JPS5846805B2 - Manufacturing method of polyester resin insulated wire - Google Patents

Manufacturing method of polyester resin insulated wire

Info

Publication number
JPS5846805B2
JPS5846805B2 JP619481A JP619481A JPS5846805B2 JP S5846805 B2 JPS5846805 B2 JP S5846805B2 JP 619481 A JP619481 A JP 619481A JP 619481 A JP619481 A JP 619481A JP S5846805 B2 JPS5846805 B2 JP S5846805B2
Authority
JP
Japan
Prior art keywords
polyester resin
resin
wire
oxygen
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP619481A
Other languages
Japanese (ja)
Other versions
JPS57119414A (en
Inventor
重治 塩谷
信之 中村
功 白畑
久子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP619481A priority Critical patent/JPS5846805B2/en
Publication of JPS57119414A publication Critical patent/JPS57119414A/en
Publication of JPS5846805B2 publication Critical patent/JPS5846805B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は改善されたポリエステル系樹脂絶縁電線の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for manufacturing a polyester resin insulated wire.

近年、マグネットワイヤの製造においても、公害、省資
源、省エネルギーの見地から、溶剤を使用しない樹脂の
粉体塗装、溶融塗装などの塗装法の開発が特に望まれて
いる。
In recent years, in the manufacture of magnet wires, there has been a particular desire to develop coating methods such as resin powder coating and melt coating that do not use solvents, from the viewpoint of pollution, resource saving, and energy saving.

その一つの方法としてポリエチレンテレフタレート等の
結晶性の熱可塑性樹脂を電導体上に押出し成形すること
により、エナメル線型の絶縁電線を製造する方法が提案
されている。
As one method, a method has been proposed in which an enameled wire-type insulated wire is manufactured by extrusion molding a crystalline thermoplastic resin such as polyethylene terephthalate onto a conductor.

(特開昭53−4875号)しかしながら、これらの樹
脂を単に押出被覆した絶縁電線をマグネットワイヤとし
て使用した場合次のような欠点が見出されている。
(Japanese Unexamined Patent Publication No. 53-4875) However, when insulated wires coated with these resins by simply extrusion are used as magnet wires, the following drawbacks have been found.

すなわちこれら樹脂は結晶性ポリマーであるので該樹脂
被覆電線をコイル加工する際に伸長或いは曲げ等の加工
が加わると皮膜に微細な亀裂、いわゆるクレージングが
生じ、電気特性を低下させてしまうことと、乾燥等のた
め皮膜を融点以下の温度に加熱した場合にも皮膜樹脂の
結晶化による可撓性の消失が見られる。
In other words, since these resins are crystalline polymers, when the resin-coated wire is stretched or bent during coil processing, minute cracks, so-called crazing, occur in the coating, which deteriorates the electrical properties. Even when the film is heated to a temperature below its melting point for drying, etc., loss of flexibility due to crystallization of the film resin is observed.

更にエナメル線の耐熱劣化性の試験法としてJIS
C3203,3210,3211等に規定されて・いる
所定時間加熱後の可撓性な観察する方法(例えばポリエ
ステルエナメル電線においては200℃ 6時間加熱後
の巻付性)においてやはり皮膜樹脂の結晶化により全く
可撓性を消失させてしまう。
Furthermore, as a test method for heat deterioration resistance of enameled wire, JIS
C3203, 3210, 3211, etc., the method of observing flexibility after heating for a predetermined period of time (for example, winding property after heating at 200°C for 6 hours for polyester enamel electric wires) also shows that the crystallization of the coating resin It completely loses its flexibility.

一方、押出塗装法によるポリエステル系樹脂絶縁電線の
特性改良技術の一例として導体上に厚さ100μ以下の
ポリエステル系樹脂被覆を施した後この塗装線を樹脂の
ガラス転移点以上10〜50℃高い温度で再加熱処理す
ることにより塗膜中に樹脂の押出時に生じた残存歪によ
る樹脂皮膜の加熱劣化巻付性、熱衝撃性等の熱的特性の
低下、導体との密着性の低下による耐電圧特性の低下等
を改善する方法が提案された(特公昭55−9767号
)。
On the other hand, as an example of a technique for improving the characteristics of polyester resin insulated wires using the extrusion coating method, a polyester resin coating with a thickness of 100 μm or less is applied to the conductor, and then the coated wire is heated to a temperature 10 to 50 degrees Celsius higher than the glass transition point of the resin. By reheating the coating, the resin film deteriorates due to the residual strain generated during extrusion of the resin. Decrease in thermal properties such as wrapability and thermal shock resistance, and withstand voltage due to decrease in adhesion with conductors. A method for improving the deterioration of characteristics was proposed (Japanese Patent Publication No. 55-9767).

しかしこの方法で製造された絶縁電線は上述の如き問題
は改善されるが、直鎖状ポリニスデル樹脂の特徴である
結晶化による皮膜の可撓性の消失、耐クレージング性、
耐薬品性などの欠如といった欠点については何ら改良効
果が得られず、また加熱条件によっては樹脂皮膜の結晶
性を促進し、かえって絶縁電線としての緒特性の低下を
招くなどの問題があった。
However, although the insulated wire manufactured by this method has improved the above-mentioned problems, it has problems such as loss of flexibility of the coating due to crystallization, which is a characteristic of linear polynisder resin, and crazing resistance.
No improvement effect was obtained with respect to drawbacks such as lack of chemical resistance, and depending on the heating conditions, the crystallinity of the resin film was promoted, which resulted in problems such as deterioration of the properties as an insulated wire.

発明者らは溶剤を使用せず更に上記の如き欠点のないポ
リエステル系樹脂絶縁電線を得る方法として、鋭意研究
を続けた結果、直鎖状ポリエステル樹脂を銅導体上に塗
装した後酸素雰囲気中で用いた直鎖状ポリエステル系樹
脂の融点より50℃以上高い温度で加熱する方法を先に
提案(特願昭54−147227)した。
The inventors continued intensive research into a method for obtaining polyester resin insulated wires without the use of solvents and without the above-mentioned drawbacks. After coating a linear polyester resin on a copper conductor, the inventors found that A method of heating at a temperature 50°C or more higher than the melting point of the linear polyester resin used was previously proposed (Japanese Patent Application No. 147,227/1982).

この方法によると、得られたポリエステル系樹脂絶縁電
線の樹脂皮膜には三次元網状化結合が生起し、この三次
元網状化結合量(一般的にはゲル分量と呼ばれる)が9
0℃のm−クレゾール中ニおける不溶解残量として50
%以上となるように加熱し架橋した場合には最早上記の
如き特性低下現象は発生せずマグネットワイヤとして充
分なる特性を有するものが得られるものであった。
According to this method, three-dimensional network bonds occur in the resin film of the obtained polyester resin insulated wire, and the amount of three-dimensional network bonds (generally called gel content) is 9.
50 as the undissolved residual amount in m-cresol at 0°C
% or more, the above-mentioned property deterioration phenomenon no longer occurred and a magnet wire with sufficient properties could be obtained.

からる知見を基に、発明者らはこれまで提案してきたポ
リエステル系樹脂の架橋技術を工業的、且つ効果的に利
用するために架橋速度を出来るだけ速く、また物性面か
ら樹脂の架橋密度も出来るだけ大きくするためにポリエ
ステル系樹脂の上述の如き加熱架橋条件下における架橋
速度及び架橋密度に及ぼす因子を種々検討してきた結果
、溶融状態におけるポリエステル系樹脂中への酸素の拡
散速度が最も重要な因子であることを見出し、加熱条件
下における酸素含有気体中の酸素分圧を通常量も得られ
やすい酸素含有気体雰囲気である空気のもつ酸素分圧(
平常的159mmHg )より高くすることによりポリ
エステル系樹脂の架橋速度及び架橋密度が飛躍的に向上
することを見出し本発明に至った。
Based on the knowledge from As a result of studying various factors that affect the crosslinking rate and crosslinking density of polyester resins under the above-mentioned thermal crosslinking conditions in order to increase the size of polyester resins as much as possible, we have found that the most important factor is the rate of oxygen diffusion into polyester resins in the molten state. We found that the oxygen partial pressure of air, which is an oxygen-containing gas atmosphere in which it is easy to obtain the normal amount of oxygen partial pressure in oxygen-containing gas under heating conditions (
The present inventors have discovered that the crosslinking speed and crosslinking density of polyester resins can be dramatically improved by increasing the crosslinking temperature higher than the normal 159 mmHg (159 mmHg).

直鎖状ポリエステル系樹脂の酸化熱架橋において、該樹
脂の融点以上の温度で単に酸素含有気体中の酸素分圧を
上げることは、樹脂の酸化分解反応、及びこれに伴う重
量減少、物性低下を助長することに結がると予想され、
事実、電導体として調風外の表面を有する例えばアルミ
線等を用いると雰囲気中の酸素分圧を空気中の酸素分圧
より高くしていくと塗装樹脂の酸化、主鎖の切断が促進
されるが一連の架橋反応がスムーズに進行しないため、
生成した低分子量物の蒸発、昇華等により重量減少が著
しく得られた樹脂皮膜の特性低下もはなはだしくなる。
In oxidative thermal crosslinking of linear polyester resins, simply increasing the oxygen partial pressure in the oxygen-containing gas at a temperature higher than the melting point of the resin will cause the oxidative decomposition reaction of the resin, resulting in weight loss and physical property deterioration. It is expected that this will lead to encouraging
In fact, if an aluminum wire or the like with a surface outside the wind control is used as a conductor, and the oxygen partial pressure in the atmosphere is made higher than the oxygen partial pressure in the air, the oxidation of the coating resin and the scission of the main chain will be promoted. However, since the series of crosslinking reactions does not proceed smoothly,
Due to evaporation, sublimation, etc. of the produced low-molecular-weight substances, the properties of the resin film that has been significantly reduced in weight are also significantly reduced.

しかしながら、本発明方法に示す如く、電導体が銅表面
を有するものである場合には導体表面から樹脂中に銅イ
オンが移行し、この銅の存在によって、酸素分圧を高く
しても樹脂の酸化分解反応−に伴う重量減少を助長する
ことなく、架橋速度、架橋密度の著しい向上がはかれ、
生産性の向上及び耐熱性、耐溶剤性、耐薬品性等の物性
面の向上が同時に達成できるものであった。
However, as shown in the method of the present invention, when the conductor has a copper surface, copper ions migrate from the conductor surface into the resin, and due to the presence of this copper, even if the oxygen partial pressure is increased, the resin Crosslinking speed and crosslinking density are significantly improved without promoting weight loss associated with oxidative decomposition reactions.
It was possible to simultaneously improve productivity and improve physical properties such as heat resistance, solvent resistance, and chemical resistance.

即ち、直鎖状ポリエステル系樹脂の融点以上の温度で雰
囲気中の酸素分圧を平常の空気中の酸素分圧以上に上げ
ていくと樹脂中への酸素の拡散速度が増すことから、樹
脂中に取り込まれる酸素量が増加し、樹脂中に取り込ま
れた酸素が樹脂の酸化分解反応に費されるのに先行して
銅イオンの触媒作用により、樹脂の酸化、主鎖の切断、
遊離基の発生、分子間の橋かげからなる一連の酸化熱架
橋反応に効率良く使われ、樹脂の重量減少を助長するこ
となく酸素分圧を高くする効果が顕著に発揮できるもの
である。
In other words, when the partial pressure of oxygen in the atmosphere is raised to a level higher than the oxygen partial pressure in normal air at a temperature higher than the melting point of the linear polyester resin, the rate of oxygen diffusion into the resin increases. The amount of oxygen taken into the resin increases, and before the oxygen taken into the resin is used for the oxidative decomposition reaction of the resin, the catalytic action of copper ions causes oxidation of the resin, scission of the main chain,
It is efficiently used in a series of oxidative thermal crosslinking reactions consisting of generation of free radicals and intermolecular crosslinking, and can significantly increase the oxygen partial pressure without promoting weight loss of the resin.

本発明方法において酸素含有気体中の酸素分圧は230
agHg以上とすると架橋速度向上に与える効果が太き
い。
In the method of the present invention, the oxygen partial pressure in the oxygen-containing gas is 230
When it is more than agHg, the effect on improving the crosslinking rate is significant.

また、上限については特に制限はないが安全性面から6
00mmHg以下が望ましい。
There is no particular limit on the upper limit, but from a safety perspective,
00 mmHg or less is desirable.

また、酸素分圧を上げる方法としては例えば大気圧で加
熱炉中に所定量の酸素を吹き込む方法、酸素と架橋反応
に不活性な気体である窒素等とを所望の酸素分圧になる
ように予め混合した気体を使用する方法、または、加圧
装置内で空気を加圧して酸素分圧を高めこの装置内に樹
脂被覆導体を導き加熱する方法等、通常考えられる方法
が採用できる。
In addition, methods for increasing the oxygen partial pressure include, for example, blowing a predetermined amount of oxygen into the heating furnace at atmospheric pressure, or mixing oxygen and nitrogen, which is an inert gas to the crosslinking reaction, to the desired oxygen partial pressure. Conventional methods can be employed, such as using a premixed gas, or pressurizing air in a pressurizing device to increase the oxygen partial pressure, and then introducing the resin-coated conductor into the device and heating it.

本発明における直鎖状ポリエステル系樹脂を構成する酸
成分である芳香族ジカルボン酸としては、例えばテレフ
タル酸、イソフタル酸、ナフタレンジカルボン酸、ジフ
ェニルジカルボン酸、ジフエニルスルホンジカルボン酸
、ジフェノキシエタンジカルボン酸、ジフェニルエーテ
ルジカルボン酸、メチルテレフタル酸、メチルイソフタ
ル酸等カ挙げられる。
Examples of aromatic dicarboxylic acids that are acid components constituting the linear polyester resin in the present invention include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenoxyethanedicarboxylic acid, Examples include diphenyl ether dicarboxylic acid, methyl terephthalic acid, and methyl isophthalic acid.

特にテレフタル酸が好ましい。また、酸成分である芳香
族ジカルボン酸の30モル%以下、好ましくは、20モ
ル%以下の割合で、コ・・り酸、アジピン酸、セパチン
酸等の脂肪族ジカルボン酸が含まれても良い。
Terephthalic acid is particularly preferred. Furthermore, aliphatic dicarboxylic acids such as co-phosphoric acid, adipic acid, and cepacic acid may be included in an amount of 30 mol% or less, preferably 20 mol% or less of the aromatic dicarboxylic acid that is the acid component. .

また、直鎖状ポリエステル系樹脂を構成する脂肪族ジオ
ールとしては、エチレングリコール、プロピレングリコ
ール、フチレンクリコール、ヘキサンジオール、デカン
ジオール等が挙げられる。
Furthermore, examples of the aliphatic diol constituting the linear polyester resin include ethylene glycol, propylene glycol, ethylene glycol, hexanediol, and decanediol.

本発明方法において、加熱温度として使用樹脂の融点以
上に限定した理由は、これ以下の温度では樹脂の結晶化
が進行する場合があること、また架橋速度が遅く、架橋
密度も上がりにくいことなどのためである。
In the method of the present invention, the reason why the heating temperature is limited to above the melting point of the resin used is that at lower temperatures, the resin may undergo crystallization, and the crosslinking rate is slow and the crosslinking density is difficult to increase. It's for a reason.

また、加熱温度を上げていくと。架橋の速度は上がるが
熱分解の起る可能性も高まるので、一般的には450℃
以下の加熱温度が好ましい。
Also, if you increase the heating temperature. Although the rate of crosslinking increases, the possibility of thermal decomposition also increases, so the temperature is generally 450°C.
The following heating temperatures are preferred.

尚本発明でいうゲル分率とは、得られた絶縁電線より樹
脂皮膜を剥ぎとり、これを前述の如く、90℃のm−ク
レゾール中で5時間加熱溶解させた場合の試料樹脂に対
する不溶解残分の比率であり、樹脂の架橋度合の目安を
示す値である。
In addition, the gel fraction as used in the present invention refers to the insolubility in the sample resin when the resin film is peeled off from the obtained insulated wire and the resin film is heated and dissolved in m-cresol at 90°C for 5 hours as described above. This is the ratio of the remaining amount, and is a value indicating the degree of crosslinking of the resin.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

実施例 1〜3 ** ポリ
エチレンテレフタレート樹脂(奇人社製商品名テトロン
TR4550BH,以下PBTと称す。
Examples 1 to 3 ** Polyethylene terephthalate resin (manufactured by Kijinsha, trade name Tetron TR4550BH, hereinafter referred to as PBT.

融点250〜260℃、オルソクロロフェノール中での
極限粘度0.7)を270℃に加熱溶融させた槽の中を
直径9.85 mytの銅線を通過させ出口でダイで絞
って22〜25μの塗膜を形成させた後、この塗装線を
引続き、炉長5m、炉温400℃の炉中に導き、表に示
した各条件で加熱処理を行った。
A copper wire with a diameter of 9.85 myt is passed through a tank in which melting point 250-260°C, intrinsic viscosity in orthochlorophenol 0.7) is heated to 270°C, and the wire is squeezed with a die at the outlet to form a wire of 22-25μ. After forming a coating film, this coated line was then led into a furnace with a length of 5 m and a furnace temperature of 400° C., and heat treatment was performed under each condition shown in the table.

尚、炉中の雰囲気は予め酸素と窒素を表1に示した各酸
素分圧になるように混合した後加熱炉中に導いた。
The atmosphere in the furnace was such that oxygen and nitrogen were mixed in advance so as to have the respective oxygen partial pressures shown in Table 1, and then introduced into the heating furnace.

こうして得られた絶縁電線の緒特性を、加熱前の塗装線
の緒特性(比較例1)と合わせて表1に併記した。
The wire characteristics of the insulated wire thus obtained are also listed in Table 1 together with the wire characteristics of the coated wire before heating (Comparative Example 1).

比較例 2〜3 実施例1と同様に実施例1で用いたと同一のPETを用
い、炉中の雰囲気を空気にし、表1に示した条件で加熱
処理して絶縁電線を得た。
Comparative Examples 2 to 3 Similarly to Example 1, the same PET used in Example 1 was used, the atmosphere in the furnace was changed to air, and heat treatment was performed under the conditions shown in Table 1 to obtain insulated wires.

実施例 4 実施例1と同じPETを用いて、導体を直径9、85
mmの銅クラツドアルミ線に代えた以外は実施例2と同
じ条件で加熱処理して絶縁電線を得た。
Example 4 Using the same PET as in Example 1, the conductor was made with a diameter of 9.85 mm.
An insulated wire was obtained by heat treatment under the same conditions as in Example 2, except that the wire was replaced with a copper-clad aluminum wire of 1.0 mm thick.

比較例 4 実施例4において導体を同じサイズのアルミ線に代えて
同条件で加熱処理して絶縁電線を得た。
Comparative Example 4 An insulated wire was obtained by heat treatment under the same conditions as in Example 4, except that the conductor was replaced with an aluminum wire of the same size.

以上、実施例4、比較例2〜4において得られた絶縁電
線の特性をそれぞれの樹脂皮膜のゲル分量とともに表1
に併記する。
Table 1 shows the properties of the insulated wires obtained in Example 4 and Comparative Examples 2 to 4, along with the gel content of each resin film.
Also listed in

実施例 5 ポリエチレンナフタレートのフィルム(奇人社製 商品
名Qフィルム、融点270〜275℃)の細断片を29
0℃に加熱溶融し、これを直径0、85 mmの銅線上
に23μ厚に塗装した後、この塗装線を炉長5m、炉温
450℃、炉内雰囲気を予め酸素分圧が460mmHg
になるように酸素と沫※窒素を混合し調整した気体で満
たした焼付炉中に導き8m/分の速度で加熱処理し、絶
縁電線を得た。
Example 5 Fine pieces of polyethylene naphthalate film (manufactured by Kijinsha, trade name Q film, melting point 270-275°C) were
After heating and melting it to 0℃ and coating it to a thickness of 23μ on a copper wire with a diameter of 0.85mm, the coated wire was heated to a furnace length of 5m, a furnace temperature of 450℃, and an oxygen partial pressure of 460mmHg in the furnace atmosphere.
The insulated wire was then heated at a speed of 8 m/min by introducing the wire into a baking furnace filled with a gas mixed with oxygen and nitrogen so that the temperature would be as follows.

こうして得られた絶縁電線の緒特性を表2に示す。Table 2 shows the properties of the insulated wire thus obtained.

なお比較のため空気雰囲気中で加熱した以外は同じ条件
で得られたものを比較例5として表2に併記した。
For comparison, a sample obtained under the same conditions except that it was heated in an air atmosphere is also listed in Table 2 as Comparative Example 5.

以上実施例及び比較例から明らかなように、電気導体上
に直鎖状ポリエステル系樹脂を被覆してなる絶縁電線を
製造するにあたり、本発明の方法によれば良好な緒特性
をもった架橋ポリエステル系絶縁電線が大巾な生産性の
向上(同程度のゲル分量を得るのに、線速にして1.5
〜3倍)の達成と共に製造できるものであり、 極めて高いものである。
As is clear from the above Examples and Comparative Examples, when producing an insulated wire consisting of an electrical conductor coated with a linear polyester resin, the method of the present invention can be applied to a crosslinked polyester resin having good properties. System insulated wire greatly improves productivity (to obtain the same amount of gel, the wire speed is 1.5
3 times), which is extremely high.

その工業的価値はIts industrial value is

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ジカルボン酸またはその一部の脂肪族ジカル
ボン酸に置きかえたジカルボン酸を主とする酸成分と、
脂肪族ジオールとからなる実質的に直鎖状のポリエステ
ル系樹脂を、少くとも表面に銅層を有する電導体上に無
溶剤塗装した後、該塗装線を酸素含有気体中で、用いた
直鎖状ポリエステル系樹脂の融点以上の温度に加熱して
架橋してポリエステル系樹脂絶縁電線を製造するにあた
り、酸素含有気体中の酸素分圧を平常の空気中の酸素分
圧より高くすることを特徴とするポリエステル系樹脂絶
縁電線の製造方法。
1. An acid component mainly consisting of an aromatic dicarboxylic acid or a dicarboxylic acid in which a part of the aromatic dicarboxylic acid is replaced with an aliphatic dicarboxylic acid;
After coating a substantially linear polyester resin consisting of an aliphatic diol without a solvent onto a conductor having at least a copper layer on the surface, the painted wire is placed in an oxygen-containing gas to form a linear polyester resin. In manufacturing a polyester resin insulated wire by heating the polyester resin to a temperature higher than the melting point and crosslinking it, the oxygen partial pressure in the oxygen-containing gas is made higher than the oxygen partial pressure in normal air. A method for manufacturing a polyester resin insulated wire.
JP619481A 1981-01-19 1981-01-19 Manufacturing method of polyester resin insulated wire Expired JPS5846805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP619481A JPS5846805B2 (en) 1981-01-19 1981-01-19 Manufacturing method of polyester resin insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP619481A JPS5846805B2 (en) 1981-01-19 1981-01-19 Manufacturing method of polyester resin insulated wire

Publications (2)

Publication Number Publication Date
JPS57119414A JPS57119414A (en) 1982-07-24
JPS5846805B2 true JPS5846805B2 (en) 1983-10-19

Family

ID=11631732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP619481A Expired JPS5846805B2 (en) 1981-01-19 1981-01-19 Manufacturing method of polyester resin insulated wire

Country Status (1)

Country Link
JP (1) JPS5846805B2 (en)

Also Published As

Publication number Publication date
JPS57119414A (en) 1982-07-24

Similar Documents

Publication Publication Date Title
US4145474A (en) Method of manufacturing insulated electric wire of the enamelled-wire type by extrusion
US9714349B2 (en) Hydrolysis-resistant polyester film
US3073785A (en) Electrically conductive polymeric
US3944706A (en) Self-bonding polyethylene trimellitate imide varnish
JP5162838B2 (en) Adhesive film and flat cable manufacturing method using the adhesive film
US3306771A (en) Plural ester-imide resins on an electrical conductor
US4012555A (en) Self-bonding varnish for magnet wires comprising a combination of a polyalkylenetrimellitate imide and a polyalkylenetrimellitate ester imide
JPS5846805B2 (en) Manufacturing method of polyester resin insulated wire
US3336258A (en) Aromatic polyamide-acids cross-linked with ditertiary diamines
EP0280385B1 (en) Process for producing shaped products of a polyarylene thioter
US3161541A (en) Synthetic resin and conductors insulated therewith
US3296335A (en) Process for providing electrically insulated conductors and coating composition for same
US4391955A (en) Process for crosslinking polycarbonate resins
KR830002598B1 (en) Process for manufacturing polyester series resin insulated wires
JPS5919607B2 (en) Manufacturing method of polyester magnet wire
JPH0136204B2 (en)
JPH0480030A (en) Laminated film and manufacture thereof
JPS6254215B2 (en)
JPS588082B2 (en) Densen
JPS6225099B2 (en)
JP3451401B2 (en) Heat-fusible laminated film for superconducting wire coating
JPS6145936B2 (en)
JPS6126166B2 (en)
GB2089820A (en) Process for cross-linking polyester series resin
JPH026531A (en) Coating based on polyarylene sulfide