JPS5846841B2 - Manufacturing method of ferromagnetic iron oxide powder - Google Patents

Manufacturing method of ferromagnetic iron oxide powder

Info

Publication number
JPS5846841B2
JPS5846841B2 JP51017541A JP1754176A JPS5846841B2 JP S5846841 B2 JPS5846841 B2 JP S5846841B2 JP 51017541 A JP51017541 A JP 51017541A JP 1754176 A JP1754176 A JP 1754176A JP S5846841 B2 JPS5846841 B2 JP S5846841B2
Authority
JP
Japan
Prior art keywords
particles
ammonium carbonate
powder
fe00h
chlorine atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51017541A
Other languages
Japanese (ja)
Other versions
JPS52100199A (en
Inventor
幹雄 岸本
邦夫 若居
明 松本
茂雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP51017541A priority Critical patent/JPS5846841B2/en
Publication of JPS52100199A publication Critical patent/JPS52100199A/en
Publication of JPS5846841B2 publication Critical patent/JPS5846841B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は磁気記録体の記録素子として好適な強磁性酸
化鉄粉末の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferromagnetic iron oxide powder suitable as a recording element of a magnetic recording medium.

この発明者等は既に、通常FeCl3を加水分解して得
られる数重量係の塩素原子を含有するβFe00Hを上
記塩素原子が含有された状態で還元ガスにより還元する
と還元雰囲気中で次式の反応が起り、 2FeCA3(気体)+H242FeC12(固体)+
2HC7(気体) 3FeC12(固体) + 4H20−’F e 30
4 (固体)+6HC1(気体)+H2 Fe304が気相成長する結果、脱水の際に生じ易い粒
子の形骸孔釦よび分枝の発生が抑制されて表面のなめら
かなFe3O4磁性粉末が形成され、これを酸化して得
られるγ−Fe203磁性粉末も上記の特徴釦よび形状
を損なうことがなく、したがってこれら磁性粉末を結合
剤樹脂と混練すると上記磁性粉末が均一に分散されて良
好な配向性を有する磁気記録体が得られることを見出し
た。
The inventors have already discovered that when βFe00H, which is normally obtained by hydrolyzing FeCl3 and contains several weight coefficients of chlorine atoms, is reduced with a reducing gas in a state where the chlorine atoms are contained, the following reaction occurs in a reducing atmosphere. 2FeCA3 (gas) + H242FeC12 (solid) +
2HC7 (gas) 3FeC12 (solid) + 4H20-'F e 30
4 (Solid) + 6HC1 (Gas) + H2 As a result of the vapor phase growth of Fe304, the generation of particle pores and branches that are likely to occur during dehydration is suppressed, and Fe3O4 magnetic powder with a smooth surface is formed. The γ-Fe203 magnetic powder obtained by oxidation does not impair the above-mentioned characteristics and shape. Therefore, when these magnetic powders are kneaded with a binder resin, the magnetic powders are uniformly dispersed and a magnetic material with good orientation is obtained. It has been found that a recording material can be obtained.

ところがこの方法にむいて還元に供される塩素原子を含
有するβ−FeOOH粉末が層状に配列された多数の棒
状の粒子で構成されたものであると、前記気相成長が主
として隣接する粒子間で生起して気相成長するFe3O
4により各粒子が相互に結合、一体化され、その結果粒
子中の大きいF e 304磁性粉末が形成される釦そ
れがあり、また層状に配列された棒状の粒子数に変動が
あればこの変動が形成されるFe3O4磁性粉末の粒子
中に伝達されるおそれがある。
However, for this method, if the β-FeOOH powder containing chlorine atoms to be subjected to reduction is composed of a large number of rod-shaped particles arranged in a layered manner, the vapor phase growth mainly occurs between adjacent particles. Fe3O is generated and grows in the vapor phase.
4, each particle is bonded and integrated with each other, resulting in the formation of large Fe 304 magnetic powder in the particle.Also, if there is a variation in the number of rod-shaped particles arranged in layers, this variation will occur. may be transmitted into the particles of Fe3O4 magnetic powder formed.

したがって前記方法にむいて使用する塩素原子を含有す
るβ−FeOOH粉末としては層状構造を有しないもの
が望1しく、また層状構造を有するものであってもそれ
を構成する棒状の粒子数ができるだけ少なく、しかも各
粉末間で粒子数のばらつきの少ないものを使用するのが
好渣しい。
Therefore, it is preferable that the β-FeOOH powder containing chlorine atoms used in the above method does not have a layered structure, and even if it does have a layered structure, the number of rod-shaped particles constituting it should be as small as possible. It is preferable to use a powder with a small number of particles and a small variation in the number of particles among each powder.

しかしながらこのようなβ−Fe00H粉末を入手する
ことは非常に難しく、たとえばFeCl3を加水分解し
て塩素原子を含有するβ−Fe00Hとし、これを水洗
、ろ過した後乾燥するという通常の方法では、合成直後
に既に1部の棒状の粒子が層状に配列し、水洗、ろ過に
際してさらに成長して多数の粒子からなるタクトイドが
形成され、その粒子数は各タクトイドにより異なってお
り、乾燥によってその11その形態を維持し且つ解離し
難くなる。
However, it is very difficult to obtain such β-Fe00H powder. For example, the usual method of hydrolyzing FeCl3 to obtain β-Fe00H containing chlorine atoms, washing it with water, filtering it, and then drying it is difficult to synthesize. Immediately after, some rod-shaped particles are already arranged in a layer, and when washed with water and filtered, they grow further to form a tactoid consisting of many particles.The number of particles differs depending on each tactoid, and by drying, the shape and becomes difficult to dissociate.

したがって乾燥後いかに粉砕して細粒化したとしてもそ
の粒子数はある値以下には減らず一般に多く且つ変動が
あり、粒子数の変動は不均一な粉砕により一段と助長さ
れるものである。
Therefore, no matter how finely pulverized the particles are after drying, the number of particles cannot be reduced below a certain value, but is generally large and fluctuates, and fluctuations in the number of particles are further exacerbated by non-uniform pulverization.

このように既案出方法では使用するβ−Fe00Hの粒
子の配列構造に起因して形成されるF e 304磁性
粉末又はこれを酸化して得られるγ Fe2O3磁性粉末の粒子中の拡大化釦よび不均一化を
免れず、粒子中の拡大化は軸比つ寸り針状比を悪くして
保磁力を低下させ、また不均一化は他の磁気特性に悪影
響を及ぼす結果となる。
As described above, in the previously proposed method, the enlargement button in the particles of the Fe304 magnetic powder formed due to the arrangement structure of the particles of β-Fe00H used or the γFe2O3 magnetic powder obtained by oxidizing the same is Non-uniformity is inevitable, and enlargement in the grains deteriorates the axial ratio and the acicular ratio, lowering the coercive force, and the non-uniformity has an adverse effect on other magnetic properties.

この発明は上記観点から前記案出方法を改善して粒子中
の拡大化むよび不均一化を抑制できるようにした強磁性
酸化鉄粉末の製造方法を提供せんとするものである。
The present invention aims to provide a method for producing ferromagnetic iron oxide powder, which improves the proposed method from the above viewpoint and suppresses enlargement and non-uniformity of the particles.

すなわちこの発明は合成直後の塩素原子を含有するβ−
Fe00Hを炭酸アンモニウム水溶液中に3いて分散処
理し、上記β−Fe00Hの粒子中に塩素原子を含有さ
せた11の状態で上記粒子間に上記炭酸アンモニウムを
介在させたのち乾燥し、次いで還元ガスで加熱還元し又
はその後に酸化するF e 304又はγ−Fe2O3
からなる強磁性酸化鉄粉末の製造法に係るものである。
In other words, this invention provides β-containing chlorine atoms immediately after synthesis.
Fe00H was dispersed in an ammonium carbonate aqueous solution, and after the β-Fe00H particles contained chlorine atoms in the state of 11, the ammonium carbonate was interposed between the particles, and then dried, and then dried with a reducing gas. F e 304 or γ-Fe2O3 which is thermally reduced or subsequently oxidized
The present invention relates to a method for producing ferromagnetic iron oxide powder consisting of:

この発明にむいて使用されるβ−Fe00Hば、前記気
相成長を行なわせるために少なくとも1重最多以上の塩
素原子が含有されていることが必要で、通常FeCl3
の加水分解法で合成できる。
β-Fe00H used for this invention needs to contain at least one chlorine atom or more in order to carry out the vapor phase growth, and usually FeCl3
It can be synthesized by the hydrolysis method.

合成直後の塩素原子を含有するβ−Fe00Hの粒子配
列構造をみると、既に棒状の粒子が1部層状に配列して
いるが、一般にその粒子数は少ない。
Looking at the particle arrangement structure of β-Fe00H containing chlorine atoms immediately after synthesis, rod-shaped particles are already arranged in a partial layer, but the number of particles is generally small.

この発明では合成直後の塩素原子を含有するβFe0O
Hに炭酸アンモニウム水溶液中への分散処理を施こす。
In this invention, βFe0O containing chlorine atoms immediately after synthesis
H is subjected to a dispersion treatment in an aqueous ammonium carbonate solution.

この分散処理に釦いて上記層状の配列が一旦解離した後
に再配列するか或いはそのitさらに成長じて粒子数の
多いタクトイドが生成してくる。
As a result of this dispersion process, the layered arrangement is once dissociated and then rearranged, or it further grows to produce tactoids with a large number of particles.

分散処理の目的はこのようなタクトイドの生成に際して
、β−Fe00Hの棒状の粒子中に塩素原子を含有させ
た11の状態で、この棒状の粒子相互間に炭酸アンモニ
ウムを介在させて粒子が直接接触するのを防ぎ、タクト
イドの生成を是認した上で直接接触する粒子数をできる
だけ少なくすることにある。
The purpose of the dispersion treatment is to generate such tactoids in a state in which chlorine atoms are contained in β-Fe00H rod-shaped particles, and the particles are brought into direct contact with each other by intervening ammonium carbonate between the rod-shaped particles. The goal is to prevent the formation of tactoids and reduce the number of particles that come into direct contact with each other as much as possible.

分散処理はたとえばろ斗中に仕込寸れた合成直後の塩素
原子を含有するβ−FeOOHに炭酸アンモニウム水溶
液を過剰に加えて攪拌、分散させ、分散させながらろ過
するという方法でもよいが、通常は炭酸アンモニウム水
溶液中に添加して攪拌、分散させ、放置沈澱後ろ過、分
離するという方法が望昔しい。
The dispersion treatment can be carried out by, for example, adding an excessive amount of ammonium carbonate aqueous solution to β-FeOOH containing chlorine atoms immediately after synthesis, which is charged in a funnel, stirring and dispersing it, and filtering while dispersing it. The preferred method is to add it to an aqueous ammonium carbonate solution, stir and disperse it, allow it to settle, and then filter and separate it.

後者の場合β−FeOOHを分散させた水中にすみやか
に粉末状の炭酸アンモニウムを添加するという方法でも
よい。
In the latter case, powdered ammonium carbonate may be immediately added to water in which β-FeOOH is dispersed.

分散処理時の温度は炭酸アンモニウムが分解しない温度
に保持すべきであり、寸た炭酸アンモニウムの使用量は
水溶液濃度によっても異なるが、通常はβ−FeOOH
との総量に対し少なくとも5重量係以上となるようにす
るのが好ましい。
The temperature during dispersion treatment should be maintained at a temperature at which ammonium carbonate does not decompose, and the amount of ammonium carbonate used varies depending on the concentration of the aqueous solution, but usually β-FeOOH
It is preferable that the amount is at least 5% by weight relative to the total amount.

この分散処理に先立って常広通り合成直後の塩素原子を
含有するβ−FeOOHを水洗しても差し支えなく、針
状結晶の磁性粉末を得る目的にはむしろ好捷しい。
Prior to this dispersion treatment, there is no problem in washing the β-FeOOH containing chlorine atoms immediately after synthesis according to Tsunehiro with water, which is rather preferable for the purpose of obtaining magnetic powder in the form of needle-like crystals.

水洗は上記分散処理において記載したと同様の方法で、
ろ過注或いはろ過前に水中に分散させるなどの手段で行
なえばよい。
Washing with water is carried out in the same manner as described in the dispersion treatment above.
This may be carried out by means such as pouring through filtration or dispersing it in water before filtration.

水洗もしくはその後のろ過において粒子の層状化が進行
し粒子数の多いタクトイドが生成してくることは当然予
想される。
It is naturally expected that during washing with water or subsequent filtration, layering of particles will progress and tactoids with a large number of particles will be generated.

しかしこのタクトイドは引き続く分散処理で容易に解離
させることができ、分散処理工程において新たなタクト
イガが生成する。
However, this tactoid can be easily dissociated in the subsequent dispersion process, and new tactoids are generated in the dispersion process.

したがって水洗によって前記炭酸アンモニウムの介在が
妨げられるというおそれはほとんどない。
Therefore, there is almost no possibility that the presence of ammonium carbonate will be hindered by washing with water.

しかしながら分散処理がおくれ一旦乾燥されてし1つた
後は解離し難くなるから注意しなければならない。
However, care must be taken because dissociation becomes difficult after the dispersion process is delayed and once dried.

分散処理後の乾燥は室温下であっても加温下であっても
よいが、加熱乾燥の場合介在された炭酸アンモニウムが
分解しないように70℃より低い温度にする必要がある
Drying after the dispersion treatment may be performed at room temperature or under heating, but in the case of heating drying, the temperature needs to be lower than 70° C. so that the interposed ammonium carbonate does not decompose.

この乾燥後必要に応じて粉砕される。After this drying, it is pulverized if necessary.

このようにして調製される棒状の粒子が複数個層状に配
列し、粒子間に炭酸アンモニウムが介在された塩素原子
を含有するβ−Fe00H粉末を次いで還元ガスで加熱
還元すると、還元に際して上記塩素原子に基づく気相成
長が起って脱水で生じ易い形骸孔および分枝の発生が抑
制されるとともに、介在される炭酸アンモニウムが加熱
初期において分解、揮散して粒子間に空隙が生じこの空
隙によって気相成長で起り易い粒子の結合、一体化が阻
止されもしくは抑制される。
When the β-Fe00H powder containing chlorine atoms, in which a plurality of rod-shaped particles prepared in this way are arranged in a layer and ammonium carbonate is interposed between the particles, is then heated and reduced with a reducing gas, the chlorine atoms are Vapor phase growth occurs based on the pores and branches that tend to occur due to dehydration, and the intervening ammonium carbonate decomposes and evaporates in the early stages of heating, creating voids between particles. Particle bonding and integration, which tends to occur during phase growth, is prevented or suppressed.

また炭酸アンモニウムが粒子間に充分且つ平均して介在
されている限り層状構造をとる粒子数に変動があるか否
かにかかわらず上記した抑制作用が働らくから、粒子数
の変動に基づく気相成長による粒子内の不均一化も抑制
される。
In addition, as long as ammonium carbonate is sufficiently interposed between particles on average, the above-mentioned suppressing effect will work regardless of whether there is a change in the number of particles forming a layered structure. Non-uniformity within the grain due to growth is also suppressed.

還元は常法に準じて行なえばよく、気相成長を充分に行
なわせるために好オしくは還元ガスとして水分の除去さ
れた乾燥水素ガスを使用し、また還元温度を250〜4
00 ’Cとする。
Reduction may be carried out according to a conventional method, and in order to ensure sufficient vapor phase growth, dry hydrogen gas from which water has been removed is preferably used as the reducing gas, and the reduction temperature is set at 250-400 ℃.
00'C.

還元時間はガス流速、温度などに応じて適宜決定する。The reduction time is appropriately determined depending on the gas flow rate, temperature, etc.

還元後酸化する場合、上記還元で得られるF e s
O4磁性粉末を通常の方法で、たとえば200〜300
℃の温度で空気中で酸化すればよい。
When oxidizing after reduction, F e s obtained by the above reduction
04 magnetic powder in a conventional manner, e.g. 200 to 300
It can be oxidized in air at a temperature of °C.

このようにして得られるFe3O4磁性粉末又はγ−F
e203磁性粉末は粒子表面がなめらかであるばかりで
なく、粒子内がほぼ均一で、被還元物であるβ−Fe0
0Hのそれとほとんど同じかもしくは僅かに拡大されて
いるにすぎない。
Fe3O4 magnetic powder or γ-F obtained in this way
e203 magnetic powder not only has a smooth particle surface, but also has an almost uniform inside particle, and is free from β-Fe0, which is a reductant.
It is almost the same as that of 0H or only slightly enlarged.

以上詳述した通り、この発明は塩素原子を含有するβ−
Fe00H粉末の棒状の粒子間に特定手段で炭酸アンモ
ニウムを介在させ、これを還元時に加熱分解して揮散さ
せ層状配列をとる棒状の粒子間に空隙を生じさせること
によって、気相成長で生じ易い粒子内の拡大化および不
均一化を抑制したものであり、これによれば保磁力の低
下の少ない、磁気特性の安定したFe3O4又はγ−F
e2O3からなる強磁性酸化鉄粉末を製造できる。
As detailed above, the present invention relates to β-containing chlorine atoms.
By interposing ammonium carbonate between the rod-shaped particles of Fe00H powder using a specific method, and by thermally decomposing and volatilizing this during reduction to create voids between the rod-shaped particles in a layered arrangement, particles that are easily generated by vapor phase growth are created. This suppresses the expansion and non-uniformity of Fe3O4 or γ-F, which has stable magnetic properties and less decrease in coercive force.
Ferromagnetic iron oxide powder consisting of e2O3 can be produced.

次に実施例によりこの発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 塩化第2鉄(FeCls )549、塩化アンモニウム
27g、尿素61を11の水に溶解し、反応溶液を調製
する。
Example 549 of ferric chloride (FeCls), 27 g of ammonium chloride, and 61 of urea are dissolved in 11 of water to prepare a reaction solution.

この反応溶液を2時間煮沸してβ−FeOOHを生成し
、これを充分に水洗した後すみやかに100gの水中に
分散させ、同時に攪拌下戻酸アンモニウム4gを添加す
る。
This reaction solution is boiled for 2 hours to produce β-FeOOH, which is thoroughly washed with water and then immediately dispersed in 100 g of water, and at the same time, 4 g of reconstituted ammonium acid is added with stirring.

放置後ろ過し、常法(20’C)で乾燥する。After being left to stand, it is filtered and dried in the usual manner (20'C).

上記方法で得られた塩素含有量的3.9重量幅のβ−F
e00H粉末20gをボードに採取して還元炉中に投入
し、炉内にバラジュウム触媒と塩化カルシウム内を通過
して酸素トよび水分を除去した水素ガスを17/分の流
速で流入し、300’Cで3時間還元処理を施こした。
β-F with a weight range of 3.9 in terms of chlorine content obtained by the above method
20 g of e00H powder was collected on a board and put into a reduction furnace, and hydrogen gas, which had passed through a baradium catalyst and calcium chloride to remove oxygen and moisture, was introduced into the furnace at a flow rate of 17/min. A reduction treatment was performed with C for 3 hours.

新られたF e s 04磁性粉末は保磁力が360エ
ルステツド、飽和磁化が82emu/gであり、電子顕
微鏡による観察結果では表面のなめらかな針状粒子で、
粒子内は被還元物であるβ−FeOOHより僅かに大き
く、はぼ均一であることが確認された。
The new Fe s 04 magnetic powder has a coercive force of 360 oersted and a saturation magnetization of 82 emu/g. Observation results using an electron microscope show that it is acicular particles with a smooth surface.
It was confirmed that the inside of the particles was slightly larger than the β-FeOOH to be reduced and was almost uniform.

このFe3O4磁性粉末を250’Cで空気を流入した
状態で1時間酸化したところ、Fe3O4磁性粉末と1
つたく形状の変化が認められないr−Fe203磁性粉
末が得られた。
When this Fe3O4 magnetic powder was oxidized at 250'C with air flowing in for 1 hour, it was found that the Fe3O4 magnetic powder and
An r-Fe203 magnetic powder with no observed change in shape was obtained.

この粉末の保磁力は340エルステツド、飽和磁化は7
3 emu/gであった。
The coercive force of this powder is 340 oersted, and the saturation magnetization is 7
It was 3 emu/g.

比較例 実施例にち−いて炭酸アンモニウム水溶液中への分散処
理を施こすことなく、つ1り反応終了後のβ−Fe00
Hを充分に水洗した後ただちにろ過、乾燥して得られた
塩素含有量熱3.9重量係のβFe0OH粉末を被還元
物として実施例と同様にして還元した。
Comparative Example: β-Fe00 after the completion of the hanging reaction without performing dispersion treatment in the ammonium carbonate aqueous solution.
After thoroughly washing H with water, it was immediately filtered and dried, and the obtained βFe0OH powder with a chlorine content of 3.9% by weight was used as a reductant and reduced in the same manner as in the example.

この方法で得られたFe3O4磁性粉末は保磁力が34
0エルステツドで、飽和磁化が82emu/gであった
The Fe3O4 magnetic powder obtained by this method has a coercive force of 34
The saturation magnetization was 82 emu/g at 0 oersted.

寸た電子顕微鏡による観察では実施例と同様に表面のな
めらかな針状粒子であることが認められたが、一方その
粒子内は被還元物であるβ−FeOOHより大分犬きく
、シかも不均一であった。
Observation using a small-scale electron microscope revealed that the particles were acicular particles with a smooth surface, similar to the example, but on the other hand, the inside of the particles was much harsher than the reductant β-FeOOH, and the surface was uneven. Met.

Claims (1)

【特許請求の範囲】[Claims] 1 合成直後の塩素原子を含有するβ−Fe00Hを炭
酸アンモニウム水溶液中に釦いて分散処理し、上記β−
FeOOHの粒子中に塩素原子を含有させた11の状態
で上記粒子間に上記炭酸アンモニウムを介在させたのち
乾燥し、次いで還元ガスで加熱還元し又はその後に酸化
するFe3O4又はγFe2O3からなる強磁性酸化鉄
粉末の製造法。
1. β-Fe00H containing a chlorine atom immediately after synthesis was dispersed in an ammonium carbonate aqueous solution, and the above β-Fe00H was dispersed.
A ferromagnetic oxide consisting of Fe3O4 or γFe2O3, which is obtained by interposing the ammonium carbonate between the FeOOH particles in the state 11 in which chlorine atoms are contained in the FeOOH particles, and then drying the particles, followed by heating reduction with a reducing gas or subsequent oxidation. Method of manufacturing iron powder.
JP51017541A 1976-02-19 1976-02-19 Manufacturing method of ferromagnetic iron oxide powder Expired JPS5846841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51017541A JPS5846841B2 (en) 1976-02-19 1976-02-19 Manufacturing method of ferromagnetic iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51017541A JPS5846841B2 (en) 1976-02-19 1976-02-19 Manufacturing method of ferromagnetic iron oxide powder

Publications (2)

Publication Number Publication Date
JPS52100199A JPS52100199A (en) 1977-08-22
JPS5846841B2 true JPS5846841B2 (en) 1983-10-19

Family

ID=11946767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51017541A Expired JPS5846841B2 (en) 1976-02-19 1976-02-19 Manufacturing method of ferromagnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JPS5846841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177639U (en) * 1987-05-01 1988-11-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968045B2 (en) * 2018-08-28 2021-11-17 富士フイルム株式会社 Method for producing powder of β-iron hydroxide compound, β-iron hydroxide compound sol, powder of ε-iron oxide compound, and method for producing magnetic recording medium.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177639U (en) * 1987-05-01 1988-11-17

Also Published As

Publication number Publication date
JPS52100199A (en) 1977-08-22

Similar Documents

Publication Publication Date Title
US4384892A (en) Production of magnetic powder
US4447264A (en) Production of magnetic powder
JPS5846841B2 (en) Manufacturing method of ferromagnetic iron oxide powder
JPH0368923B2 (en)
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS62139803A (en) Production of ferromagnetic metallic powder
JPH11246224A (en) Spindle-shaped goethite particle powder and its production
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPS6349722B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPH05310431A (en) Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP2002050508A (en) Method of manufacturing magnetic powder
JPS58176902A (en) Manufacture of magnetic powder
JPS63143802A (en) Manufacture of magnetic iron powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JPS6015572B2 (en) Method for producing Co-containing acicular magnetic iron oxide particles
JPS63239801A (en) Oxidation stabilizing method for metallic magnetic powder
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JPS6015571B2 (en) Method for producing Co-containing acicular magnetic iron oxide particles
JPS63143205A (en) Production of magnetic iron powder