JPS5847104A - Turbine rotor blade in gas turbine - Google Patents

Turbine rotor blade in gas turbine

Info

Publication number
JPS5847104A
JPS5847104A JP56142285A JP14228581A JPS5847104A JP S5847104 A JPS5847104 A JP S5847104A JP 56142285 A JP56142285 A JP 56142285A JP 14228581 A JP14228581 A JP 14228581A JP S5847104 A JPS5847104 A JP S5847104A
Authority
JP
Japan
Prior art keywords
cooling
turbine
rotor blade
shroud
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142285A
Other languages
Japanese (ja)
Inventor
Akinori Koga
古閑 昭紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56142285A priority Critical patent/JPS5847104A/en
Publication of JPS5847104A publication Critical patent/JPS5847104A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Abstract

PURPOSE:To effectively cool the shroud by the cooling air through each path in such a way that cooling paths are formed on a shroud which is installed at the tip of a turbine rotor blade, and the cooling paths are opened between bosses on the shroud and on the back sides of the bosses. CONSTITUTION:A multitude of cooling paths 24, 25 are made at the thick part of a shroud 20. All the cooling paths 24, 25 are extended in radial directions from the confluent part of a cooling path 22 of a turbine rotor blade 21, and on another hand, they are divided roughly into a group of paths 24 which open between bosses 23 of the shroud 20, and a group of paths 25 which open on the back sides of the bosses 23. The rotor blade 21 is turned by action of the turbine, and cooling air which passes through the cooling path 22 respectively passes from its confluent part through each path 24, 25 at high speed, and it is radially jetted through each opening port. The jetted cooling air actively and strongly cools the vicinity of the opening ports of each path 24, 25 by its convection, and cools the outer surface of the shroud 20.

Description

【発明の詳細な説明】 この発明はガスタービンの、タービン動翼に係り、汚に
タービン動翼の先端部の冷却竺造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine rotor blade of a gas turbine, and more particularly to a cooling fabric for the tip of the turbine rotor blade.

この種のガスタービンはM1図に暗示したように構成さ
れ、ターぜンケーシング1内に回転軸2が回転自在に収
容され、この回転軸2の所定位置に多数のタービン出力
3が植設される。/−ビン動翼3の先端部にはyzラウ
ド4が設けられ、ダスタービンの空力性能の向上とター
ビン動翼3の振動減衰t−図って%する。Vエラウド4
の頭部外側にはタービーン動翼30回転方向に延びる2
条の突起5が設けられてお秒、この突起5によやゲージ
ング内周壁との隙間が小さくされ、主流ガス◆の漏洩を
少な(している。
This type of gas turbine is constructed as shown in Fig. M1, with a rotary shaft 2 rotatably housed in a turbine casing 1, and a large number of turbine outputs 3 installed at predetermined positions on the rotary shaft 2. Ru. A YZ loud 4 is provided at the tip of the turbine rotor blade 3 to improve the aerodynamic performance of the dust turbine and to reduce the vibration damping of the turbine rotor blade 3 by approximately %. V Elaud 4
On the outside of the head of the turbine rotor blade 30, there is a blade 2 extending in the rotational direction.
A strip protrusion 5 is provided to reduce the gap between the protrusion 5 and the inner circumferential wall of the gauging, thereby reducing leakage of the mainstream gas ◆.

Vエラウド4は、一般にガスターV)の低圧段では無冷
却であるが、高温高圧側の初段勢の高圧段ガスタービン
では、冷却を要求される場合が多い、将来、ガスタービ
ンの高温化(タービン出力、め増大)が進むにつれ、タ
ービン動翼3に設けられたシエツクド4に一層高い冷却
性能が要求される。     ・ 従来、シ瓢ラクト4の冷却は、タービン動翼3内を通る
冷却空気ヤ、ゲージングlに穿設された冷却空気孔7ヤ
インビンジンダ冷却空気孔8から吹出される冷却空気な
どKよし行なっていた。
Generally speaking, the low-pressure stage of the gas turbine (V) is not cooled, but in the high-pressure stage gas turbine on the high-temperature, high-pressure side of the first stage, cooling is often required. As the output increases, the shields 4 provided on the turbine rotor blades 3 are required to have even higher cooling performance.・ Conventionally, cooling of the syringe 4 was carried out by cooling air passing through the inside of the turbine rotor blade 3, cooling air blown out from the cooling air hole 7 and the cooling air hole 8 drilled in the gauging l, etc. .

タービン動翼3を通る冷却空気は、第2図および第3図
に示すように流通せしめられる。すなわち、タービン動
翼3の冷却通路9を通った冷却空気はV!−2クド4の
中空部10)C案内され、この中空部からシエラウド4
の突起5の背@忙開口する開口部Uから流出するように
なっている。
Cooling air passing through the turbine rotor blades 3 is made to flow as shown in FIGS. 2 and 3. That is, the cooling air passing through the cooling passage 9 of the turbine rotor blade 3 is V! -2 Hollow part 4 of Kudo 10) C is guided, and Sierra Loud 4
The water flows out from the opening U at the back of the protrusion 5.

しかしながら、第2図および第3図に示すV&ラウド4
の冷却構造では、冷却通路が突起5の背@νこのみ開9
しており、また、冷却通路9を通った冷却空気の今度が
中空部で急速に遅くなるため、シエラウド4の頭部側両
側方(回転方向ムに対し温ガスタービンにVユラクドを
使用することが困難であった。
However, the V & Loud 4 shown in Figures 2 and 3
In the cooling structure, the cooling passage is located at the back of the protrusion 5 @ν
In addition, since the cooling air that has passed through the cooling passage 9 rapidly slows down in the hollow part, it is necessary to use a was difficult.

この発明は上述した点を前鼻し、タービン動翼の先端に
設けられるシエラウドを全面にわたりほぼ均一にかp有
効的に冷却することができ、高温がスタービンにシエラ
ウドを使用することができを目的とする。
The purpose of this invention is to overcome the above-mentioned points, and to effectively cool the Sierra cloud provided at the tip of the turbine rotor blade almost uniformly over the entire surface, thereby making it possible to use the Sierra cloud in a turbine with high temperatures. shall be.

以下、この発明の実施例について添付11面を参−して
説明する。
Examples of the present invention will be described below with reference to attached page 11.

この発明は、タービン動員の先端に設けられたり3−ラ
クト加の冷却構造に特徴を有し、他の部分は従来と同様
であるので、説明を省略する。
This invention is characterized by a cooling structure provided at the tip of the turbine mobilizer and a 3-lacto cooling structure, and the other parts are the same as the conventional ones, so a description thereof will be omitted.

Vエラウド20はプレート状をなし、第4図乃至冷却通
路nは供給用と戻り用とに区画され、両通路はタービン
動翼21の先端部で合流している。
The V-Eloud 20 has a plate shape, and the cooling passage n in FIG.

一方、シェラウド加の頭部側には所望形状の内厚部が形
成され、その外側tζタービン動翼21の回転方向に延
びる2条の央起器が適宜間−をおいて形成される。上記
央起羽はタービン内濁壁(図示せず)との間隙を小さく
するようになっておや、これkよし上記間−からの主流
ガスの漏洩が有効的に防止される。
On the other hand, an inner thick part of a desired shape is formed on the head side of the shroud, and two central erectors extending in the rotational direction of the turbine rotor blade 21 are formed at appropriate intervals on the outer side of the inner thick part. The center raised wing has a small gap with the turbine internal turbidity wall (not shown), which effectively prevents leakage of mainstream gas from the gap.

前記シエラクド加の肉厚部には多数の冷却通路24 、
25が穿設されている。各冷却通路ス、25は、タービ
ン動翼21の冷却通路220合流部からほぼ放、射方向
に延びる一方、上記各冷却通路24.25は1、し瓢う
クト加の突起囚間に開口している一層の冷却通路必と、
突起nの背後(尾部)側に放射状に鶴びて開口している
一層の冷却通路怒と、Iζ大別さ訂る。このうち、冷却
通路冴はタービン動翼21の、−動転方向ム儒およびそ
の反対側に砥びている。
A large number of cooling passages 24 are provided in the thick wall portion of the shield.
25 are drilled. Each of the cooling passages 24, 25 extends substantially in the radial direction from the confluence of the cooling passages 220 of the turbine rotor blades 21, while each of the cooling passages 24, 25 opens between the protrusions of the cooling passages 220 and 25 of the turbine rotor blades 21. One layer of cooling passages is required,
They can be roughly divided into a single layer of cooling passages that open in a radial manner on the rear (tail) side of the protrusion n, and Iζ. Among these, the cooling passages are located in the -movement direction of the turbine rotor blade 21 and on the opposite side thereof.

なお、符号あは冷却通路5から流出される冷却空気を案
内するガイド板である。
Note that the reference numeral ``A'' indicates a guide plate that guides the cooling air flowing out from the cooling passage 5.

次に1シ瓢ラクト加の冷却作用について述べる。Next, we will discuss the cooling effect of adding 1 liter of water.

ガスタービンの作動により′、タービン動翼21は回転
せしめられ、タービン動翼21の冷却通路η内を通る冷
却空気は、その合流部からシ瓢うクト加の各冷′却通路
詞、25をそれぞれ高速で通−し、各開口から放射状に
吹き出される。吹き出された冷却空気は壱の対流により
各冷却通路24.25の開口近傍を積極的に強く冷却す
る。その際、各冷却通路24 、25の開口は分散して
配置されているから広い範囲にわたり有効的に冷却され
る一方、各開口から離れに部分は熱伝導によし冷却され
る。
Due to the operation of the gas turbine, the turbine rotor blades 21 are rotated, and the cooling air passing through the cooling passages η of the turbine rotor blades 21 passes through the cooling passages 25 from the merging part. Each passes through at high speed and is blown out radially from each opening. The blown cooling air actively and strongly cools the vicinity of the opening of each cooling passage 24, 25 by convection. At this time, since the openings of each of the cooling passages 24 and 25 are arranged in a dispersed manner, a wide area is effectively cooled, while a portion away from each opening is cooled by heat conduction.

また、各冷却通路冴、25の開口から流出した冷却空気
はV3−ラウド加の外表面に沿って流れ、その部分を冷
却する。シ今がって、V&ツ?F20は全面にわたり有
効的に冷却されるので、高温ガスターぜンのタービン動
員に適しkものとなる。
Further, the cooling air flowing out from the opening of each cooling passage 25 flows along the outer surface of the V3-loud joint, cooling that portion. What do you mean now, V&T? Since the F20 is effectively cooled over its entire surface, it is suitable for mobilizing a high temperature gas turbine turbine.

第i図および第8図はこの発明の第1変形例をかす。Figures i and 8 show a first variant of the invention.

゛この第1変形例に示されたものは、タービン動員(資
)内にインサート31を介装する一方、このインサート
31内に冷却通路32を形成したものである。
``In this first modification, an insert 31 is interposed within the turbine assembly, and a cooling passage 32 is formed within the insert 31.

インサー) 31 K )i冷却空気の吹出孔部が所望
位置に多数形成され、その先端部にもVエラクド調側に
吹き出される吹出孔あが形成されたいる。Vs7ラウド
34に形成される各冷却通路の構造は一笑施例で説明し
たものと同様である=なお、゛符号あはタービン動翼(
至)を尾部側を連結するビンであり、このビン35によ
やタービン動JiI(支)は補強される。
Inser) 31 K) i A large number of blow-off holes for cooling air are formed at desired positions, and blow-off holes are also formed at the tips of the blow-off holes for blowing out to the V-erakudo side. The structure of each cooling passage formed in the Vs7 loud 34 is the same as that explained in the example.
This is a bottle that connects the tail end of the turbine 35 and the tail end thereof, and the turbine shaft (support) is reinforced by this bottle 35.

この第1に形例に示された!−Cン動翼(資)の構造で
も、その先端に設けられたり具ラウドあをその全面にわ
たりほぼ均一に冷却することができる。
This first example was shown! - Even with the structure of the rotor blade (equipment), it is possible to cool the tool loud provided at the tip almost uniformly over its entire surface.

第9図および第10図はこの発明の第2変形例を示すも
のである。
9 and 10 show a second modification of the invention.

この第2変形例に示されたタービン動翼4oは一実施例
で説明したタービン動翼と同じ構造を有するが、その先
端に取付けられるシェラウド41の構造が異なる。
The turbine rotor blade 4o shown in this second modification has the same structure as the turbine rotor blade described in the embodiment, but the structure of the sheroud 41 attached to the tip thereof is different.

このシェラウド41に形成される各冷却通路社。Each cooling passageway formed in this shroud 41.

43はタービン動翼物の回転方向(矢印Aで示す)ζは
逆の方向に開口するように構成されている。
43 is configured to open in a direction opposite to the rotational direction (indicated by arrow A) ζ of the turbine rotor blade.

ナなわち、V:Lラウド41の突起朝間に開口する複数
、例えば3本の冷却通路42はタービン動翼400回転
方向λとは逆向きの位置に開口してお9、また、冷却通
路43はV3−ラクト41の突起背側(尾部側)に延び
てい−るが、その開口はタービン動翼40の回転方向ム
とは逆向き方向を向くように斜めに形成されている。
That is, a plurality of cooling passages 42, for example, three cooling passages 42 opening between the protrusions of the V:L loud 41 are opened at positions opposite to the rotational direction λ of the turbine rotor blades 400, and the cooling passages 43 extends to the rear side of the protrusion (tail side) of the V3-tract 41, and its opening is formed obliquely so as to face in a direction opposite to the rotational direction of the turbine rotor blade 40.

シュラウド41に形成される各冷却通路を第9111験
よび810図に示すように構成することにより、I−ビ
ン動力(出力)を回収する上で都合がよいとと%/C,
シエラクド41の先行側は、先行するVエラウド41の
各冷却通路42 、43から吹き出される冷却空気によ
り冷却される。これによってもVエラウド41は全面を
ほぼ均一に冷却することができる。    、 ゛ 以上に述ぺたように1 この発明に係るガスタービ
ンのタービン動翼Kj?いては、タービン動翼の先端に
設けられるシェラウドに複数の冷却通路を゛形成すると
ともに上記各冷却通路をV&ツウドの央起間に開口する
一層と、上記突起の背側に開口する一層とく区分けされ
、各群の冷却通路を通る・冷却空気によ秒ν瓢ラウドを
冷却するようKしたから、V:Lラウドの全面をほぼ均
一にかつ積極的r(kC冷却することができる。したが
って、高温(高pカ>eスタービンのタービン動翼にV
為うクト′を取付けることができ、ガスタービンの空力
性能の向上や振動の減衰を一極的に図ることができる。
By configuring each cooling passage formed in the shroud 41 as shown in Experiment 9111 and Figure 810, it is convenient to recover the I-bin power (output).
The leading side of the Sierra cloud 41 is cooled by cooling air blown out from each of the cooling passages 42 and 43 of the preceding V eraud 41. This also allows the entire surface of the V-Eloud 41 to be cooled almost uniformly. , ゛ As stated above, 1. Turbine rotor blade Kj of the gas turbine according to the present invention? In this case, a plurality of cooling passages are formed in the shroud provided at the tips of the turbine rotor blades, and each of the cooling passages is divided into one layer opening between the central origin of the V& Since the cooling air passing through the cooling passages of each group is used to cool the second ν gourd loud, the entire surface of the V:L loud can be cooled almost uniformly and actively r(kC. Therefore, High temperature (high p > e V on the turbine rotor blades of the turbine)
It is possible to attach a damper to the gas turbine, thereby improving the aerodynamic performance of the gas turbine and damping vibrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスタービンのタービン動翼部の構造を原理的
に示す図、第2図は従来のガスタービンのタービン動翼
先端に設けられるシェラウドを示す81図の11線に沿
う図、第3図は第2図の履−鳳線に沿う断面図、第4図
はこの発明に係るガスタービンのタービーン動翼を示す
ものであって、タービン動翼先端に設けられるシェラウ
ドを示す一1第5図は第4図のv−■−に沿う断面図、
第6図は第5図のVI−VI線に沿う断面図、第7図は
この発明の第1変形例を示す図、第8図は第7図のVI
II−VIII線に沿う断面図、第9図はこの、発明の
第2変形例を示す図、!10図は第9図のX−X線に沿
う断面図である。 20t34t41−シー1ウド、21t30e40−p
−vン動翼、22.慇−冷却通路、24,25,42,
43−冷却通路、ハウ44−突起。 特許出鳳人 工業技術院長石板献− 第1′図 第2頂 躬3′8 84図 躬5゛凶 f76目 71 1ル 第8繍 第9狽 第10ズ
Fig. 1 is a diagram showing the principle of the structure of the turbine rotor blade section of a gas turbine, Fig. 2 is a view taken along line 11 in Fig. 81 showing a shroud provided at the tip of the turbine rotor blade of a conventional gas turbine, and Fig. 3 The figure is a sectional view taken along the track line in Fig. 2, and Fig. 4 shows a turbine rotor blade of a gas turbine according to the present invention, and shows the shroud provided at the tip of the turbine rotor blade. The figure is a sectional view along v-■- of Fig. 4,
6 is a sectional view taken along line VI-VI in FIG. 5, FIG. 7 is a view showing a first modification of the invention, and FIG.
A sectional view taken along the line II-VIII, FIG. 9, is a diagram showing a second modification of the invention. FIG. 10 is a sectional view taken along the line X--X in FIG. 9. 20t34t41-Sea 1 Udo, 21t30e40-p
-v moving blade, 22. Cooling passage, 24, 25, 42,
43-cooling passage, howe 44-protrusion. Patent issuer, stone board presentation of the Director of the Agency of Industrial Science and Technology - Figure 1', Figure 2, 3'8, Figure 5, F76, 71, 1st letter, 8th stitch, 9th letter, 10th letter.

Claims (1)

【特許請求の範囲】[Claims] ケージング内に収容されるタービン動翼の先端’pl 
V !−ラウドを設け、上配りエラクドのケーシンr壁
側に、タービン動翼の回転方向に延びる複数ノーの突起
を形成しなガスタービンのタービン動翼において、前配
りユラクドiζ複数の冷却通路を形成するとともに、上
記各冷却通路は前記突起間に開口する一層と上記突起の
背側−ζ關口する一層とに区分けされ、上記各群の冷却
通路を轡る冷却空気によりνエラウ、ドを冷却するよう
にしたことを特徴とするガスタービンのタービン111
11゜
The tip of the turbine rotor blade housed in the casing'pl
V! - In the turbine rotor blade of a gas turbine, a plurality of cooling passages are formed on the casing r wall side of the upper-distributed rotor blade, which extends in the rotational direction of the turbine rotor blade. In addition, each of the cooling passages is divided into one layer opening between the protrusions and one layer opening on the back side of the protrusion, so that the cooling air passing through the cooling passages of each group cools the parts. A gas turbine turbine 111 characterized by
11°
JP56142285A 1981-09-11 1981-09-11 Turbine rotor blade in gas turbine Pending JPS5847104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142285A JPS5847104A (en) 1981-09-11 1981-09-11 Turbine rotor blade in gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142285A JPS5847104A (en) 1981-09-11 1981-09-11 Turbine rotor blade in gas turbine

Publications (1)

Publication Number Publication Date
JPS5847104A true JPS5847104A (en) 1983-03-18

Family

ID=15311809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142285A Pending JPS5847104A (en) 1981-09-11 1981-09-11 Turbine rotor blade in gas turbine

Country Status (1)

Country Link
JP (1) JPS5847104A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863348A (en) * 1987-02-06 1989-09-05 Weinhold Wolfgang P Blade, especially a rotor blade
WO1996013654A1 (en) * 1994-10-26 1996-05-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
US5667359A (en) * 1988-08-24 1997-09-16 United Technologies Corp. Clearance control for the turbine of a gas turbine engine
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
WO1999000584A1 (en) * 1997-06-26 1999-01-07 Mitsubishi Heavy Industries, Ltd. Tip shroud for moving blades of gas turbine
US6099253A (en) * 1998-01-13 2000-08-08 Mitsubishi Heavy Industries, Inc. Gas turbine rotor blade
JP2000291405A (en) * 1999-04-05 2000-10-17 General Electric Co <Ge> Cooling circuit for gas turbine bucket and upper shroud
US6152695A (en) * 1998-02-04 2000-11-28 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
EP1126136A2 (en) * 1999-12-28 2001-08-22 ALSTOM (Schweiz) AG Turbine blade with air cooled tip shroud
US6340284B1 (en) * 1998-12-24 2002-01-22 Alstom (Switzerland) Ltd Turbine blade with actively cooled shroud-band element
US6499950B2 (en) * 1999-04-01 2002-12-31 Fred Thomas Willett Cooling circuit for a gas turbine bucket and tip shroud
GB2384275A (en) * 2001-09-27 2003-07-23 Rolls Royce Plc Cooling of blades for turbines
EP1426554A1 (en) * 2002-12-06 2004-06-09 Rolls-Royce Plc Blade cooling
EP1451446A1 (en) * 2001-10-04 2004-09-01 Power Systems MFG., LLC Turbine blade pocket shroud
EP1591626A1 (en) * 2004-04-30 2005-11-02 Alstom Technology Ltd Blade for gas turbine
JP2006316750A (en) * 2005-05-16 2006-11-24 Hitachi Ltd Gas turbine moving blade, gas turbine using the same, and its power generation plant
EP1749967A3 (en) * 2005-08-02 2008-07-30 Rolls-Royce plc Cooling arrangement for a gas turbine
JP2011001919A (en) * 2009-06-21 2011-01-06 Toshiba Corp Turbine moving blade
EP2402559A1 (en) * 2010-07-01 2012-01-04 MTU Aero Engines AG Turbine blade with tip shroud
JP2012225207A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Gas turbine moving blade and method of manufacturing the same
JP2012225211A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Gas turbine moving blade and method of manufacturing the same
EP2607629A1 (en) * 2011-12-22 2013-06-26 Alstom Technology Ltd Shrouded turbine blade with cooling air outlet port on the blade tip and corresponding manufacturing method
US20150064010A1 (en) * 2013-08-28 2015-03-05 General Electric Company Turbine Bucket Tip Shroud
US20160341046A1 (en) * 2014-05-29 2016-11-24 General Electric Company Dust holes
EP2211019A3 (en) * 2009-01-26 2017-05-31 Rolls-Royce plc Rotor blade
EP3269932A1 (en) * 2016-07-13 2018-01-17 MTU Aero Engines GmbH Shrouded gas turbine blade

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863348A (en) * 1987-02-06 1989-09-05 Weinhold Wolfgang P Blade, especially a rotor blade
US5667359A (en) * 1988-08-24 1997-09-16 United Technologies Corp. Clearance control for the turbine of a gas turbine engine
WO1996013654A1 (en) * 1994-10-26 1996-05-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
WO1999000584A1 (en) * 1997-06-26 1999-01-07 Mitsubishi Heavy Industries, Ltd. Tip shroud for moving blades of gas turbine
US6152694A (en) * 1997-06-26 2000-11-28 Mitsubishi Heavy Industries, Ltd. Tip shroud for moving blades of gas turbine
EP0928880A4 (en) * 1997-06-26 2000-11-29 Mitsubishi Heavy Ind Ltd Tip shroud for moving blades of gas turbine
US6099253A (en) * 1998-01-13 2000-08-08 Mitsubishi Heavy Industries, Inc. Gas turbine rotor blade
EP2157280A2 (en) 1998-02-04 2010-02-24 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor blade
US6152695A (en) * 1998-02-04 2000-11-28 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
EP2157280A3 (en) * 1998-02-04 2012-11-21 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor blade
EP1013884A3 (en) * 1998-12-24 2003-11-05 ALSTOM (Switzerland) Ltd Turbine blade with actively cooled head platform
US6340284B1 (en) * 1998-12-24 2002-01-22 Alstom (Switzerland) Ltd Turbine blade with actively cooled shroud-band element
US6499950B2 (en) * 1999-04-01 2002-12-31 Fred Thomas Willett Cooling circuit for a gas turbine bucket and tip shroud
US6761534B1 (en) 1999-04-05 2004-07-13 General Electric Company Cooling circuit for a gas turbine bucket and tip shroud
JP2000291405A (en) * 1999-04-05 2000-10-17 General Electric Co <Ge> Cooling circuit for gas turbine bucket and upper shroud
US6464460B2 (en) * 1999-12-28 2002-10-15 Alstom (Switzerland) Ltd Turbine blade with actively cooled shroud-band element
EP1126136A3 (en) * 1999-12-28 2004-05-19 ALSTOM Technology Ltd Turbine blade with air cooled tip shroud
EP1126136A2 (en) * 1999-12-28 2001-08-22 ALSTOM (Schweiz) AG Turbine blade with air cooled tip shroud
GB2384275A (en) * 2001-09-27 2003-07-23 Rolls Royce Plc Cooling of blades for turbines
EP1451446A1 (en) * 2001-10-04 2004-09-01 Power Systems MFG., LLC Turbine blade pocket shroud
EP1451446A4 (en) * 2001-10-04 2010-07-21 Power Systems Mfg Llc Turbine blade pocket shroud
US7037075B2 (en) * 2002-12-06 2006-05-02 Rolls-Royce Plc Blade cooling
EP1426554A1 (en) * 2002-12-06 2004-06-09 Rolls-Royce Plc Blade cooling
US7273347B2 (en) 2004-04-30 2007-09-25 Alstom Technology Ltd. Blade for a gas turbine
WO2005106208A1 (en) * 2004-04-30 2005-11-10 Alstom Technology Ltd Blade for a gas turbine
EP1591626A1 (en) * 2004-04-30 2005-11-02 Alstom Technology Ltd Blade for gas turbine
AU2005238655B2 (en) * 2004-04-30 2010-08-26 General Electric Technology Gmbh Blade for a gas turbine
AU2005238655C1 (en) * 2004-04-30 2011-06-09 General Electric Technology Gmbh Blade for a gas turbine
JP4628865B2 (en) * 2005-05-16 2011-02-09 株式会社日立製作所 Gas turbine blade, gas turbine using the same, and power plant
JP2006316750A (en) * 2005-05-16 2006-11-24 Hitachi Ltd Gas turbine moving blade, gas turbine using the same, and its power generation plant
EP1749967A3 (en) * 2005-08-02 2008-07-30 Rolls-Royce plc Cooling arrangement for a gas turbine
US7648333B2 (en) 2005-08-02 2010-01-19 Rolls-Royce Plc Cooling arrangement
EP2211019A3 (en) * 2009-01-26 2017-05-31 Rolls-Royce plc Rotor blade
JP2011001919A (en) * 2009-06-21 2011-01-06 Toshiba Corp Turbine moving blade
EP2402559A1 (en) * 2010-07-01 2012-01-04 MTU Aero Engines AG Turbine blade with tip shroud
JP2012225211A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Gas turbine moving blade and method of manufacturing the same
JP2012225207A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Gas turbine moving blade and method of manufacturing the same
EP2607629A1 (en) * 2011-12-22 2013-06-26 Alstom Technology Ltd Shrouded turbine blade with cooling air outlet port on the blade tip and corresponding manufacturing method
US20150064010A1 (en) * 2013-08-28 2015-03-05 General Electric Company Turbine Bucket Tip Shroud
US9759070B2 (en) * 2013-08-28 2017-09-12 General Electric Company Turbine bucket tip shroud
US20160341046A1 (en) * 2014-05-29 2016-11-24 General Electric Company Dust holes
EP3269932A1 (en) * 2016-07-13 2018-01-17 MTU Aero Engines GmbH Shrouded gas turbine blade
US10544687B2 (en) 2016-07-13 2020-01-28 MTU Aero Engines AG Shrouded blade of a gas turbine engine

Similar Documents

Publication Publication Date Title
JPS5847104A (en) Turbine rotor blade in gas turbine
US3045965A (en) Turbine blades, vanes and the like
US5271715A (en) Cooled turbine blade
US3111302A (en) Blades for fluid flow machines
US3527543A (en) Cooling of structural members particularly for gas turbine engines
US5816777A (en) Turbine blade cooling
JP2018096376A (en) Vane cooling structure
GB989217A (en) Turbine blades
GB1271819A (en) Improvements in film cooling of structural members in gas turbine engines
JPH10274002A (en) Turbulence unit structure of cooling passage of moving blade for gas turbine engine
US4863348A (en) Blade, especially a rotor blade
JP2017075602A (en) Turbine blade
JPH11132005A (en) Gas-turbine stationary blade
JPH10220203A (en) Stationary blade for gas turbine
JP2007002843A (en) Cooling circuit for movable blade of turbo machine
JP3546135B2 (en) Gas turbine blade platform
GB1075030A (en) A vane or blade of stacked wafer const ruction for a turbine or like fluid flow machine
GB1285369A (en) Improvements in or relating to blades for fluid flow machines
CN207526530U (en) A kind of efficient cooling blade of gas-turbine unit
CN112437831A (en) Blade and gas turbine
CN110863862B (en) Blade tip structure and turbine
JPH11247609A (en) Platform of gas turbine moving blade
JPS62153504A (en) Shrouding segment
JP2015224633A (en) Cooling structure for stationary blade
GB1070480A (en) Aerofoil shaped blade for a fluid flow machine such as a gas turbine engine