)の場合、偏磁用磁石より得られる磁束は、
偏磁用磁石の磁化方向の断面積Amと偏磁用磁石の動作
点での磁束密度Bdとの積(Am−Bd)から漏磁束を
差引いた値となる。
In addition, in the case of a biased magnetic core (referred to as the second conventional example) in which a biased magnet that is magnetized in the longitudinal direction and has two magnetic poles is bridged to the side surface of the air gap, it is possible to obtain more advantages than the biased magnet. The magnetic flux generated is
It is the value obtained by subtracting the leakage flux from the product (Am-Bd) of the cross-sectional area Am of the biased magnet in the magnetization direction and the magnetic flux density Bd at the operating point of the biased magnet.

この第2の従来例において多くの偏磁磁束を得ようとす
ると、偏磁用磁石の断面積が大きくなり全体として大型
になる欠点があった。
In this second conventional example, when trying to obtain a large amount of biased magnetic flux, the cross-sectional area of the biased magnet increases, resulting in a disadvantage that the overall size becomes large.

そこでこの欠点を除くため第1図に示すような偏磁用磁
石によって磁心の空隙部を橋絡するもの(第3の従来例
と呼ぶ)が提案された。
In order to eliminate this drawback, it has been proposed to bridge the gap in the magnetic core using a biased magnet as shown in FIG. 1 (referred to as the third conventional example).

第1図において、1はコイル、2は磁心、3は同磁心に
設けられた空隙、4は該空隙を橋絡する如く設けられた
偏磁用磁石である。
In FIG. 1, 1 is a coil, 2 is a magnetic core, 3 is a gap provided in the same magnetic core, and 4 is a biased magnet provided to bridge the gap.

偏磁用磁石4は、磁心の空隙端部の一側面に接触してい
る面に磁極Nを形成しその接触面と反対側の面に磁極S
′を形成するように磁化され、また磁心と接しない所の
S′磁極面と同じ面に磁極N′を形成し磁心の空隙端部
のもう一方の側面に接触して磁極Sを形成するように磁
化されたものである。
The biased magnet 4 has a magnetic pole N formed on a surface that is in contact with one side of the air gap end of the magnetic core, and a magnetic pole S formed on the surface opposite to the contact surface.
′, and a magnetic pole N′ is formed on the same surface as the S′ magnetic pole surface that is not in contact with the magnetic core, and a magnetic pole S is formed by contacting the other side of the air gap end of the magnetic core. It is magnetized by.

即ち、偏磁用磁石4は磁極N、 S’を有する第1の磁
石部分と磁極S。
That is, the biased magnet 4 has a first magnet portion having magnetic poles N and S', and a magnetic pole S.

N′を有する第2の磁石部分とから構成されている。N'.

そして第1の磁石部分の磁極Sと第2の磁石部分の磁極
Nとが形成された面が空隙3を橋絡するように、偏磁用
磁石4が磁心に結合されている。
The eccentric magnet 4 is coupled to the magnetic core so that the surface on which the magnetic pole S of the first magnet part and the magnetic pole N of the second magnet part are formed bridges the air gap 3.

そして磁極Sと磁極Nは空隙3を挾んで互に反対側に位
置している。
The magnetic poles S and N are located on opposite sides of the air gap 3.

このように第1の磁石部分と第2の磁石部分の磁化方向
が反対でしがも磁心2の側面に対してそれらの磁化方向
が垂直となるよう偏磁用磁石4が磁心2に取付けられて
いるので、偏磁用磁石4の2つの磁石部分による磁束の
経路は第1図の破線に示すとおりとなり、磁心2を偏磁
することができる。
In this way, the biased magnet 4 is attached to the magnetic core 2 so that the magnetization directions of the first magnet portion and the second magnet portion are opposite, but the magnetization directions thereof are perpendicular to the side surface of the magnetic core 2. Therefore, the path of the magnetic flux caused by the two magnet parts of the bias magnet 4 is as shown by the broken line in FIG. 1, and the magnetic core 2 can be biased.

他方、コイル1に電流を通じて発生した磁束の大半は磁
心2とその空隙3を通り、偏磁用磁石4を通るのはわず
かの漏磁束のみである。
On the other hand, most of the magnetic flux generated through the current in the coil 1 passes through the magnetic core 2 and its air gap 3, and only a small amount of leakage flux passes through the bias magnet 4.

というのは磁石の透磁率が約1.1倍であり、また偏磁
用磁石4は磁心2の空隙3の側面に配置されているがら
である。
This is because the magnetic permeability of the magnet is about 1.1 times, and the biased magnet 4 is placed on the side of the air gap 3 of the magnetic core 2.

従って偏磁用磁石4に作用する逆磁界は極くわずかであ
る。
Therefore, the reverse magnetic field acting on the biased magnet 4 is extremely small.

従って、この第1図に示す第3の従来例のものは、前述
の磁心の空隙部に偏磁磁石を挿入する第1の従来例のも
ののように偏磁磁石4がコイルによって発生する磁界の
作用で減磁したり逆方向に磁化されてしまうということ
はない。
Therefore, in the third conventional example shown in FIG. 1, unlike the first conventional example in which a biased magnet is inserted into the air gap of the magnetic core, the biased magnet 4 is used to suppress the magnetic field generated by the coil. It does not become demagnetized or magnetized in the opposite direction due to the action.

また、第1図に示す第3の従来例のように巾方向に着磁
するのではなく、長手方向に着磁してなる偏磁磁石で磁
心の空隙の両端の側面を橋絡した第2の従来例において
は、偏磁磁束を大きくとるには前述のように偏磁用磁石
の断面積Amを大きくしなければならず、従って偏磁用
磁石の巾方向の長さく即ち厚さ)を大きくしなければな
らないのに対し、第3の従来例では偏磁用磁石4の第1
および第2磁石部分の断面積を大きくするには偏磁用磁
石4の長手方向の長さを大きくすればよく、巾方向の長
さく厚さ)はそのままでよいので偏磁用磁石が嵩張るこ
とがない。
In addition, a second magnet in which the side surfaces at both ends of the air gap of the magnetic core are bridged by a biased magnet magnetized in the longitudinal direction instead of magnetized in the width direction as in the third conventional example shown in FIG. In the conventional example, in order to increase the biased magnetic flux, it is necessary to increase the cross-sectional area Am of the biased magnet as described above, and therefore, the widthwise length (i.e., the thickness) of the biased magnet must be increased. In contrast, in the third conventional example, the first
In order to increase the cross-sectional area of the second magnet part, the length of the biased magnet 4 in the longitudinal direction can be increased, and the length and thickness of the biased magnet 4 can be left as they are, so the biased magnet is bulky. There is no.

このように、第3の従来例(第1図)は第1および第2
の従来例に比べると欠点の少ないものである。
In this way, the third conventional example (Fig. 1)
It has fewer drawbacks than the conventional example.

しかし偏磁磁心の小型化をはかるため偏磁用磁石4の厚
さを薄くすると、偏磁用磁石4の磁極間N−8’、N’
−5の磁路長が短くなるために、偏磁用磁石4の内部の
磁気抵抗は、偏磁用磁石4の磁極N′からS′に至る迄
での空気を介した偏磁用磁石から見た外部の磁気抵抗と
比較すると、磁石(フェライト磁石)の透磁率μrは1
.1位で空気の透磁率μaと略同等であるので、磁石内
部の磁気抵抗は無視出来ない程小さなものとなる。
However, if the thickness of the biased magnet 4 is made thinner in order to reduce the size of the biased magnetic core, the magnetic pole distances N-8' and N' of the biased magnet 4 will be reduced.
Since the magnetic path length of -5 becomes shorter, the magnetic resistance inside the biased magnet 4 increases from the biased magnet through the air from the magnetic poles N' to S' of the biased magnet 4. Compared to the external magnetic resistance seen, the magnetic permeability μr of the magnet (ferrite magnet) is 1
.. Since the magnetic permeability μa of the first rank is approximately equal to the magnetic permeability μa of air, the magnetic resistance inside the magnet is so small that it cannot be ignored.

従って、第3の従来例は、次のような欠点を生じる。Therefore, the third conventional example has the following drawbacks.

1、磁石内部の磁極間の磁気抵抗を磁石外部の磁極間の
磁気抵抗で割った値がその磁石のパーミアンス係数pで
あり、又その時の動作点の磁束密度Bdは l3d= 8r p p + μr (但しBrは磁石の残留磁束密度) となるので、偏磁磁心の小型化をはがるため偏磁用磁石
の厚さを薄くすると磁石内部の磁気抵抗が小さくなり磁
石のパーミアンス係数が低下し磁石の動作点の磁束密度
Bdは磁石より発した磁束が磁気抵抗の小さい磁石内部
を通るようになり、磁石自身の磁化方向と反対方向に作
用して(反磁場)、動作点の低下をまねく。
1. The value obtained by dividing the magnetic resistance between the magnetic poles inside the magnet by the magnetic resistance between the magnetic poles outside the magnet is the permeance coefficient p of the magnet, and the magnetic flux density Bd at the operating point at that time is l3d = 8r p p + μr (However, Br is the residual magnetic flux density of the magnet.) Therefore, if the thickness of the biased magnet is made thinner in order to reduce the size of the biased magnetic core, the magnetic resistance inside the magnet will decrease and the permeance coefficient of the magnet will decrease. The magnetic flux density Bd at the operating point of the magnet is determined by the fact that the magnetic flux emitted from the magnet passes through the interior of the magnet, which has low magnetic resistance, and acts in the opposite direction to the magnetization direction of the magnet itself (demagnetizing field), causing a decrease in the operating point. .

2、磁心2を通る磁束Φの大部分は、偏磁用磁石4の外
側の空気中を通り、しかも空気の磁気抵抗が大きいから
、磁心2および偏磁用磁石4の全体の磁気抵抗は大きく
なるのを免れない。
2. Most of the magnetic flux Φ passing through the magnetic core 2 passes through the air outside the biasing magnet 4, and since the magnetic resistance of the air is large, the overall magnetic resistance of the magnetic core 2 and the biasing magnet 4 is large. I can't help but become.

3、磁心2に作用する偏磁磁束が少なくなるがら、十分
な偏磁効果を得ることができない場合がある。
3. Even though the biased magnetic flux acting on the magnetic core 2 is reduced, it may not be possible to obtain a sufficient biased magnetic flux.

4、従って、十分な偏磁効果を得るためには、偏磁用磁
石4を大きくしなければならない。
4. Therefore, in order to obtain a sufficient biasing effect, the biasing magnet 4 must be made large.

5、外部に漏れ出た磁束が周辺の電気部品、例えば、ル
−コイル、トランス、CRT等に作用し、これらの部品
の誤動作、精度悪化等の原因となる。
5. The magnetic flux leaking to the outside acts on surrounding electrical components such as Lou coils, transformers, CRTs, etc., causing malfunctions and deterioration of accuracy of these components.

そして、これらの欠点が偏磁磁心の実用限界を狭くして
いた。
These drawbacks have narrowed the practical limits of the biased magnetic core.

従来、偏磁磁心におけるパーミアンス係数の改良手段と
して、偏磁用磁石の偏磁磁心と接している面と反対側の
面に高透磁率材を接触させたものがあるが、このものは
、偏磁用磁石がその長さ方向の両端が単に互いに反対極
性に磁化された棒状の磁石か、単に厚さ方向(磁心と磁
石の接触面から反対面への方向)に磁化されたものに対
するものであるため、前者の場合には磁石から発した磁
束によって2つの磁気回路が形成され、その一つは高透
磁率材と磁石との間で循環する第1の磁気回路であり、
他は磁石と磁心との間で循環する第2の磁気回路であっ
て、第1の磁気回路は磁石が磁心に偏磁磁束を与えるに
は無用であるので、第1の磁気回路の磁束に相当する分
だけ磁石を大型化しなければならない欠点があり、後者
の場合には磁束の一部が空中を通過するのを避けがたい
ため、十分にパーミアンス係数を増加させる効果を生じ
ないものであった。
Conventionally, as a means of improving the permeance coefficient of a biased magnetic core, there is a method in which a high permeability material is brought into contact with the surface of a biased magnet opposite to the surface that is in contact with the biased magnetic core. The magnet is a bar-shaped magnet whose lengthwise ends are simply magnetized with opposite polarities, or magnetized simply in the thickness direction (direction from the contact surface of the magnetic core and the magnet to the opposite surface). Therefore, in the former case, two magnetic circuits are formed by the magnetic flux emitted from the magnet, one of which is a first magnetic circuit that circulates between the high magnetic permeability material and the magnet,
The other is a second magnetic circuit that circulates between the magnet and the magnetic core, and since the first magnetic circuit is useless for the magnet to impart biased magnetic flux to the magnetic core, the magnetic flux of the first magnetic circuit is This has the disadvantage that the magnet must be made larger by a corresponding amount, and in the latter case, it is unavoidable that some of the magnetic flux passes through the air, so the effect of sufficiently increasing the permeance coefficient cannot be produced. Ta.

本考案は、前記従来技術の欠点を除去して偏磁磁心の実
用範囲を広くしたもので、以下、第2図を参照しながら
その一実施例につき詳細に説明するか゛、図中、第1図
と同様の作用をする部分には同一の参照番号を付してそ
の詳細な説明は省略する。
The present invention eliminates the drawbacks of the prior art and widens the practical range of biased magnetic cores.Hereinafter, one embodiment of the invention will be explained in detail with reference to FIG. The same reference numerals are given to parts having the same functions as in the figures, and detailed explanation thereof will be omitted.

第2図から明らかなように、本考案は、偏磁用磁石4の
空気に面する磁極N’、S’を磁気抵抗の小さい磁性体
例えば、フェライト鉄板のような高透磁率材(低磁気抵
抗材)5で短絡したことを特徴とするものである。
As is clear from FIG. 2, in the present invention, the magnetic poles N' and S' of the polarized magnet 4 facing the air are made of a magnetic material with low magnetic resistance, such as a high magnetic permeability material such as a ferrite iron plate (low magnetic It is characterized in that it is short-circuited through the resistive material (resistance material) 5.

今、磁石の内部を通って磁石を減磁させる方向に通る磁
路のパーミアンスをPm: 空気中を通って磁石を減磁させない方向に通る磁路のパ
ーミアンスをPa; 磁石の磁極N’、S’を高透磁率材で短絡し、この高透
磁率材を付加した時の磁石からみた外部のパーミアンス
をPC; とすると、パーミアンスPcは、磁気抵抗の小さい磁路
で短絡しているので、磁性体を付加しない時のパーミア
ンスPaと比較すると、Pa(PCとなり、これらの磁
気回路のパーミアンス係数は、となる。
Now, the permeance of the magnetic path passing through the inside of the magnet in a direction that demagnetizes the magnet is Pm: The permeance of a magnetic path passing through the air in a direction that does not demagnetize the magnet is Pa; Magnetic poles N', S of the magnet ' is short-circuited with a high magnetic permeability material, and the external permeance seen from the magnet when this high magnetic permeability material is added is PC; Then, the permeance Pc is short-circuited in a magnetic path with low magnetic resistance, so the magnetic When compared with the permeance Pa when no body is added, Pa(PC) is obtained, and the permeance coefficient of these magnetic circuits is as follows.

一方、動作点での磁束密度は、パーミアンス係数に比例
するので、前述のようにして、偏磁用磁石4の磁極N’
、S’間を高透磁率材5で短絡してパーミアンス係数を
大きくしてやると、 1、偏磁用磁石の動作点が上るので、大きな偏磁磁束を
得ることができ、十分な偏磁をかけることができる。
On the other hand, since the magnetic flux density at the operating point is proportional to the permeance coefficient, the magnetic pole N' of the biased magnet 4 is
, S' are short-circuited with a high permeability material 5 to increase the permeance coefficient. 1. The operating point of the bias magnet increases, so a large bias magnetic flux can be obtained, and sufficient bias magnetization can be applied. be able to.

2、場合によっては、小型の偏磁用磁石でその用をなす
ことができ、従って、従来の高透磁率材を用いたものよ
り小型化することができる。
2. In some cases, a small biased magnet can serve the purpose, and therefore it can be made smaller than a conventional one using a high magnetic permeability material.

3、磁極が短絡されているので、外部へ漏れる磁束が減
少し、他の電気部品への悪影響が少なくなる。
3. Since the magnetic poles are short-circuited, the magnetic flux leaking to the outside is reduced, reducing the negative impact on other electrical components.

4、偏磁用磁石4を流れる磁束と高透磁率材5を流れる
磁束の通る磁気回路は直列となるので、両磁束とも偏磁
用に役立ち、従って従来のものにくらべて偏磁用磁石の
断面積が小さくとも、充分な偏磁用磁束が得られる。
4. Since the magnetic circuit through which the magnetic flux flowing through the biasing magnet 4 and the magnetic flux flowing through the high permeability material 5 passes is in series, both magnetic fluxes are useful for biasing, and therefore, compared to conventional magnets, the biasing magnet is Even if the cross-sectional area is small, sufficient polarizing magnetic flux can be obtained.

等の効果を奏する。It has the following effects.

なお、偏磁用磁石4は、本考案の実施例のものと同様に
着磁された複数の磁石を接続した複合型のものでもよい
ことはいうまでもない。
It goes without saying that the biased magnet 4 may be of a composite type, in which a plurality of magnetized magnets are connected, similar to the one in the embodiment of the present invention.

第3図は、本考案の他の実施例を示す図で、aは正面図
、bは側面図、Cは底面図で、第2図の実施例と同様の
作用をする部分には同一の参照番号を付し、その詳細な
説明は省略する。
FIG. 3 is a diagram showing another embodiment of the present invention, in which a is a front view, b is a side view, and C is a bottom view. Reference numbers are given and detailed explanations thereof are omitted.

この実施例によると、外部へ漏れる磁束が周辺の電気部
品に悪影響を及ぼすようなことはほとんどなく、また、
磁性体の床上で使用するときは、更にその効果を増大さ
せることができる利点がある。
According to this embodiment, the magnetic flux leaking to the outside has almost no adverse effect on surrounding electrical components, and
When used on a magnetic floor, there is an advantage that the effect can be further increased.

以上の説明から明らかなように、本考案によると、簡単
な構成によって、大きな偏磁を得ることができ、しかも
、周辺の電気部品への悪影響も小さくすることができる
ので、効率的でかつ実用範囲の広い偏磁磁心を提供する
ことができる。
As is clear from the above explanation, according to the present invention, a large biased magnetization can be obtained with a simple configuration, and the adverse effect on surrounding electrical components can also be reduced, making it efficient and practical. A wide range of eccentric magnetic cores can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の偏磁磁心の正面図、第2図は本考案の
一実施例を説明するための正面図、第3図は、本考案の
他の実施例を説明するための図で、aは正面図、bは側
面図、Cは底面図である。 1・・・・・・コイル、2・・・・・・磁心、3・・・
・・・空隙、4・・・・・・偏磁用磁石、5・・・・・
・高透磁率材。
FIG. 1 is a front view of a conventional biased magnetic core, FIG. 2 is a front view for explaining one embodiment of the present invention, and FIG. 3 is a diagram for explaining another embodiment of the present invention. Here, a is a front view, b is a side view, and C is a bottom view. 1... Coil, 2... Magnetic core, 3...
...Air gap, 4...Polarized magnet, 5...
・High magnetic permeability material.

Claims (1)

【実用新案登録請求の範囲】 コイル1が巻装され、空隙3を有する磁心2と、第1の
方向に着磁され磁極N、S’を持つ第1の磁石部分と、
その第1の方向とは反対の第2の方向に着磁され磁極S
、N’を持つ第2の磁石部分を有し、これらの第1およ
び第2の磁石部分のそれぞれの一方の磁極N、Sの面が
磁心2に面し且つそれらの磁極Nと磁極Sとが空隙3を
挾んで反対側に位置するように、磁心2に取付けられた
偏磁用磁石4と、 第1および第2の磁石部分のそれぞれの他方の磁極S’
、N’間を橋絡するように偏磁用磁石4に取付けられた
高透磁率材5 を具備することを特徴とする偏磁磁心。
[Claims for Utility Model Registration] A magnetic core 2 around which a coil 1 is wound and has an air gap 3; a first magnet portion magnetized in a first direction and having magnetic poles N and S';
The magnetic pole S is magnetized in a second direction opposite to the first direction.
, N', one of the magnetic poles N, S of each of the first and second magnetic portions faces the magnetic core 2, and the magnetic poles N and S thereof A biased magnet 4 is attached to the magnetic core 2 so that S' is located on the opposite side across the air gap 3, and the other magnetic pole S' of each of the first and second magnet parts is
, N' is provided with a high magnetic permeability material 5 attached to a biasing magnet 4 to bridge between N'.
JP1978050924U 1978-04-18 1978-04-18 eccentric magnetic core Expired JPS5847692Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978050924U JPS5847692Y2 (en) 1978-04-18 1978-04-18 eccentric magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978050924U JPS5847692Y2 (en) 1978-04-18 1978-04-18 eccentric magnetic core

Publications (2)

Publication Number Publication Date
JPS54152957U JPS54152957U (en) 1979-10-24
JPS5847692Y2 true JPS5847692Y2 (en) 1983-10-31

Family

ID=28939320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978050924U Expired JPS5847692Y2 (en) 1978-04-18 1978-04-18 eccentric magnetic core

Country Status (1)

Country Link
JP (1) JPS5847692Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230647B2 (en) * 1994-12-09 2001-11-19 株式会社安川電機 DC reactor
JP2002164217A (en) * 2000-11-29 2002-06-07 Tokin Corp Inductance parts
JP2002158124A (en) 2000-11-20 2002-05-31 Tokin Corp Inductance component
JP2002170719A (en) * 2000-11-30 2002-06-14 Tokin Corp Inductance part

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425940Y2 (en) * 1974-05-31 1979-08-29

Also Published As

Publication number Publication date
JPS54152957U (en) 1979-10-24

Similar Documents

Publication Publication Date Title
EP0744757B1 (en) D.c. reactor
US4009460A (en) Inductor
US6639499B2 (en) Inductance component in which a permanent magnet for applying a magnetic bias is arranged outside an excitation coil
US8963544B2 (en) Signal transmission device
US2869050A (en) Magnetic circuits
JPS5847692Y2 (en) eccentric magnetic core
JPH0766041A (en) Inductor
JPH11219832A (en) Choke coil for noise filter
JPH08107021A (en) Transformer
JP3305997B2 (en) Magnetically biased induction magnet
JP3314908B2 (en) DC reactor
JPS598325Y2 (en) inductance element
FI833277A0 (en) MAGNETIC GIVARANORDNING FOER MAETNING AV KRAFT, SPECIELLT FOER MAETNING AV DRAGMOTSTAONDET HOS EN JORDBRUKSTRAKTOR
JP4197327B2 (en) Inductance parts
JPH0574069A (en) Linear motor for light pick up
JP2514338B2 (en) Current detector
JPH0728059B2 (en) Magnetoresistive element
JPH09306754A (en) Choke coil
JPH05114520A (en) Transformer device
JPS607448Y2 (en) high voltage transformer
JP2827043B2 (en) Ignition coil for internal combustion engine
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
JPS6050607A (en) Vertical magnetic recording and reproducing head
JPH0530141B2 (en)
JP2005317623A (en) Direct current reactor