JPS5846922B2 - Feeding power control method for linear motor railways - Google Patents

Feeding power control method for linear motor railways

Info

Publication number
JPS5846922B2
JPS5846922B2 JP53129493A JP12949378A JPS5846922B2 JP S5846922 B2 JPS5846922 B2 JP S5846922B2 JP 53129493 A JP53129493 A JP 53129493A JP 12949378 A JP12949378 A JP 12949378A JP S5846922 B2 JPS5846922 B2 JP S5846922B2
Authority
JP
Japan
Prior art keywords
train
substation
switch
railways
substations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129493A
Other languages
Japanese (ja)
Other versions
JPS5558703A (en
Inventor
正和 宮地
敏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan National Railways
Original Assignee
Japan National Railways
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan National Railways filed Critical Japan National Railways
Priority to JP53129493A priority Critical patent/JPS5846922B2/en
Publication of JPS5558703A publication Critical patent/JPS5558703A/en
Publication of JPS5846922B2 publication Critical patent/JPS5846922B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Control Of Linear Motors (AREA)

Description

【発明の詳細な説明】 本発明は、地上−次式リニアモータを用いた鉄道におい
て隣接2変電所のき軍区間の一部をスイッチを介して相
互fこオーバラップさせることにより、変電所の数をで
きるだけ減らして、しかも列車の運転時隔を延ばさない
ようにするき電制軸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides for a railway using ground-to-ground linear motors to have two adjacent substations overlapping each other via a switch. The present invention relates to a method for reducing the number of feeder shafts as much as possible, while also preventing the length of train operation intervals from being extended.

従来のりニアモータ鉄道のき電区分方式を第1図に従っ
て説明する。
The conventional feeding system for linear motor railways will be explained with reference to FIG.

変電所IA、IBにはりニアモータ用電力変換器2A、
2Bが設けられていて、き電線3A、3Bを介して地上
コイルにその区間に在線する列車5A、5Bの速度に見
合った周波数の電力を供給する。
Near motor power converter 2A at substations IA and IB,
2B is provided, and supplies power at a frequency commensurate with the speed of trains 5A, 5B existing in that section to the ground coils via feeder lines 3A, 3B.

また変電所IA、1Bには列車位置検知装置10を介し
て列車5A。
Further, the train 5A is connected to the substations IA and 1B via the train position detection device 10.

5Bの速度を制御するための速度制御装置4A。A speed control device 4A for controlling the speed of 5B.

4Bがそれぞれ接続されている。4B are connected to each other.

列車5A、5Bは一般に異った速度で走行するから、リ
ニアモータ用電力変換器2A、2Bの供給電力は全く異
った周波数、異った電流値であり、万一変電所1Bの区
間に列車5Aが進入することがあると、この列車には正
しい電力が供給されないばかりでなく、変電所1Bでは
どの列車に適合した電力を供給すべきか判断できなくな
り先行列車5Bの運転にも支障をきたすようになる。
Since the trains 5A and 5B generally run at different speeds, the power supplied by the linear motor power converters 2A and 2B has completely different frequencies and different current values, so in the unlikely event that the substation 1B section If train 5A were to enter, not only would this train not be supplied with the correct power, but substation 1B would be unable to determine which train should be supplied with the appropriate power, which would disrupt the operation of preceding train 5B. It becomes like this.

したがって1変電所区間には1列車しか進入できないと
いう、いわゆる変電所閉そくの原則が守られるよう速度
制御装置4Aによって列車5Aは速度制御され、変電所
1Bに進入する手前で停止させられるよう速度制御がな
されるのである。
Therefore, the speed of the train 5A is controlled by the speed control device 4A so that the so-called principle of substation blockage, in which only one train can enter one substation section, is observed, and the speed is controlled so that the train 5A is stopped before entering the substation 1B. will be done.

したがって従来の鉄道における閉そく区間に対応して変
電所が設けられるならば従来鉄道とほとんど変らない列
車間隔で多数列車を運行させることができる。
Therefore, if substations are provided corresponding to the block sections of conventional railways, a large number of trains can be operated at almost the same train spacing as in conventional railways.

ところがリニアモータ用電力変換器は非常に高価である
から変電りを従来の閉そく区間に準じた間隔で設けるこ
と1ま経済上不可能である。
However, since power converters for linear motors are very expensive, it is economically impossible to provide substations at intervals corresponding to conventional block sections.

特に駅近傍にあっては、先行列車が停止したり、待避の
ため徐行したりするので、短かい運転時隔で列車を走ら
せるためには閉そく区間を細分する必要がある。
Particularly near stations, where preceding trains stop or slow down to give way, it is necessary to subdivide the block section in order to run trains at short intervals.

第2図は東海道新幹線における駅近傍の閉そく区間長の
一例で、このように細分しないと後続列車にはブレーキ
信号が与えられ、先行列車が駅に停止する際には後続列
車も一旦停止せざるを得ないようなことになる。
Figure 2 shows an example of the length of a block section near a station on the Tokaido Shinkansen.If it is not subdivided in this way, a brake signal will be given to the following train, and when the preceding train stops at the station, the following train will also have to stop temporarily. This will result in you not getting any results.

これを避けようとすれば続行列車が駅に到着する時刻を
もつと遅らせる。
To avoid this, it is necessary to delay the arrival time of the continuing train at the station.

すなわち列車間隔を拡げる必要があり、このことは単位
時間当りの列車本数が減るので輸送能力が減少すること
になるのである。
In other words, it is necessary to widen the interval between trains, which reduces the number of trains per unit time and therefore reduces transportation capacity.

従来の鉄道では個々の列車にモータが搭載されており、
モータの制御は個々の列車(こおいて行なわれるので、
変電所からはこれら各閉そく区間にいる列車に対して1
個所から並行して給電することが可能であるが、地上−
次式リニアモータ方式の場合には列車のモータは変電所
にあると考えられるので閉そく毎に変電所を設ける必要
が生ずるが、これはその経済性を著しく損うことになり
かねない。
In conventional railways, each train is equipped with a motor.
Motor control is carried out on each individual train, so
1 from the substation to trains in each of these block sections.
Although it is possible to supply power in parallel from
In the case of the following linear motor system, the train motor is considered to be located in a substation, so it becomes necessary to install a substation for each block, but this may significantly impair its economic efficiency.

本発明は、上記欠点を解決し、駅近傍においても変電所
間隔を著しく縮めることなく、しかも列車の運転間隔を
短かく保つようなき電制御方法を提供するものである。
The present invention solves the above-mentioned drawbacks and provides a feeding control method that does not significantly shorten the distance between substations even in the vicinity of a station and maintains short train operation intervals.

以下本発明の一実施例を第3図に従って説明する。An embodiment of the present invention will be described below with reference to FIG.

駅6の付近で変電所1人と1Bのき重置間はスイッチ7
Aと7Bで可変になるようになっている。
Switch 7 is located between one substation and 1B near station 6.
It is designed to be variable between A and 7B.

すなわち、スイッチ7Aが投入され、スイッチ7Bが開
放されているときは変電所1人のき重置間はき室区分点
9Aから9Cまでとなっており、変電所IBのき重置間
はき室区分点9Cから9Dまでであり、閉そく区間もこ
れに対応している。
In other words, when switch 7A is turned on and switch 7B is opened, the substation's single-person overlap space is divided into room division points 9A to 9C, and substation IB's overlap space is It is from room division point 9C to 9D, and the block section also corresponds to this.

またスイッチ7Aが開放され、7Bが投入されていると
きは変電所1A、IBのき室区分点はそれぞれ9A−9
B間、9B−9D間と変化する。
Also, when switch 7A is open and switch 7B is on, the substation 1A and IB room division points are 9A-9, respectively.
It changes between B and between 9B and 9D.

上記スイッチ7A、7Bには該スイッチを制御するため
のスイッチ制御装置8が接続されている。
A switch control device 8 for controlling the switches 7A and 7B is connected to the switches 7A and 7B.

いま先行列車5Bが駅6に進入してくるとき、スイッチ
7Aは投入、7Bは開放となるように制御されている。
When the preceding train 5B enters the station 6, the switch 7A is closed and the switch 7B is opened.

したがって先行列車5Bは変電所1人からのき電を受け
る。
Therefore, the preceding train 5B receives power from one person at the substation.

列車5Bの最後尾かき室区分点9Bを通過したことを列
車位置検知装置10が検知するとスイッチ制御装置8に
よってスイッチ7Aは開放、7Bは投入されるので列車
5Bは変電所1Bからき電されるようになる。
When the train position detection device 10 detects that the train 5B has passed the rearmost compartment division point 9B, the switch control device 8 opens the switch 7A and closes the switch 7B, so that the train 5B is supplied with electricity from the substation 1B. become.

したがって後続列車5Aはき室区分点9Bまでは進入が
可能になる。
Therefore, the following train 5A can enter up to the compartment division point 9B.

先行列車5Bが駅停車後、再度動き出しき室区分点9C
を越えると列車位置検知装置10とスイッチ制御装置8
によってスイッチ7Aが投入、7Bが開放されるので後
続列車5Aはき室区分点9Bに接近し、き室区分点9B
に止まるためブレーキをかけようとするが、き室区分点
9 B −9C間が変電所1Aに接続されたことにより
、き室区分点9Cまでの走行が保障されたことになり、
不要なブレーキをかけることなく駅6に停車するため正
常な運転を続けることができるようになるのである。
After the preceding train 5B stopped at the station, it started moving again and arrived at room division point 9C.
When the train position detection device 10 and switch control device 8 are exceeded, the train position detection device 10 and the switch control device 8
As a result, switch 7A is turned on and switch 7B is opened, so that the following train 5A approaches the compartment division point 9B, and the following train 5A approaches the compartment division point 9B.
The train tries to apply the brakes in order to stop, but since the section between room division points 9B and 9C is connected to substation 1A, it is guaranteed that the train will be able to reach the room division point 9C.
Since the train stops at station 6 without applying unnecessary brakes, normal operation can be continued.

列車5Aかき室区分点9Bを越えれば列車5Bかき室区
分点9Dを越えた際に再度スイッチ7Aを開放、7Bを
投入して列車5Bを変電所1Bからのき電に切換えると
ともに、変電所1人を後続列車の進入に備えるよう(こ
制御するのである。
When the train 5A crosses the cutting room dividing point 9B, the switch 7A is opened again when the train 5B crosses the cutting room dividing point 9D, and the switch 7B is turned on to switch the train 5B to power feeding from the substation 1B. It controls people to prepare for the approach of the following train.

第4図は速度制御装置の動作4Aの動作を説明したもの
で、列車5Bが駅6に停車しており閉そく境界が9BG
こ定められているときは速度制御装置4Aの制御出力は
第4図aに点線で示すような距離速度パターンとなって
おり後続5Aは9Bに停止するよう速度■。
Figure 4 explains the operation 4A of the speed control device, where train 5B is stopped at station 6 and the block boundary is 9BG.
When this is determined, the control output of the speed control device 4A becomes a distance speed pattern as shown by the dotted line in FIG.

を与えられている。この状態で列車5Bが駅を出発して
もスイッチによるき重置間の変更が行われなければ後続
列車5Aは9BGこ停止するよう制御され続けるので、
第4図すの位置では速度■1に減速されてしまう。
is given. Even if train 5B departs from the station in this state, the following train 5A will continue to be controlled to stop at 9BG unless the switch is used to change the overlap distance.
At the position shown in Figure 4, the speed is reduced to 1.

これに対して本発明のようGこスイッチによってき重置
間を9Cに切換えるならば速度制御装置4Aの制御出力
は第4図Cに示す点線となり列車5Aには■1より高い
速度■。
On the other hand, if the overlapping interval is changed to 9C using the G switch as in the present invention, the control output of the speed control device 4A becomes the dotted line shown in FIG.

が与えられるので後続列車5Aは不適当な速度制限を受
けることなくスムーズな走行ができ短かいヘッドでの走
行が可能となる。
Therefore, the following train 5A can run smoothly without being subject to inappropriate speed restrictions, and can run with a short head.

また、先行列車かき重置分点9C−9D間を通過し終ら
ない場合にも、後続列車5Aをき重置分点9B−9C間
にいれて停車させ、スイッチ7A。
Further, even if the preceding train does not pass through the overlap points 9C-9D, the following train 5A is brought to a stop between the overlap points 9B-9C, and the switch 7A is activated.

7Bをともに開放して変電所1人は次の列車の進入に備
え、変電所1Bは先行列車5Bにき電することができる
By opening both substations 7B and 1B, one substation can prepare for the next train's approach, and substation 1B can supply power to the preceding train 5B.

先行列車5Bかき重置分点9C−9D間を通過し終れば
スイッチ7Bを投入してき室区分点9B−9D間を変電
所1Bでき電して後続列車5Aを制御する。
When the preceding train 5B has passed through the superimposed division points 9C and 9D, the switch 7B is turned on and the substation 1B is powered between the compartment division points 9B and 9D to control the following train 5A.

このようにき重置間の一部をスイッチを用いてオーバー
ラツプすることによって、変電所数より多い閉そく区間
をつくることができる。
In this way, by overlapping a portion of the superpositions using switches, it is possible to create more block sections than the number of substations.

本発明によるリニアモータ鉄道のき電即断方法は高価な
変電所数を増すことなく、列車間隔を短かくするととが
できるので、地上−次式リニアモータ鉄道の経済性を高
めることができるのである。
The instant feeding power disconnection method for linear motor railways according to the present invention can shorten the interval between trains without increasing the number of expensive substations, thereby increasing the economic efficiency of above-ground linear motor railways. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は地上−次式リニアモータ鉄道の従来のき電力法
を示す説明図、第2図は東海道新幹線(小田原駅近傍)
下り本線の閉そく区間の例を示す説明図、第3図は地上
−次式リニアモータ鉄道に本発明のき電制御方法を適用
した場合の説明図、4図a、b、cは速度制御装置の動
作の説明図である。 1A、IB・・・変電所゛、2A、2B・・・リニアモ
ータ用電力変換器、3A、3B・・・き電線、4A。 4B・・・速度制御装置、5A、5B・・・列車、6・
・・駅、7A、7B・・・スイッチ、8・・・スイッチ
制御装置、9A、9B、9C,9D・・・き重置分点、
10・・・列車位置検知装置。
Figure 1 is an explanatory diagram showing the conventional power supply method for ground-level linear motor railways, Figure 2 is the Tokaido Shinkansen (near Odawara Station)
An explanatory diagram showing an example of a block section of a down main line. Figure 3 is an explanatory diagram when the feeding power control method of the present invention is applied to a ground-level linear motor railway. Figures 4 a, b, and c are speed control devices. It is an explanatory diagram of the operation. 1A, IB...Substation, 2A, 2B...Power converter for linear motor, 3A, 3B...Feeding line, 4A. 4B...speed control device, 5A, 5B...train, 6.
... Station, 7A, 7B... Switch, 8... Switch control device, 9A, 9B, 9C, 9D... Superposition equinox,
10...Train position detection device.

Claims (1)

【特許請求の範囲】[Claims] 1 地上−次式リニアモータによる鉄道における変電所
からき電線を介して地上コイルに必要な電力を供給し、
速度を制御するき重み法において、隣接2変電所のき軍
区間の一部をスイッチを介して相互(こオーバラップさ
せ、在線する列車の位置に応じてオーバラップ区間のき
電線に電力を供給する変電所を上記スイッチにより選択
接続して両変電所のうち、一方の変電所のみが電力を供
給するようにし、列車の位置に応じて上記スイッチを切
替えるとともに、スイッチの状態から定まる閉そく範囲
を条件として制御された速度信号を変電所に与えること
により後続列車の運転が支障なく行えるようにしたりニ
アモータ鉄道のき電制軸方法。
1 Supplying the necessary power to the ground coil via the feeder line from the substation in the railway using the ground-type linear motor,
In the weighting method for controlling speed, parts of the feeder sections of two adjacent substations are overlapped with each other via switches, and power is supplied to the feeder lines in the overlap section according to the position of the train on the line. Selectively connect the substations with the above switches so that only one of the two substations supplies power, change the above switches according to the position of the train, and set the block range determined from the state of the switch. A method for controlling the energization of near-motor railways by providing a controlled speed signal to the substation so that the following trains can operate without any trouble.
JP53129493A 1978-10-23 1978-10-23 Feeding power control method for linear motor railways Expired JPS5846922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53129493A JPS5846922B2 (en) 1978-10-23 1978-10-23 Feeding power control method for linear motor railways

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53129493A JPS5846922B2 (en) 1978-10-23 1978-10-23 Feeding power control method for linear motor railways

Publications (2)

Publication Number Publication Date
JPS5558703A JPS5558703A (en) 1980-05-01
JPS5846922B2 true JPS5846922B2 (en) 1983-10-19

Family

ID=15010834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53129493A Expired JPS5846922B2 (en) 1978-10-23 1978-10-23 Feeding power control method for linear motor railways

Country Status (1)

Country Link
JP (1) JPS5846922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0129378Y2 (en) * 1983-03-01 1989-09-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0129378Y2 (en) * 1983-03-01 1989-09-07

Also Published As

Publication number Publication date
JPS5558703A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
US7173387B2 (en) Arrangement having at least one long-stator linear motor, for operating magnetically levitated vehicles
US7362014B2 (en) Method and arrangement for operating a magnetically levitated vehicle
CA2308267C (en) Method and apparatus for operating a magnet vehicle
JPH03207203A (en) Power supply system for linear motor transportation
US3863574A (en) Power supply for high speed vehicles
GB1560266A (en) Control system for controlling electrically driven vehicles running a fixed path
JPS5846922B2 (en) Feeding power control method for linear motor railways
EP3766719A1 (en) Operating a railway vehicle when passing separation points in a vehicle external power supply
JPH0285057A (en) Operation control system for train
CN210062723U (en) Uninterrupted power supply over-section control system for double-collector-shoe electric power train
JPS5915247B2 (en) Fixed position stopping method for moving objects using electric power control
JP2989253B2 (en) Block control method and block control device for ground driven primary maglev railway
JP2645821B2 (en) Train propulsion power supply
JPH01248905A (en) Split feeder circuit for superconducting magnetic levitation railroad
JP2004359360A (en) Crane control device
JPS6071368A (en) Ground type train operating device
JP2645822B2 (en) Train propulsion power supply
CN110001457B (en) Power train uninterrupted power section control system and method thereof
JPS6233108B2 (en)
JPH0496605A (en) Substation transition controller for linear motor railroad
JPS5932309A (en) Regenerative method for electric rolling stock
JPS57202890A (en) Controller for stop of device
JPH0299432A (en) Feeder selector device
JPH04138005A (en) Power supply system for linear motor
JPH0667046B2 (en) Power supply control device for carrier vehicles