JPS5847551A - Production of composite structural pipe - Google Patents

Production of composite structural pipe

Info

Publication number
JPS5847551A
JPS5847551A JP14437681A JP14437681A JPS5847551A JP S5847551 A JPS5847551 A JP S5847551A JP 14437681 A JP14437681 A JP 14437681A JP 14437681 A JP14437681 A JP 14437681A JP S5847551 A JPS5847551 A JP S5847551A
Authority
JP
Japan
Prior art keywords
agent
reaction
pipe
iron
thermite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14437681A
Other languages
Japanese (ja)
Other versions
JPS5934470B2 (en
Inventor
Osamu Odawara
修 小田原
Iwao Nakanishi
中西 巌
Koji Kitamura
北村 耕二
Yasumasa Ishii
康允 石井
Hiroshi Yamazaki
洋 山崎
Jiro Tsuchida
土田 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP56144376A priority Critical patent/JPS5934470B2/en
Publication of JPS5847551A publication Critical patent/JPS5847551A/en
Publication of JPS5934470B2 publication Critical patent/JPS5934470B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/06Compacting only by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/08Compacting only by explosive forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To decrease the porosities of a ceramic layer formed on a composite structural pipe and to improve the strength to the same level as that of a base pipe made of metal in a producing method for said pipe wherein a thermit agent in the base pipe is ignited in a centrifugal force field by adding the SiO2 to the thermit agent. CONSTITUTION:A thermit agent consisting of a mixture of Al and iron oxide is loaded in a base pipe 1 made of metal, and said agent is ignited in the centrifugal force field generated by high speed revolutions, whereby thermit reaction is caused. The molten iron and molten Al2O3 formed by said reaction are separated by gravity, and an intended ceramic layer 4 is coated and formed via a metallic layer 3 on the inside surface of the pipe. Here, powder or particles of SiO2 are further added at 5-15wt% as an additive to the thermit agent. Then SiO2 is melted as well by the heat of reaction and forms alumina-silicate ceramics by melting and mixing with Al2O3, whereby the m.p. and viscosity are decreased, the escaping of bubble from the layer 4 is accelerated and porosities are decreased.

Description

【発明の詳細な説明】 4 本発明はテルミット反応を利用して鉄又は鉄会金製
母管の内面にセラーミック層を被、覆形成する複合構造
管の製造方法の改良に俤り、特にそのセラζツク層0*
?L率を低下せしめるための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 4. The present invention is directed to improvements in the manufacturing method of composite structural pipes in which a ceramic layer is coated on the inner surface of a main pipe made of iron or iron alloy by utilizing thermite reaction, and in particular, That cellar ζtsuku layer 0*
? The present invention relates to a method for reducing the L rate.

管゛内面にセラミック層を被覆形成せしめてなる複合構
造管は、セラミック層が耐熱性、耐摩耗性、耐食性等に
晦好tk特性を発揮するため、各種流体の輸送管中工業
用配管部材として広汎な適用用途を有している。   
 −・ この種彼台構造管の製造手段としては、従来種々の方法
が実施されてきているが、最近ではその好適tSU*手
段として、遠心力とテルミット反応を8′Mする゛いわ
ゆる遠心チルミツト法がi@されている・すなわち、仁
の方法を最も代表的なアル・ミ゛ニウムー酸化鉄系のチ
ルζシト反応を利用して鋼管のような鉄又は鉄合金製母
管の内面にアル2すのセラミックコーティングを施す場
合を剥に説明すると、第1図に示すようK、鉄系母管(
1)内にアルf−ウム(ムl)と酸化鉄(r・■Os又
はr匂04)の各粉末あるいは粒子による一定比率の混
合物からなるテルミツト剤(!lを装填し、これを高速
回転による遠心力場内で着火して、下記式に示す如きチ
ルζシト反応を行なわしめ、この発熱反応により生成さ
れる溶融金属(F・)と溶融セラミック(ム−5OS 
)とを比重分離し゛て、第2図に示すように母管(1)
の内面に金属層(3)を介して所期の竜ラミック層(4
)を被覆形成するものである。
Composite structure pipes, which are made by coating the inner surface of the pipe with a ceramic layer, are used as industrial piping members for transporting various fluids because the ceramic layer exhibits good TK characteristics such as heat resistance, abrasion resistance, and corrosion resistance. It has a wide range of applications.
- Various methods have been used in the past to produce this type of tube with a suspended structure, but recently, the so-called centrifugal tilmit method, which uses centrifugal force and thermite reaction at 8'M, has recently become the preferred tSU* method. In other words, Al2 is applied to the inner surface of an iron or iron alloy mother pipe such as a steel pipe using the most typical aluminum-iron oxide-based chill reaction. To explain the case of applying ceramic coating on steel, as shown in Figure 1, K, iron-based main pipe (
1) A thermite agent (!l) consisting of a mixture of powders or particles of aluminum (mul) and iron oxide (r・■Os or r-O4) at a certain ratio is loaded into the chamber and rotated at high speed. is ignited in the centrifugal field of
) and the main pipe (1) as shown in Figure 2.
The desired lamic layer (4) is placed on the inner surface of the metal layer (3) through the metal layer (3).
).

1一番+ lムt−4AIso@ + 2Fm + 1
99門m17AI、O@ 争3F@104+ 8ムl 
−+ 4A/srs + 9F* + 194Ko*l
/Al、Os%lkこの方法によれば、一般には上記の
ムl−酸化鉄系のみならず種々のチルミツ、、ト辱応系
を利用することができ、その装填量を調整することKよ
って任意の金属製母管に対してその内面に所望厚さでが
でき、しか4その七うきツクコーティングは同時に生成
される金属層を介して母管に高い密着状態で結合される
fII#を有する。
1st + 1mt-4AIso@ + 2Fm + 1
99 guns m17 AI, O @ war 3F @ 104 + 8 ml
-+ 4A/srs + 9F* + 194Ko*l
/Al,Os%lk According to this method, it is generally possible to use not only the above-mentioned mul-iron oxide system but also various oxidation systems, and the loading amount can be adjusted. For any metal header tube, a desired thickness can be applied to its inner surface, and the coating has an fII# that is bonded in high adhesion to the header tube through a simultaneously produced metal layer. .

ところで、この遠心チルζット法において最−利用性が
大でかつ代表的゛な前述の鉄系母管に対しムz−r・酸
化物系のチル2ット反応を適用する場合についそ更に考
察すると、この筒金鉄系母管の内wK被優形形成れる竜
ラミック層は、前記反応式よ抄明らか壜ように、α−ム
120s(5ランダム)を生とするものからなる。しか
して、この場合における遠心テルミツト剤の問題点とし
て、その生成上う電ツク層の気孔率が高−ことが掲げら
れる。
By the way, when applying the muz-r/oxide-based chill 2t reaction to the aforementioned iron-based main tube, which is the most useful and representative type in this centrifugal chill ζ-t method, there are some problems. Further consideration shows that the ramic layer formed in the wK-dominated form in this tube-metal iron-based main tube is composed of α-mu 120s (5 random), as is clear from the reaction formula. However, a problem with the centrifugal thermite agent in this case is that the porosity of the electrostatic layer produced is high.

すなわち、セラミック層の様械的性質特に強度を向上す
る見地からは、遠心チルミツト法全般にりいてその佑威
七う2ツク層の気孔率を低(抑えることが求められる訳
であるが、特に母管強度の大きい複金管を対象とする場
合にあっては、その竜゛う電ツタ層の強度を母管強度と
同レベルKまで高める要求から、その気孔率の低下が改
善すべき顕著な間l[点とされる。 6 本発flはかかる点に鑑みなされたもので、4IK強度
の高い鉄系母管i(A#−F・酸化物系のチルざシト反
応を′利用して七うきツクコーティングする場合におけ
るその生成セラミック層の気孔率の低下を目的として愈
されたものであり、その特徴とすゐ処は、鉄又は鉄合金
製母管内に、アルミニウムと酸化鉄の混合物から愈るテ
ルミツト剤を装填し。
In other words, from the viewpoint of improving the mechanical properties, especially the strength, of the ceramic layer, it is necessary to reduce the porosity of the two layers in the centrifugal tiling method in general, but in particular, When dealing with double brass tubes that have a high main tube strength, there is a need to increase the strength of the twisted electric ivy layer to the same level K as the main tube strength, so there is a noticeable reduction in the porosity that needs to be improved. 6 The present development fl was made in view of this point, and is based on the iron-based main tube i (A#-F, which utilizes the oxide-based chilzashite reaction) with high 4IK strength. It was created for the purpose of reducing the porosity of the ceramic layer that is produced when applying a seven-layer coating, and its characteristic feature is that a mixture of aluminum and iron oxide is added to the iron or iron alloy main tube. Loaded with Yuruu Thermite agent.

遠心力場内′c#チル電ット剤に着火しチル・iシト反
応を打金わしめで、前記母管内面にチルミツト反応によ
り生成された金属及びセラミック層を被覆形成する方法
において、前記母管内に装填されるテルミツト剤に、添
加剤として更にケイ酸(stow)の粉末ある%/−h
は粒子を重量比で6〜.16嚢添加する点にあり、さら
に好tL<は、そのテルミツト剤の母管に対する装填重
量比を0.!5〜0.66の範囲とする点にある。
In the method of coating the inner surface of the main tube with a metal and ceramic layer generated by the Chillmit reaction by igniting a chill electric agent in a centrifugal force field and causing a chill reaction, In addition, the thermite agent loaded with silicic acid (stow) powder is added as an additive%/-h
The weight ratio of particles is 6~. It is preferable to add 16 capsules, and it is more preferable to set the loading weight ratio of the thermite agent to the mother tube to 0. ! It is in the range of 5 to 0.66.

以下本発明について詳述する。本発明の対象としている
ム/−F・酸化物系のナルミツ奈反応によ抄′生成され
る竜う電ツク層に高い気孔率の現われる理由としては、
アル電すの融点が約goso’eと高く、チルζシト反
応の激しい反応熱によ、って一旦融解されるものの、竜
う電ツクと溶融金属の層分離や気泡の脱出には充分な溶
融時間が保たれないことに起因するものと考えられる。
The present invention will be explained in detail below. The reason why the high porosity appears in the warping electric layer produced by the Narmitsuna reaction of the M/-F oxide system that is the object of the present invention is as follows.
The melting point of aluminum is as high as about goso'e, and although it is temporarily melted by the intense reaction heat of the chill reaction, it is sufficient to separate the layers of the melt and the molten metal and to allow air bubbles to escape. This is thought to be due to the fact that the melting time was not maintained.

上記原因Kflpみ1本発明では生成セラミック層の気
孔率の低下を、チルξツシ剤に第三物質2して適宜添加
剤を加え、それKよる竜う電ツク性状の改質を通して遺
戒することを基本的な解決手段としている。しかして1
本発明者らはテルミツト剤に加える添加剤について種々
夾験研兜した結果。
In the present invention, the porosity of the produced ceramic layer is reduced by adding a third substance to the chilling agent and adding an appropriate additive to the chilling agent, and modifying the properties of the warping electric current. This is the basic solution. But 1
The present inventors conducted various experiments on additives to be added to thermite agents.

対象としていゐム/−y・酸化物の反応系Kk%4で。The target is a reaction system of im/-y oxide Kk%4.

添加剤としてケイ酸(810m )の粉末あるいは粒子
を適量添加すると、その生成上う゛ミック層のり孔率低
下に著しく奏効すると七を知見するに至った。
It has been found that the addition of an appropriate amount of silicic acid (810 m2) powder or particles as an additive is significantly effective in lowering the porosity of the atomic layer formed.

すなわち、チルζクシ剤にケイ酸を添加したものを使用
すると1反応熱によりケイ酸も溶融されてそれが生成さ
れるアル電すと溶融混合してアル電ナーケイ酸Jlニー
に9ζツク管形威するものであるが。
In other words, when using a silicic acid additive, the silicic acid is also melted due to the heat of reaction and it is produced. Although it is intimidating.

このケイ酸の′溶融混合によh*9iツクの融点が融竜
う2ツク層からの気泡の脱出が促進されてその気孔率の
低下が図られるのであり、同時にケイ酸の作用によりガ
ラス化され緻密なセラミック層が形成されるのである。
This melting and mixing of silicic acid promotes the escape of air bubbles from the two layers whose melting point melts, reducing the porosity of the layer, and at the same time, the action of silicic acid causes vitrification. This results in the formation of a dense ceramic layer.

本発明では、上記のようにチルオツド剤に添加剤として
ケイ酸を添加したものを使用することを問題解決のため
の基本的手段とするものであるが。
In the present invention, the basic means for solving the problem is to use a chilling agent to which silicic acid is added as an additive, as described above.

これと共にテルミツト剤の母管に対する装填重量比を適
正にコントロールすれば、セラミック層の気孔率低下に
一層有効擾4のとなることを知見するに至っ大10本発
明が対象としでいる被合管にあっては、100〜800
φ鱈の管径のものが゛一般的な集用範囲KToか、通常
10〜goo 081縦の遠心力場内に製造される。t
た。必要なセラ電ツタ層厚が得られ、かつ製造上有効な
鉄系母管に対するテルミツト剤の装填重量比(テルミツ
ト剤重量/母管重量)はo、i〜0.9の範囲にある。
In addition to this, it has been found that if the loading weight ratio of thermite agent to the mother tube is properly controlled, it becomes even more effective in reducing the porosity of the ceramic layer10. 100-800
The tube diameter of φ cod is generally manufactured in the range of KTo or 10 to 081 vertical centrifugal force field. t
Ta. The loading weight ratio of thermite agent to the iron-based main tube (thermite agent weight/main tube weight) which is effective for manufacturing and which provides the necessary thickness of the ceramic ivy layer is in the range of o,i to 0.9.

ところが、本発明者らの研究によると、このテルミツト
剤の母管に対する装填重量比と、その反応後に生成され
関係を有することが判明した。従って11本発明では以
下に更に詳述するように、セライック層の気孔率を低下
するために、テルミツト剤に添加剤とtでケイ酸を適量
(6〜16重量憾)添加したものを使用すると共に、好
ましくけテルミツト剤の鉄系母管に対する装填重量比を
適正擾範@ (0,5〜0.65)K調整して遠心テル
ミット法をlI!施する屯のである。
However, according to the research conducted by the present inventors, it has been found that there is a relationship between the loading weight ratio of the thermite agent to the mother tube and the amount of thermite produced after the reaction. Therefore, in the present invention, as will be described in more detail below, in order to reduce the porosity of the Ceracic layer, a suitable amount (6 to 16% by weight) of silicic acid is used as an additive to the thermite agent. At the same time, the centrifugal thermite method is preferably carried out by adjusting the loading weight ratio of the thermite agent to the iron-based main tube to an appropriate range (0.5 to 0.65). It is the ton that will be given.

以下本発明による気孔率の低下効果を裏付ける試、験結
果を掲げ、それに基づき更にその適正な製造条件につい
て検討する。第5図、第4図は鉄系母管に遠心チルイツ
ト法によ抄被覆形成されるセラミック層の気孔率とsi
o、添加量及びテルミツト剤装填重量比との関係を示し
たもので、同一試験結果を4とに第sWJは生としてテ
ルミツト剤重量比の点から、一方第4図は主として11
10.添加量のラフ化し九ものである(気孔率の一定は
XXm−R11110B K準拠)。この結果について
みれば明らかなように、テルミツト剤(理論配合比のも
の)に添加剤としてケイ酸を添加せしめたものでは。
Tests and test results supporting the porosity reduction effect of the present invention will be listed below, and appropriate manufacturing conditions will be further discussed based on them. Figures 5 and 4 show the porosity and Si
Figure 4 shows the relationship between the amount added and the thermite loading weight ratio.
10. The amount of addition is rough (the porosity is constant according to XXm-R11110BK). As is clear from this result, silicic acid was added as an additive to the thermite agent (with the theoretical blending ratio).

その添加量の増加に伴いセラζツク気孔率の低下に大き
な寄勢を示し、これと同時に気孔率の低下はチル2ツト
剤重量比ops付近をピークに顕著な極小値を有しそい
ることが確鑓できる。なお図示の試験結果はr・gos
 −A/系のテルミツト剤を使用した場合であるが、 
1@@′o4− AZ系のテルミツト剤の場合は一層の
sio、添加量に0−94の比率を乗じて考えればよく
、殆んど差異はない。− そこで、こ、の試験結果に基づいて篭ラミック気孔率の
低い複合管を得るためのケイ酸添加量及び剤鋏填重量比
の適正範!tiK らいて検討する。この適正範囲を定めるためにはまず対
象とす為複合管において、どの程度以下の気孔率であれ
ば満足すべき竜うξツク屡の性質が得られるかを判断し
なければならない。第5wJはこの判断基準となるセラ
ζツク気孔率とセラミツ関係を示したもので、対象とし
てい る被合管の種々気孔率を有するものについて、その−餠
りンダを扁平圧壊試験に供して求めたものである。仁の
試験結果によれば、母管強度的2500V−以上の鉄系
母管に七う電ツクコーティングする場合では、母管と同
レベルの強度をセラミック層が具備する要求から、この
条件を満足するためKは七うζツク気孔率がグ嗟以下に
抑えられることが必要とされる。従って、遠心チルイツ
ト法によるこの種複合管の製造にさいし、上記各適正範
囲はこの気孔率’F参以下の条件を満足するように定め
ればよい。
As the amount added increases, the ceramic porosity shows a large influence on the decrease, and at the same time, the decrease in porosity peaks around the chill two agent weight ratio ops and reaches a remarkable minimum value. I can confirm it. The test results shown are r.gos.
- When using A/ series thermite agent,
1@@'o4- In the case of AZ-based thermite agents, it is sufficient to multiply the amount of sio added by a ratio of 0-94, and there is almost no difference. - So, based on this test result, what is the appropriate range for the amount of silicic acid added and the weight ratio of the agent to obtain a composite tube with low porosity? tiK I'll take a look and consider it. In order to determine this appropriate range, it is first necessary to determine to what extent the porosity of the target composite pipe can achieve the desired properties. The 5th wJ shows the relationship between ceramic porosity and ceramic, which is the criterion for this judgment, and was determined by subjecting the target tubes with various porosity to the flat crushing test. It is something that According to Jin's test results, when coating an iron-based main pipe with main pipe strength of 2,500V or more, the ceramic layer must have the same level of strength as the main pipe, and this condition must be met. Therefore, the porosity of K must be suppressed to below a certain level. Therefore, when manufacturing this type of composite tube by the centrifugal chill method, each of the above appropriate ranges may be determined so as to satisfy the condition that the porosity is equal to or less than F.

このような気孔率1参以下の条件を満足するためには、
第1図、第4図の結果より、チルイツト剤に対するケイ
酸添加量は6憾以上、またこの際好ましくはチル2ツト
剤の母管に対する装填重量比は0.5〜0.66の範囲
で、あることが判る。ところで、ケイ酸添加量について
はその増加と共KIIl孔率の低下する傾向が看取され
るが、その添加量は別の観点即ちチルしット反応の安定
性の゛見地より実質的にその上限が規制される。第6図
は種々の比率でケイ酸を添加したチル2ツト剤の試料を
各々密閉ルツボ内で反応せしめてその反応熱を一定し、
810fi添加量とテルミット反応の発熱量との関係を
図示するものであって、この結果によれば。
In order to satisfy the condition that the porosity is less than 1 cm,
From the results shown in Figs. 1 and 4, the amount of silicic acid added to the chilling agent is 6 or more, and in this case, preferably, the loading weight ratio of the chilling agent to the mother tube is in the range of 0.5 to 0.66. , it turns out that there is something. By the way, it can be seen that as the amount of silicic acid added increases, the KIIl porosity tends to decrease, but the amount added is determined from a different perspective, that is, from the viewpoint of stability of the chilled reaction. The upper limit is regulated. Figure 6 shows that samples of chilled double agents to which silicic acid has been added in various ratios are reacted in closed crucibles, and the heat of reaction is kept constant.
This figure shows the relationship between the amount of 810fi added and the calorific value of the thermite reaction, and the results are shown below.

Sin、 1$1暢を超えると反応がHま勤、更にlb
噂を超えると一部未反応部分を一部してi用に耐えなく
なる。
Sin, when it exceeds 1$1, the reaction is H, and even more lb
If it exceeds the rumors, some unresponsive parts will not be suitable for i-use.

従って、所期目的とする気孔率の低い緻密なセラミック
層を得るためには、テルミツト剤に対するケイ酸添加量
は6〜15重量嗟、更に好ましくは1〜12重量−の範
囲であり、とのさいの更に有効な手段としてはチル2ツ
ト剤の母管に対する装填重量比をo、s〜0.65、更
に好ましくは0.4〜0.6の範囲に調整すればよいこ
とが判る。
Therefore, in order to obtain the desired dense ceramic layer with low porosity, the amount of silicic acid added to the thermite agent should be in the range of 6 to 15 weight, more preferably 1 to 12 weight. It has been found that a more effective means is to adjust the loading weight ratio of the chill double agent to the main tube to a range of o,s to 0.65, more preferably 0.4 to 0.6.

なお、比較のためケイ酸無添加の場合についても説明す
ると、この場合ではチル建ット剤装填量を増加すること
°によっである程度気孔率の低下を図ることができるが
、それによ?でも充分な気孔率の低下は望めず、又一方
テルミット剤の装填量を増すことは生成セラ建ツク層厚
の増大にりながり、111品の実用上の問題も大であゐ
。口@ 、100φ鱈の母管にチルミツト剤装填蓋量比
0.5程度で末法を適用した場合、その生成上ランツク
層の厚さはs、asw程度である。
For comparison, we will also explain the case where silicic acid is not added. In this case, the porosity can be reduced to some extent by increasing the amount of chill building agent loaded, but is this possible? However, a sufficient reduction in porosity cannot be expected, and on the other hand, increasing the amount of thermite agent loaded leads to an increase in the thickness of the produced ceramic layer, which poses a serious problem in practical use of the 111 product. When the powder method is applied to a 100φ cod main tube with a cap ratio of about 0.5, the thickness of the rank layer produced is about s, asw.

次に本発明の実施例を掲げて説明する。Next, examples of the present invention will be described.

〈実施例〉 各膚150℃で24時間乾燥処理したF@lOB粉末1
909Iとムl粉末6481とを理論配合比で秤量涙金
し。
<Example> F@lOB powder 1 dried at 150°C for 24 hours
909I and mulch powder 6481 were weighed out at the theoretical mixing ratio.

このチルきット剤に更にケイ酸(810m )粉末jl
!55.4fを添加涙金して、ケイ酸10重量参添加の
ものを得た。これを遠心機会枠内にセットした外1jl
14.!S鱈、肉厚611m+、管長300m11の鋼
管内面に均一に散布しえ(装填重量比0.53)、この
さい、金枠は庶r、p、mの回転数で回転されているた
め、ケイ酸を添加したテルミツト剤は遠心力によって鋼
管内wK付着充填されている。しかして、その後漸次金
枠の回転数を増加し、テルミツト剤に着火した。すると
1反応け、すぐに終了し、その後しばらくの間赤熱状態
が持続した。
In addition to this chillitizing agent, add silicic acid (810m) powder.
! 55.4f was added to obtain a product containing 10 parts by weight of silicic acid. This was set inside the centrifugation opportunity frame.
14. ! S cod can be evenly distributed on the inner surface of a steel pipe with a wall thickness of 611 m + and a pipe length of 300 m (loaded weight ratio 0.53). Thermite agent to which acid has been added is adhered and filled in the steel pipe by centrifugal force. After that, the number of revolutions of the metal frame was gradually increased, and the thermite agent was ignited. Then, one reaction occurred and immediately ended, and the red-hot state continued for a while.

次にケイ酸無添加のテルミツト剤を用いて上記と同一条
件で遠心チルζブト法を夾施した。
Next, the centrifugal chill ζ but method was carried out under the same conditions as above using a thermite agent without the addition of silicic acid.

゛上記調造試験結果によると、いずれの場合もその生成
セラミック層及び金属層の厚さは4M及びswiの均一
な亀のであった。しかし乍ら、セラ6ミツク気孔率は前
者の例では3憾であるのに対し、俵者の例では16.5
嘔であった。
According to the above preparation test results, the thickness of the produced ceramic layer and metal layer was 4M and swi, which was uniform in all cases. However, the porosity of the ceramic porosity is 3 in the former example, while it is 16.5 in the strawberry example.
I had vomit.

次に又、ケイ酸添加量6重量憾(F@03.、1G10
9 f 。
Next, the amount of silicic acid added is 6 weight (F@03., 1G10
9 f.

禽t 645 f 、 81G論12ツグf)をテルミ
ツト剤に添加したものを用いて上記と同一条件で遠心テ
ルミット法を奥施し九″、この場合の結果では、セラt
ツク気孔率は6暢であった。又、このさいそ9複合管リ
ングの圧壊橢平試験を行った結果、そ゛のセラ2ツク圧
縮強度titに660−ズ・あ、りた。さらに、そのセ
ラミック硬度についてもマイクロビッカース硬度で11
00〜1rs00が得られた。
The centrifugal thermite method was applied under the same conditions as above using a thermite agent containing 645 f, 81G theory 12 f), and the results in this case showed that thermite
The porosity was 6. Also, as a result of the crushing and flattening test of this composite pipe ring, the compressive strength of the ceramic two was 660-z. Furthermore, the ceramic hardness is 11 on the micro Vickers scale.
00-1rs00 was obtained.

以上述べた如く1本発明はムl−F・酸化物系のフルー
電ット反応を利用して鉄系母管の内面にセラζツク層を
被覆形成せしめる遠心チル、ミツト法において、その技
術的課題であるセラミツフタ孔率の低下をテルミツト剤
にケイ酸を、適量添加せしめることKよって簡単確実に
満足讐しめることに成功L1%のであり       
 ルξット法ノ利用価値を更に高めるものとして顕著外
技術的意義を有するものである。
As described above, the present invention is a technology for the centrifugal chill method in which a ceramic layer is coated on the inner surface of an iron-based main tube by utilizing the Fluoride reaction of Mul-F and oxides. By adding an appropriate amount of silicic acid to the thermite agent, we were able to easily and reliably solve the problem of reducing the porosity of ceramic caps by L1%.
This has significant technical significance as it further enhances the utility value of the ξt method.

【図面の簡単な説明】[Brief explanation of drawings]

館1図と第2WJは遠心テルミとト法の製造プロ竜メを
示す断面図であって、第1図はテ*ミツト反応前の装填
状態を、第2図は反応後における金属層を介しての竜う
ζツク層ρ被覆状簡を示1てにる。第1図と館4図は共
に鉄系母管に被覆!成される七うミック層OgK孔率と
チル尊ット剤に対するケイ酸添加量及び母管に対するチ
ル2ツト剤の装填重量比の関係を示す図である。第5図
はセラtツク気孔率4と一部ずツク圧縮強度の関係を示
す図である=第6図輪テルミット剤に対するケイ酸浴加
重゛量比とチルζツシ反応の発熱量のIl俤を示す図で
ある゛、     、 (1) =−・鉄系母管、(!l−・・テルミツト剤、
[11・・・金属!、(41−”・セラミック層。 特許出願人頂蘭μ石板誠− 第1頁の続き 0発 明 者 土田二朗 枚方市中宮大池1丁目2番1号 久保田鉄工株式会社枚方鋳鋼工 場内 ■出 願 人 久保田鉄工株式会社 大阪市浪速区敷津東−丁目2番 47号 手続補正書(自発) 昭和56年特 許願第144376シj2、発 明の名
称 複合構造管の製造法 3、補正をする者 事件との関係特許出願人 (114)工業技術院長 石 坂 絨 −(ほか1名)
1代理人 次葉 憲2 7.補正の内容 jll  lJI細書の第3頁第15行並びに$16行
に「A1、0.4ル」であるを、いずれも「Al10s
1モル」と補正する。              ・
と補正する。
Fig. 1 and 2 WJ are cross-sectional views showing a manufacturing process using the centrifugal TEM method. Figure 1 shows the structure of the ρ-covering layer. Figure 1 and Figure 4 are both covered with iron main pipe! FIG. 3 is a diagram showing the relationship between the OgK porosity of the formed seven-layer laminate, the amount of silicic acid added to the chill blocking agent, and the loading weight ratio of the chill blocking agent to the main tube. Figure 5 is a diagram showing the relationship between the ceramic porosity 4 and the partial compressive strength. This is a diagram showing ゛, , (1) =--iron main tube, (!l-... thermite agent,
[11...Metal! , (41-" Ceramic layer. Patent applicant: Makoto Ishiita - Continued from page 1 0 Inventor: Jiro Tsuchida 1-2-1 Nakamiya Oike, Hirakata City, Kubota Iron Works Co., Ltd. Hirakata Casting Factory ■ Applicant Kubota Iron Works Co., Ltd. No. 2-47 Shikitsu Higashi-chome, Naniwa-ku, Osaka City Procedural amendment (voluntary) 1981 Patent Application No. 144376shij2, Title of invention: Process for manufacturing composite structural pipes 3, Amendments made Related patent applicant (114) Director of the Agency of Industrial Science and Technology Ishizaka Nori (1 other person)
1 Agent Ken Tsuguha 2 7. Contents of the amendment jll l In the 3rd page, line 15 and line $16 of the JI detailed document, "A1, 0.4" was replaced with "Al10s".
1 mole”.・
and correct it.

Claims (1)

【特許請求の範囲】 1、 鉄又は鉄合金製母管内に、アルミニウムと酸化鉄
の涙合物からなるテルiツト剤を装填し。 遠心力場内で該テルiツト剤に着火しテルミット反応を
行なわしめて、前記母管内面にチルきット反応により生
成された金属及びセラミック層を被覆形成する方法にお
いて、前記母管内に装填されるテルiツト剤に、添加剤
として更にケイ酸(810,)の粉末あるいは粒子を重
量比で6〜15饅添加することを特徴とする一合構造管
の製造法。 ト剤の母管に対する装填重量比(チ ル建ット剤重量/母管重量)が0.3〜0・65の範囲
にある特許請求の範m第1項記載の製造法・1 チルミ
ツ 酸(sio、 )の粉末あるいは粒子の添加量は重量比
でマー18悌である特許請求の範囲第1項又は第3項記
載の製造法、  、        −4チルミツト剤
の母管に対する装填重量比(チルミツト剤重量/母管重
量2)が0.4〜0.6の範11にある特許請求の範1
i*1項又は第3項記載−の製造法。−
[Claims] 1. A tertiary agent made of a mixture of aluminum and iron oxide is loaded into a mother tube made of iron or iron alloy. A method of igniting the thermite agent in a centrifugal force field to cause a thermite reaction, and coating the inner surface of the mother tube with a metal and ceramic layer generated by the chirkit reaction, wherein the material is loaded into the mother tube. 1. A method for manufacturing a monolithic structure pipe, which comprises adding silicic acid (810,) powder or particles in a weight ratio of 6 to 15 times as an additive to the teritizing agent. The manufacturing method according to claim m, wherein the loading weight ratio of the chill building agent to the main tube (chill building agent weight/main tube weight) is in the range of 0.3 to 0.65. The manufacturing method according to claim 1 or 3, wherein the amount of the powder or particles added is 18% by weight. Claim 1 in which the weight/main pipe weight 2) is in the range 11 of 0.4 to 0.6.
i*Production method described in item 1 or 3. −
JP56144376A 1981-09-12 1981-09-12 Manufacturing method of composite structure pipe Expired JPS5934470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56144376A JPS5934470B2 (en) 1981-09-12 1981-09-12 Manufacturing method of composite structure pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56144376A JPS5934470B2 (en) 1981-09-12 1981-09-12 Manufacturing method of composite structure pipe

Publications (2)

Publication Number Publication Date
JPS5847551A true JPS5847551A (en) 1983-03-19
JPS5934470B2 JPS5934470B2 (en) 1984-08-22

Family

ID=15360679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56144376A Expired JPS5934470B2 (en) 1981-09-12 1981-09-12 Manufacturing method of composite structure pipe

Country Status (1)

Country Link
JP (1) JPS5934470B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253679A (en) * 1984-05-29 1985-12-14 カルソニックカンセイ株式会社 Door lock operation apparatus
JPS60195448U (en) * 1984-06-05 1985-12-26 カルソニックカンセイ株式会社 door lock operating device
JPS6389676A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method
JPH01287384A (en) * 1988-05-12 1989-11-20 Mitsui Mining & Smelting Co Ltd Actuator mechanism of locking device
JPH03212587A (en) * 1990-01-17 1991-09-18 Mitsubishi Electric Corp Actuator using motor
CN1051752C (en) * 1996-01-05 2000-04-26 北京有色金属研究总院 Material formulation of ceramic lining pipe produced with centrifugal self-combustion process
CN109822103A (en) * 2019-03-01 2019-05-31 中南大学 A kind of preparation method of high interfacial bonding strength ceramics outer lining steel pipe
CN110756759A (en) * 2018-07-28 2020-02-07 席文君 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241751Y2 (en) * 1981-04-20 1987-10-26

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111665A (en) * 1978-02-21 1979-09-01 Nippon Electric Co Compound positioning system
JPS54162177A (en) * 1978-06-13 1979-12-22 Matsushita Electric Ind Co Ltd Working table apparatus for printed board and so on
JPS5554644U (en) * 1978-10-02 1980-04-12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111665A (en) * 1978-02-21 1979-09-01 Nippon Electric Co Compound positioning system
JPS54162177A (en) * 1978-06-13 1979-12-22 Matsushita Electric Ind Co Ltd Working table apparatus for printed board and so on
JPS5554644U (en) * 1978-10-02 1980-04-12

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253679A (en) * 1984-05-29 1985-12-14 カルソニックカンセイ株式会社 Door lock operation apparatus
JPS60195448U (en) * 1984-06-05 1985-12-26 カルソニックカンセイ株式会社 door lock operating device
JPS6389676A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Thick ceramic coating method
JPH01287384A (en) * 1988-05-12 1989-11-20 Mitsui Mining & Smelting Co Ltd Actuator mechanism of locking device
JPH03212587A (en) * 1990-01-17 1991-09-18 Mitsubishi Electric Corp Actuator using motor
CN1051752C (en) * 1996-01-05 2000-04-26 北京有色金属研究总院 Material formulation of ceramic lining pipe produced with centrifugal self-combustion process
CN110756759A (en) * 2018-07-28 2020-02-07 席文君 Method for centrifugally casting composite steel pipe by using steel slag and composite steel pipe
CN109822103A (en) * 2019-03-01 2019-05-31 中南大学 A kind of preparation method of high interfacial bonding strength ceramics outer lining steel pipe

Also Published As

Publication number Publication date
JPS5934470B2 (en) 1984-08-22

Similar Documents

Publication Publication Date Title
AU594020B2 (en) Method of making self-supporting ceramic materials
US5153070A (en) Coated refractory article and method
EP0134770B1 (en) Carbonaceous articles having oxidation prohibitive coatings thereon
JPS5847551A (en) Production of composite structural pipe
US2366168A (en) Bonding magnesium-alloy sheets
US3274007A (en) High-temperature resistant self-healing coating and method of application
US3307925A (en) Protected columbium or tantalum article
US3086284A (en) Thermal insulating construction
US3493423A (en) Coating carbon substrates with refractory metal carbides
US2261906A (en) Method of alloying magnesium with manganese
US2708304A (en) Aluminum coated articles
CN1126828C (en) Manufacture of anticorrosive and antiwear composite steel pipe with devitrified glass lining
US5073527A (en) Self-supporting ceramic materials
JPS5847550A (en) Production of composite structural pipe
US1043579A (en) Chemical vessel.
JPS616173A (en) Manufacture of ceramic body and ceramic material
JPS5895675A (en) Silicon carbide/metal composite pipe and manufacture
JPS6197160A (en) Manufacture of self-supporting ceramic material
JPS6027462A (en) Production of pipe having composite construction
JPS6354064B2 (en)
JPS5829560A (en) Production of aluminized casting
CN1290770A (en) Method for preparing composite pipe with high aluminium devitrified glass lining
JPS61502747A (en) fireproof cement
JPH0210870B2 (en)
Pask et al. Physical Chemistry of Glass-Metal Interfaces