JPS6225099B2 - - Google Patents
Info
- Publication number
- JPS6225099B2 JPS6225099B2 JP17084780A JP17084780A JPS6225099B2 JP S6225099 B2 JPS6225099 B2 JP S6225099B2 JP 17084780 A JP17084780 A JP 17084780A JP 17084780 A JP17084780 A JP 17084780A JP S6225099 B2 JPS6225099 B2 JP S6225099B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polyester
- temperature
- laminated
- stretched film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000728 polyester Polymers 0.000 claims description 44
- 125000003118 aryl group Chemical group 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical group OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 11
- 229920006267 polyester film Polymers 0.000 claims description 10
- 125000000687 hydroquinonyl group Chemical group C1(O)=C(C=C(O)C=C1)* 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 28
- 238000006116 polymerization reaction Methods 0.000 description 23
- 239000011889 copper foil Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- -1 polyethylene terephthalate Polymers 0.000 description 9
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 8
- 239000000155 melt Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000009998 heat setting Methods 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 241000790917 Dioxys <bee> Species 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000007860 aryl ester derivatives Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- FHESUNXRPBHDQM-UHFFFAOYSA-N diphenyl benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OC=2C=CC=CC=2)=CC=1C(=O)OC1=CC=CC=C1 FHESUNXRPBHDQM-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- VRHXYAWPPOZFLR-UHFFFAOYSA-N 2,7,8-trioxatricyclo[7.2.2.23,6]pentadeca-1(11),3(15),4,6(14),9,12-hexaene Chemical compound C1=CC(O2)=CC=C1OOC1=CC=C2C=C1 VRHXYAWPPOZFLR-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- 238000003855 Adhesive Lamination Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910017569 La2(CO3)3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010237 calcium benzoate Nutrition 0.000 description 1
- 239000004301 calcium benzoate Substances 0.000 description 1
- HZQXCUSDXIKLGS-UHFFFAOYSA-L calcium;dibenzoate;trihydrate Chemical compound O.O.O.[Ca+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 HZQXCUSDXIKLGS-UHFFFAOYSA-L 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- NZPIUJUFIFZSPW-UHFFFAOYSA-H lanthanum carbonate Chemical compound [La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O NZPIUJUFIFZSPW-UHFFFAOYSA-H 0.000 description 1
- 229960001633 lanthanum carbonate Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
【発明の詳細な説明】
本発明はポリエステル積層フイルムに関する。
更に詳しくは、本発明は優れた機械的特性、電気
的特性、耐熱性、耐薬品性、寸法安定性等の諸特
性を兼備し、導電性金属を積層したポリエステル
積層フイルムに関する。
従来、導電性金属層を電気絶縁性フイルム上に
積層した積層フイルムは、フレキシブルプリント
サーキツト、テープキヤリアー等の用途に使用さ
れており、電子機器の小型化、軽量化、精密化に
ともなつて、その重要性を増しつつある。現在の
ところ電気絶縁性フイルムとしては、ポリエステ
ルフイルム、ポリイミドフイルム、ガラス−エポ
キシフイルム等が主に用いられている。
ポリエステルフイルム、殊にポリエチレンテレ
フタレートフイルムは優れた機械的特性及び電気
的特性を有する。しかし耐熱性が充分であるとは
言えず、例えば、ポリエチレンテレフタレートフ
イルムでは230℃の如き融点以下の温度でも収縮
率が大きく、その使用範囲が著しく制限される。
またその耐薬品性、寸法安定性についても例えば
熱硬化型樹脂に比べると劣つている。
一方ポリイミドフイルムは優れた機械的特性、
耐熱性を有しているが、平衡水分率が高く、寸法
安定性、電気的特性が良いとは言えない上に溶液
にして成形しなければならないために非常に高価
になるという欠点がある。さらにまた、ガラスエ
ポキシフイルムは、熱硬化型樹脂であり、伸度が
小さく、柔軟性に欠けるという欠点がある。
本発明者らは、上記積層フイルムの基板フイル
ムとして飽和線状ポリエステルの溶融成形性及び
優れた電気的特性をそのまま有し、さらに硬化型
樹脂に匹敵する耐熱性を有するという、両特性を
同時に満足させるのが極めて困難な技術的課題を
解決すべく鋭意研究した結果、特定の組成の全芳
香族ポリエステルから得られる延伸フイルムが、
極めて耐熱性がよく、寸法安定性及び機械的特性
にも優れ、なおかつ通常の製膜・延伸方法で容易
に製造可能であることを見い出し、本発明に到達
したものである。
すなわち、本発明は、ポリエステルフイルムの
少なくとも片面に導電性金属層を積層した積層フ
イルムにおいて、該ポリエステルフイルムが、イ
ソフタル酸残基及びハイドロキノン残基を主たる
成分とする、溶融成形可能な全芳香族ポリエステ
ルよりなるフイルムであつて室温での伸度が10%
以上、260℃における収縮率が1%以下、260℃か
ら室温までの平均線膨張係数が8×10-5mm/mm/
℃以下の特性を有する延伸フイルムであることを
特徴とするポリエステル積層フイルムに関する。
本発明における導電性金属層としては、銅、ア
ルミ等が用いられ、特に銅箔が好ましく用いられ
る。又、銅箔としては電解銅箔と圧延銅箔とがあ
るが、一般的には電解銅箔が用いられる。特に屈
曲性の要求される場合には、圧延銅箔が好ましく
用いられる。これら銅箔は、後で詳しく述べるよ
うに、接着剤を用いて、ポリエステル延伸フイル
ムと接着させる。この場合、接着性の良好な表面
酸化銅箔を用いるのが好ましい。全芳香族ポリエ
ステル延伸フイルム上に導電性金属層、特に銅層
を形成する方法として、無電解銅メツキと電解銅
メツキとを併用する方法なども好ましく用いられ
る。
本発明において、イソフタル酸残基及びハイド
ロキノン残基を主たる成分とする、溶融成形可能
な全芳香族ポリエステルとは、融点が400℃以下
であり、ポリエステルを構成するイソフタル酸残
基及びハイドロキノン残基の和がポリエステルを
構成する全成分残基の80モル%以上を占める全芳
香族ポリエステル、好ましくはイソフタル酸残基
及びハイドロキノン残基の和がポリエステルを構
成する全成分残基の95〜82モル%である全芳香族
ポリエステル、特に好ましくはイソフタル酸残基
及びハイドロキノン残基の和がポリエステルを構
成する全成分残基の95〜85モル%である全芳香族
ポリエステルである。本発明における全芳香族ポ
リエステルの、イソフタル酸残基及びハイドロキ
ノン残基以外の成分残基を与える成分としては、
例えばテレフタル酸、ナフタレン−2・6−ジカ
ルボン酸、ナフタレン−2・7−ジカルボン酸、
ジフエニルエーテル−4・4′−ジカルボン酸、P
−オキシ安息香酸、m−オキシ安息香酸、6−オ
キシ−2−ナフトエ酸などの他の芳香族ジカルボ
ン酸または芳香族オキシカルボン酸;レゾルシ
ン、2・2−ビス(4−オキシフエニル)プロパ
ン、1・1−ビス(4−オキシフエニル)シクロ
ヘキサン、フエノールフタレイン、4・4′−ジオ
キシジフエニルエーテル、4・4′−ジオキシジフ
エニル、2・6−ジオキシナフタレン、1・5−
ジオキシナフタレン、1・4−ジオキシナフタレ
ンなどの芳香族ジオキシ化合物などをあげること
ができる。これらの中でもレゾルシン、2・2−
ビス(4−オキシフエニル)プロパンなどの化合
物が得られる共重合ポリエステルの延伸性にすぐ
れているので好ましく用いられる。
本発明における全芳香族ポリエステルは、溶融
重合法と固相重合法の組合せによつて製造するの
が好ましく、その際以下に述べる重合条件を選定
することによつて特に延伸性のすぐれた重合体と
なすことが好ましい。本発明において用いられる
全芳香族ポリエステルを製造する方法の好ましい
具体例としては、
(1) イソフタル酸のアリールエステル、場合によ
つて更に他の芳香族ジカルボン酸又は芳香族オ
キシカルボン酸のアリールエステルとハイドロ
キノン、場合によつては更に他の芳香族ジオキ
シ化合物を加熱重合させる;
(2) イソフタル酸、場合によつては更に他の芳香
族ジカルボン酸又は芳香族オキシカルボン酸と
ハイドロキノン、場合によつては更に他の芳香
族ジオキシ化合物とジアリールカーボネートと
を加熱反応させて、上記カルボン酸をジアリー
ルカーボネートでエステル化反応させつつ、重
合させるなどの方法をあげることができる。全
芳香族ポリエステルの製法のうち、前記(1)の方
法がポリエステルの中にカーボネート結合の導
入される可能性がよく、特に好ましい。
上述の全芳香族ポリエステルの製造法において
は触媒が好ましく用いられる。この触媒として
は、例えばカルシウム、マグネシウム、ストロン
チウム、バリウム、ランタン、セリウム、チタ
ン、マンガン、コバルト、亜鉛、ゲルマニウム、
スズ、アンチモン、ビスマスなどの金属を含む化
合物のうち、従来からこの種のエステル交換触媒
として知られているものが好ましく用いられる。
更に具体的な化合物としては、酢酸マグネシウ
ム、安息香酸カルシウム、酢酸ストロンチウム、
炭酸ランタン、酸化セリウム、チタニウムテトラ
ブトオキサイド、酢酸マンガン、酢酸コバルト、
酢酸亜鉛、酸化ゲルマニウム、酢酸第一スズ、三
酸化アンチモン、三酸化ビスマスなどを例示する
ことができる。これらの触媒の使用量はポリエス
テルを構成する全酸成分100モルに対して触媒中
に含まれる金属原子に換算して、0.001〜0.2グラ
ム原子とするのが好ましい。これらの触媒は通常
反応の始めから反応系に添加して用いられる。
本発明において用いられる全芳香族ポリエステ
ルは、通常上述した重合法に従つて重合される
が、溶融重合を行なうとき重合温度250〜350℃、
好ましくは270〜340℃で行なう。溶融重合は重合
の初期には常圧下、比較的低温(例えば250〜300
℃)で行うのが好ましい。この間反応によつて生
成する化合物例えばフエノールを反応系外に留出
させる。副生物の留出量から計算した反応率が50
%以上になつてから、反応系の圧力を徐々に減圧
にすると同時に昇温し、350℃以下、好ましくは
340℃以下の温度で更に溶融重合を進め、かつ完
結させるのが好ましい。このようにして得られる
プレポリマーは、通常還元粘度(ηsp/c)が
0.6以下の比較的低重合体である。溶融重合法単
独で高重合体を得ようとして、高温度で長時間反
応を行なうと副反応の分岐または架橋反応がおこ
るためか延伸しても本発明の目的とするポリエス
テルフイルムにはなり難い。上記の溶融重合によ
つて得られるプレポリマーは、好ましくは固相重
合して製膜に適した高重合体とする。固相重合
は、溶融重合によつて得られたプレポリマーを所
定の大きさの粉粒状体、例えばチツプ、ペレツ
ト、粉体等とし、該粉粒状体が互いに融着してブ
ロツク化しない条件下で行なうのが好ましい。前
記粉粒状体は固相重合が進むにつれて、融着する
温度が上昇するので、固相重合温度を徐々に上昇
させることができる。この間、粉粒状体を撹拌す
ることは好ましいことである。固相重合温度は、
重合反応が進行しかつブロツク化しない温度から
選択されるが、通常約230〜320℃、好ましくは約
250〜300℃である。また反応雰囲気は不活性気体
流通下(例えば窒素ガス気流下)或いは減圧下の
雰囲気とするのが好ましく、特に後者が好まし
い。固相重合時間はプレポリマーの重合度、目的
とする重合度、粉粒状体の形状や大きさ、温度、
雰囲気等によつて定まる。全芳香族ポリエステル
の還元粘度は好ましくは0.6以上、特に好ましく
は0.7以上1.5以下である。
本発明において延伸フイルムは前記の全芳香族
ポリエステルよりなるフイルムであつて、かつ室
温での伸度が10%以上、260℃における収縮率が
1%以下、260℃から室温までの平均線膨張係数
が8×10-5mm/mm/℃以下の特性を有する延伸フ
イルムである。室温における伸度は100%分の引
張速度で測定した値であつて、この値は10%以
上、好ましくは20%以上、さらに好ましくは30%
以上、特に好ましくは50%以上である。室温にお
ける伸度が10%未満の場合には、柔軟性の点で目
的とする性能を満すに到らない。また、260℃に
おける収縮率とは、260℃に1分間保持したとき
の収縮率であつて、この値は1%以下、好ましく
は0.5%以下である。1%より大きい場合積層フ
イルムとして高温で使用するとき、フイルムの収
縮によりカールしたり、ゆがんだりする等の好ま
しくない現象がおこる。更にまた260℃から室温
までの平均線膨張係数は8×10-5mm/mm/℃以
下、好ましくは6×10-5mm/mm/℃以下である。
260℃から室温までの平均線膨張係数が8×10-5
mm/mm/℃より大きい場合、積層フイルムの状態
で温度変化をうけたとき積層フイルムがカールす
る。また延伸フイルムの室温における強度は好ま
しくは7Kg/mm2以上、さらに好ましくは8Kg/mm2
以上、特に好ましくは10Kg/mm2以上である。
かかる延伸フイルムは、以下の方法によつて得
ることができる。
全芳香族ポリエステルを、その融点以上、好ま
しくは400℃以下の温度で溶融し、スリツトより
溶融押出し、逐次または同時に二軸延伸し、次い
で熱固定し、更に熱収縮させることによつて熱収
縮率の小さい耐熱性のすぐれた二軸延伸フイルム
とすることができる。ここでスリツトは、たとえ
ばその巾が0.1mmから5mmのものが用いられる。
スリツトより押出された未延伸フイルムは、つい
で従来公知の手段で二軸延伸される。この際延伸
温度は、好ましくは180〜280℃、さらに好ましく
は180〜250℃、特に好ましくは190〜250℃の範囲
である。また延伸倍率は、好ましくは機械軸方向
及び機械軸方向と直角な方向にそれぞれ1.5倍以
上で且つ面積倍率で2.5倍以上となる倍率であ
る。さらに好ましくは両軸方向にそれぞれ1.5倍
以上で且つ面積倍率で3.0倍以上、特に好ましく
は両軸方向にそれぞれ2.0倍以上で且つ面積倍率
4倍以上である。ポリエステルフイルムの延伸
は、延伸速度に特に制限はないが、通常1秒間に
0.05〜0.5倍の範囲で行なわれる。ポリエステル
フイルムは上述の条件で二軸配向したのち、更に
寸法安定性を向上させる目的で熱固定される。こ
の熱固定は、好ましくは250℃から全芳香族ポリ
エステルの融点より20℃低い温度までの温度範囲
で、更に好ましくは260℃から全芳香族ポリエス
テルの融点より30℃低い温度までの温度範囲で行
う。またこの熱固定の時間は2秒以上、好ましく
は10秒から3分の間で選択される。この熱固定は
フイルムの緊張状態で行なわれ、一般には延伸フ
イルムを定長のまま行なうことが好ましいが、た
とえば20%以内でフイルムの機械軸方向及びまた
はフイルムの機械軸方向と直角な方向に制限収縮
を与えつつ熱固定することもできる。
本発明においては、このように熱固定された二
軸延伸フイルムは、好ましくはひきつづき200℃
以上で且つ前記熱固定温度より低い温度で1%以
上収縮を与える様な条件下で収縮処理される。
この熱収縮処理温度は好ましくは220℃以上で
且つ前記熱固定温度以下の温度、更に好ましくは
250℃以上で且つ前記熱固定温度以下の温度であ
る。また、この際収縮割合は1%以上、好ましく
は1〜30%、更に好ましくは1%〜20%の範囲で
あり、またこの際熱収縮させる時間は2秒〜2分
間の間で選定できる。この場合の収縮は機械軸方
向と機械軸と直角な方向のうち少なくとも1方向
に、特に好ましくは両方向に行う。延伸方法とし
て逐次二軸延伸を採用し、収縮処理を1方向にの
み行なう場合には収縮は2段目の延伸方向と同一
方向にさせるのが好ましい。
かくして前記の諸特性を有する延伸フイルムを
得ることができる。
また前記延伸フイルムには、ガラスフアイバ
ー、マイカ、タルク等の強化剤を含有させること
も可能である。
本発明のポリエステル積層フイルムは上述した
延伸フイルムの少なくとも片面に導電性金属層を
積層することによつて得られる。積層方法には
種々の方法を用いることができるが、(1)導電性金
属箔を延伸フイルム上に接着積層する方法;(2)延
伸フイルム上に無電解メツキによつて導電性金属
層を析出させる方法とに大別できる。
接着による積層法は、一般的に広く用いられて
いる方法であつて、本発明のポリエステル積層フ
イルムの製造においても用いられる。接着剤とし
ては、延伸フイルムと導電性金属箔に対して良好
な接着性を有するだけでなく、電気的特性、耐熱
性の優れたものが好ましい。本発明のポリエステ
ル積層フイルムにおいては、一般のポリエステル
の接着剤として用いられるものがそのまま使用で
きるが、ウレタン変性ポリエステル系接着剤、ポ
リエステル変性エポキシ系接着剤等が好ましく用
いられ、特にウレタン変性ポリエステル系接着剤
が好ましく用いられる。接着は、上記接着剤の溶
液をロールコーター等により、延伸フイルム上に
連続的に塗布し、加熱による溶剤の乾燥後、加熱
ローラーを用いて導電性金属箔とプレスすること
により行なわれる。本発明のポリエステル積層フ
イルムは上記の方法により工業的に有利に生産し
得る。
また本発明のポリエステル積層フイルムにおい
ては、無電解メツキによつて導電性金属層を形成
させることも可能である。この場合には延伸フイ
ルムに従来公知の方法によりフイルム表面の活性
化処理をほどこし、次に無電解メツキ液、特に無
電解銅メツキ液に浸漬することにより、延伸フイ
ルム上に銅層が形成される。銅層の厚さが約10μ
以下の場合には無電解メツキのみで目的が達成さ
れるが、さらに厚い銅層形成が必要な場合には無
電解メツキを行なつた後、電解メツキを併用する
ことにより容易に肉厚の銅層を得ることができ
る。また銅箔との接着性向上のため前もつてアミ
ン処理等のソフトエツチングすることが好まし
い。
本発明のポリエステル積層フイルムは、全芳香
族ポリエステルよりなる延伸フイルムを基板とし
て用いるため、ポリエステルフイルムの優れた電
気的特性をそのまま有し、さらに260乃至300℃と
いつた高温において充分使用しうる耐熱性を有し
ている。また適度な柔軟性を有するため自由に折
り曲げることが可能であり、また吸水率が低く且
つ熱収縮率、線膨張係数が小さく、寸法安定性に
優れている。
本発明における積層フイルムはフレキシブルプ
リントサーキツト、テープキヤリアー等の如き、
耐熱性と柔軟性を要求される素材に対して有効に
適用される。
以下実施例をあげて本発明を詳述する。尚、実
施例中「部」とあるのはいずれも「重量部」を意
味する。
実施例 1
イソフタル酸ジフエニル190.80部、ハイドロキ
ノン55.44部、ビスフエノールA28.73部及び三酸
化アンチモン0.070部を重合釜に位込み、窒素気
流中、温度250〜285℃に加熱し、反応の結果生成
するフエノール73部(理論量の約65%)を留出さ
せた。ついで反応系の圧力を徐々に減圧にすると
同時に反応温度を上げ、約1時間を要して圧力を
20mmHg、反応温度を330℃とし、同条件下で更に
30分間、続いて5mmHg、330℃で15分間重合をつ
づけた。得られたポリマーの還元粘度は0.51であ
つた。ここで溶融重合を停止し、ポリマーを粉砕
し、更に0.2mmHgの減圧下250℃で2時間、更に
0.2mmHgの減圧下270℃で24時間固相重合を行な
つた。得られた高重合度のポリマーの融点は355
℃であり、380℃、ずり速度100sec-1における溶
融粘度は13000ポイズであつた。
この高重合度ポリマーを370℃で溶融しスリツ
ト巾1.5mmのT−ダイより押出し、得られた原反
を200℃で機械軸方向と直角方向に2倍、続いて
機械軸方向に2倍延伸し、285℃で10秒間定長で
熱固定し、更に283℃で10秒間機械軸方向に6
%、機械軸と直角方向に5%それぞれ収縮させ
た。ここで得られた二軸延伸フイルムの伸度、
260℃における収縮率及び260℃から室温までの平
均線膨張係数を測定した。その結果は表1に示
す。
次にこの延伸フイルムをアセトンで脱脂し、以
下の組成より
RV−300(東洋紡) 7.5部
コロネートL(日本ポリウレタン工業) 1部
メチルエチルケトン 17.5部
なる接着剤をバーコーター(No.20)で塗布した。
これを40℃真空中で1時間乾燥し、メチルエチル
ケトンを除去した。35μ厚の電解銅箔にも同様に
して上記接着剤を塗布し、乾燥した。
前記延伸フイルム及び銅箔を150℃に加熱した
2個のローラー間で熱圧着し、さらに接着層の硬
化のために170℃で10分間熱処理を行なつた。得
られた積層フイルムの耐熱性、銅箔の剥離強度を
表1に示す。
実施例 2
実施例1において得られた原反を200℃で機械
軸方向と直角方向に2倍、続いて機械軸方向に2
倍延伸し、270℃で10秒間定長で熱固定し、更に
265℃で60秒間機械軸方向に4%、機械軸と直角
方向に2%それぞれ収縮させた。ここで得られた
延伸フイルムを実施例1と同様にして銅箔とはり
あわせた。前記延伸フイルムの室温における伸
度、260℃における収縮率及び260℃から室温まで
の平均線膨張係数並びに積層フイルムの耐熱性、
銅箔の剥離強度を表1に示す。
実施例 3
実施例1において得られた原反を210℃で機械
軸方向と直角方向に2.5倍、続いて機械軸方向に
2.5倍延伸し、270℃で10秒間定長で熱固定し、更
に265℃で60秒間機械軸方向に6%、機械軸と直
角方向に2%それぞれ収縮させた。この延伸フイ
ルムを実施例1と同様にして、銅箔とはりあわせ
た。前記延伸フイルムの室温における伸度、260
℃における収縮率及び260℃から室温までの平均
線膨張係数並びに積層フイルムの耐熱性、銅箔の
剥離強度を表1に示す。
実施例 4
イソフタル酸ジフエニル190.80部、ハイドロキ
ノン48.56部、レゾルシン20.81部及び三酸化アン
チモン0.070部を用いて、実施例1と同様に行な
つて高重合度ポリエステルを得た。このポリエス
テルの融点は325℃であり、380℃、ずり速度
100sec-1における溶融粘度は11000ポイズであつ
た。
この高重合度ポリエステルを実施例1と同様に
行なつて押し出し延伸し、265℃で10秒間定長で
熱固定し、更に263℃で30秒間機械軸方向に3
%、機械軸と直角方向に4%それぞれ収縮させ
た。ここで得られた二軸延伸フイルムを実施例1
と同様に行なつて銅箔とはりあわせた。前記延伸
フイルムの室温における伸度、260℃における収
縮率及び260℃から室温までの平均線膨張係数並
びに積層フイルムの耐熱性、銅箔の剥離強度を表
1に示す。
比較例 1
ポリエチレンテレフタレートフイルムを基板フ
イルムとして用いる以外は実施例1と同様に行な
つて積層フイルムをつくり、積層フイルムの耐熱
性、銅箔の剥離強度を測定した。その結果を第1
表に示す。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to polyester laminated films.
More specifically, the present invention relates to a polyester laminated film that has excellent mechanical properties, electrical properties, heat resistance, chemical resistance, dimensional stability, etc., and is laminated with a conductive metal. Conventionally, laminated films in which a conductive metal layer is laminated on an electrically insulating film have been used for applications such as flexible printed circuits and tape carriers, and as electronic devices become smaller, lighter, and more precise. As a result, its importance is increasing. At present, polyester films, polyimide films, glass-epoxy films, etc. are mainly used as electrically insulating films. Polyester films, especially polyethylene terephthalate films, have excellent mechanical and electrical properties. However, it cannot be said that the heat resistance is sufficient; for example, polyethylene terephthalate film has a large shrinkage rate even at temperatures below the melting point, such as 230°C, and its range of use is severely limited.
Also, its chemical resistance and dimensional stability are inferior to, for example, thermosetting resins. On the other hand, polyimide film has excellent mechanical properties,
Although it has heat resistance, it has the disadvantage that it has a high equilibrium moisture content, does not have good dimensional stability and electrical properties, and is very expensive because it must be molded from a solution. Furthermore, glass epoxy film is a thermosetting resin and has the drawbacks of low elongation and lack of flexibility. The present inventors have simultaneously satisfied both properties, as the substrate film of the laminated film, which has the melt moldability and excellent electrical properties of saturated linear polyester, and also has heat resistance comparable to that of a curable resin. As a result of intensive research to solve the extremely difficult technical problem, a stretched film made from wholly aromatic polyester with a specific composition was developed.
The present invention was achieved based on the discovery that it has extremely good heat resistance, excellent dimensional stability and mechanical properties, and can be easily manufactured using conventional film forming and stretching methods. That is, the present invention provides a laminated film in which a conductive metal layer is laminated on at least one side of a polyester film, wherein the polyester film is a melt-formable wholly aromatic polyester whose main components are isophthalic acid residues and hydroquinone residues. film with an elongation of 10% at room temperature.
The shrinkage rate at 260℃ is 1% or less, and the average linear expansion coefficient from 260℃ to room temperature is 8×10 -5 mm/mm/
The present invention relates to a polyester laminated film characterized in that it is a stretched film having properties of 0.degree. As the conductive metal layer in the present invention, copper, aluminum, etc. are used, and copper foil is particularly preferably used. Further, although there are two types of copper foil, electrolytic copper foil and rolled copper foil, electrolytic copper foil is generally used. Particularly when flexibility is required, rolled copper foil is preferably used. These copper foils are bonded to polyester stretched films using an adhesive, as will be described in detail later. In this case, it is preferable to use a surface-oxidized copper foil with good adhesive properties. As a method for forming a conductive metal layer, especially a copper layer, on a wholly aromatic polyester stretched film, a method using a combination of electroless copper plating and electrolytic copper plating is also preferably used. In the present invention, a melt-moldable fully aromatic polyester containing isophthalic acid residues and hydroquinone residues as its main components has a melting point of 400°C or less, and contains isophthalic acid residues and hydroquinone residues constituting the polyester. A wholly aromatic polyester in which the sum of isophthalic acid residues and hydroquinone residues accounts for 80 mol% or more of all component residues constituting the polyester, preferably 95 to 82 mol% of all component residues constituting the polyester. A certain wholly aromatic polyester, particularly preferably a wholly aromatic polyester in which the sum of isophthalic acid residues and hydroquinone residues is 95 to 85 mol % of all component residues constituting the polyester. Components that provide component residues other than isophthalic acid residues and hydroquinone residues in the fully aromatic polyester in the present invention include:
For example, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid,
Diphenyl ether-4,4'-dicarboxylic acid, P
- Other aromatic dicarboxylic acids or aromatic oxycarboxylic acids such as oxybenzoic acid, m-oxybenzoic acid, 6-oxy-2-naphthoic acid; resorcinol, 2,2-bis(4-oxyphenyl)propane, 1. 1-bis(4-oxyphenyl)cyclohexane, phenolphthalein, 4,4'-dioxydiphenyl ether, 4,4'-dioxydiphenyl, 2,6-dioxynaphthalene, 1,5-
Examples include aromatic dioxy compounds such as dioxynaphthalene and 1,4-dioxynaphthalene. Among these, resorcinol, 2.2-
Compounds such as bis(4-oxyphenyl)propane are preferably used because the resulting copolyester has excellent stretchability. The wholly aromatic polyester in the present invention is preferably produced by a combination of a melt polymerization method and a solid phase polymerization method. It is preferable to do so. Preferred specific examples of the method for producing the wholly aromatic polyester used in the present invention include (1) an aryl ester of isophthalic acid, and optionally an aryl ester of another aromatic dicarboxylic acid or aromatic oxycarboxylic acid; Hydroquinone, and optionally further aromatic dioxy compounds, are thermally polymerized; (2) isophthalic acid, optionally further aromatic dicarboxylic acids or aromatic oxycarboxylic acids, and hydroquinone, optionally Further, another aromatic dioxy compound and a diaryl carbonate may be reacted by heating, and the carboxylic acid may be polymerized while being subjected to an esterification reaction with the diaryl carbonate. Among the methods for producing wholly aromatic polyesters, the method (1) above is particularly preferred since it has a good possibility of introducing carbonate bonds into the polyester. A catalyst is preferably used in the above-mentioned method for producing wholly aromatic polyester. Examples of the catalyst include calcium, magnesium, strontium, barium, lanthanum, cerium, titanium, manganese, cobalt, zinc, germanium,
Among compounds containing metals such as tin, antimony, and bismuth, those conventionally known as this type of transesterification catalyst are preferably used.
More specific compounds include magnesium acetate, calcium benzoate, strontium acetate,
Lanthanum carbonate, cerium oxide, titanium tetrabutoxide, manganese acetate, cobalt acetate,
Examples include zinc acetate, germanium oxide, stannous acetate, antimony trioxide, and bismuth trioxide. The amount of these catalysts used is preferably 0.001 to 0.2 gram atoms, calculated as metal atoms contained in the catalyst, per 100 moles of the total acid components constituting the polyester. These catalysts are usually added to the reaction system from the beginning of the reaction. The wholly aromatic polyester used in the present invention is usually polymerized according to the above-mentioned polymerization method.
Preferably it is carried out at 270-340°C. Melt polymerization is carried out at a relatively low temperature (e.g. 250-300°C) under normal pressure at the initial stage of polymerization.
Preferably, the reaction is carried out at During this time, compounds produced by the reaction, such as phenol, are distilled out of the reaction system. The reaction rate calculated from the distilled amount of by-products is 50
%, the pressure of the reaction system is gradually reduced and the temperature is raised at the same time to 350℃ or less, preferably
It is preferable to further proceed and complete the melt polymerization at a temperature of 340° C. or lower. The prepolymer obtained in this way usually has a reduced viscosity (ηsp/c) of
It is a relatively low polymer with a molecular weight of 0.6 or less. If an attempt is made to obtain a high polymer using only the melt polymerization method and the reaction is carried out at high temperature for a long period of time, branching or crosslinking reactions occur as side reactions, which makes it difficult to obtain the polyester film that is the object of the present invention even after stretching. The prepolymer obtained by the above melt polymerization is preferably subjected to solid phase polymerization to form a high polymer suitable for film formation. In solid phase polymerization, a prepolymer obtained by melt polymerization is turned into powder or granules of a predetermined size, such as chips, pellets, powder, etc., and the granules are formed under conditions that do not fuse together and form blocks. It is preferable to do so. As the solid state polymerization progresses, the temperature at which the powder or particulate material is fused increases, so that the solid state polymerization temperature can be gradually increased. During this time, it is preferable to stir the granular material. The solid state polymerization temperature is
The temperature is selected from a temperature at which the polymerization reaction proceeds and does not block, but usually about 230-320°C, preferably about 230-320°C.
The temperature is 250-300℃. Further, the reaction atmosphere is preferably an atmosphere under an inert gas flow (for example, under a nitrogen gas flow) or under reduced pressure, and the latter is particularly preferred. The solid phase polymerization time depends on the degree of polymerization of the prepolymer, the desired degree of polymerization, the shape and size of the powder, the temperature,
Determined by the atmosphere etc. The reduced viscosity of the wholly aromatic polyester is preferably 0.6 or more, particularly preferably 0.7 or more and 1.5 or less. In the present invention, the stretched film is a film made of the above-mentioned wholly aromatic polyester, and has an elongation at room temperature of 10% or more, a shrinkage rate at 260°C of 1% or less, and an average linear expansion coefficient from 260°C to room temperature. It is a stretched film having a characteristic of 8×10 -5 mm/mm/°C or less. The elongation at room temperature is a value measured at a tensile rate of 100%, and this value is 10% or more, preferably 20% or more, and more preferably 30%.
It is particularly preferably 50% or more. If the elongation at room temperature is less than 10%, the desired performance in terms of flexibility cannot be achieved. Further, the shrinkage rate at 260°C is the shrinkage rate when the temperature is maintained at 260°C for 1 minute, and this value is 1% or less, preferably 0.5% or less. If it is more than 1%, when used as a laminated film at high temperatures, undesirable phenomena such as curling and distortion due to shrinkage of the film occur. Furthermore, the average coefficient of linear expansion from 260°C to room temperature is 8 x 10 -5 mm/mm/°C or less, preferably 6 x 10 -5 mm/mm/°C or less.
Average linear expansion coefficient from 260℃ to room temperature is 8×10 -5
If it is larger than mm/mm/°C, the laminated film will curl when subjected to temperature changes. The strength of the stretched film at room temperature is preferably 7 kg/mm 2 or more, more preferably 8 kg/mm 2
Above, particularly preferably 10 Kg/mm 2 or above. Such a stretched film can be obtained by the following method. The fully aromatic polyester is melted at a temperature above its melting point, preferably below 400°C, melt-extruded through a slit, biaxially stretched sequentially or simultaneously, then heat-set, and further heat-shrinked to determine the heat shrinkage rate. It can be made into a biaxially stretched film with small heat resistance and excellent heat resistance. The slit used here has a width of, for example, 0.1 mm to 5 mm.
The unstretched film extruded from the slit is then biaxially stretched by conventionally known means. At this time, the stretching temperature is preferably in the range of 180 to 280°C, more preferably 180 to 250°C, particularly preferably 190 to 250°C. The stretching ratio is preferably 1.5 times or more in the machine axis direction and the direction perpendicular to the machine axis direction, and 2.5 times or more in area magnification. More preferably, it is 1.5 times or more in both axial directions and 3.0 times or more in area magnification, particularly preferably 2.0 times or more in both axial directions and 4 times or more in area magnification. There is no particular restriction on the stretching speed for polyester film stretching, but it is usually 1 second.
It is carried out in the range of 0.05 to 0.5 times. After the polyester film is biaxially oriented under the above-mentioned conditions, it is heat-set for the purpose of further improving dimensional stability. This heat fixing is preferably carried out at a temperature range of 250°C to 20°C lower than the melting point of the wholly aromatic polyester, more preferably 260°C to 30°C lower than the melting point of the wholly aromatic polyester. . The heat setting time is selected to be at least 2 seconds, preferably between 10 seconds and 3 minutes. This heat setting is carried out with the film under tension, and it is generally preferable to keep the stretched film at a constant length, but for example, it is limited to within 20% in the mechanical axis direction of the film and/or in a direction perpendicular to the mechanical axis direction of the film. Heat setting can also be performed while giving shrinkage. In the present invention, the heat-set biaxially stretched film is preferably continuously heated at 200°C.
Shrinkage treatment is carried out at a temperature above and lower than the heat setting temperature and under such conditions as to give a shrinkage of 1% or more. This heat shrinking treatment temperature is preferably 220°C or higher and lower than the heat setting temperature, more preferably
The temperature is 250°C or higher and lower than the heat setting temperature. Further, the shrinkage ratio at this time is 1% or more, preferably 1% to 30%, more preferably 1% to 20%, and the heat shrinkage time can be selected between 2 seconds and 2 minutes. In this case, the contraction is performed in at least one of the mechanical axis direction and the direction perpendicular to the mechanical axis, particularly preferably in both directions. When successive biaxial stretching is adopted as the stretching method and shrinkage treatment is performed only in one direction, it is preferable that the shrinkage be performed in the same direction as the second-stage stretching direction. In this way, a stretched film having the above-mentioned properties can be obtained. Further, the stretched film may contain a reinforcing agent such as glass fiber, mica, or talc. The polyester laminated film of the present invention can be obtained by laminating a conductive metal layer on at least one side of the above-mentioned stretched film. Various methods can be used for lamination, including (1) adhesive lamination of conductive metal foil on a stretched film; (2) depositing a conductive metal layer on the stretched film by electroless plating. It can be broadly divided into methods. The lamination method by adhesion is a generally widely used method, and is also used in the production of the polyester laminated film of the present invention. The adhesive is preferably one that not only has good adhesion to the stretched film and conductive metal foil, but also has excellent electrical properties and heat resistance. In the polyester laminated film of the present invention, adhesives used as general polyester adhesives can be used as they are, but urethane-modified polyester adhesives, polyester-modified epoxy adhesives, etc. are preferably used, especially urethane-modified polyester adhesives. agents are preferably used. Adhesion is carried out by continuously applying a solution of the above adhesive onto the stretched film using a roll coater or the like, and after drying the solvent by heating, pressing it with a conductive metal foil using a heated roller. The polyester laminate film of the present invention can be industrially advantageously produced by the method described above. Further, in the polyester laminate film of the present invention, it is also possible to form a conductive metal layer by electroless plating. In this case, a copper layer is formed on the stretched film by activating the surface of the stretched film by a conventionally known method and then immersing it in an electroless plating solution, particularly an electroless copper plating solution. . The thickness of the copper layer is about 10μ
In the following cases, the purpose can be achieved by electroless plating alone, but if it is necessary to form an even thicker copper layer, it is possible to easily thicken the copper layer by using electroless plating and then electrolytic plating. You can get layers. Further, in order to improve adhesion to copper foil, it is preferable to perform soft etching such as amine treatment beforehand. Since the polyester laminated film of the present invention uses a stretched film made of wholly aromatic polyester as a substrate, it retains the excellent electrical properties of polyester film, and is also heat resistant enough to be used at high temperatures of 260 to 300°C. It has a sexual nature. In addition, it has appropriate flexibility, so it can be bent freely, and has low water absorption, low thermal contraction coefficient, and low coefficient of linear expansion, and excellent dimensional stability. The laminated film in the present invention can be used for flexible printed circuits, tape carriers, etc.
Effectively applied to materials that require heat resistance and flexibility. The present invention will be described in detail below with reference to Examples. In the examples, "parts" means "parts by weight." Example 1 190.80 parts of diphenyl isophthalate, 55.44 parts of hydroquinone, 28.73 parts of bisphenol A, and 0.070 parts of antimony trioxide were placed in a polymerization pot and heated to a temperature of 250 to 285°C in a nitrogen stream to produce the product as a result of the reaction. 73 parts of phenol (approximately 65% of theory) were distilled off. Next, the pressure of the reaction system was gradually reduced, and at the same time the reaction temperature was raised, and it took about 1 hour to reduce the pressure.
20mmHg, reaction temperature 330℃, and further under the same conditions.
Polymerization was continued for 30 minutes, followed by 15 minutes at 5 mmHg and 330°C. The reduced viscosity of the obtained polymer was 0.51. At this point, the melt polymerization was stopped, the polymer was pulverized, and further heated at 250°C under a reduced pressure of 0.2 mmHg for 2 hours.
Solid phase polymerization was carried out at 270°C under reduced pressure of 0.2 mmHg for 24 hours. The melting point of the obtained high polymerization degree polymer is 355
The melt viscosity at 380°C and a shear rate of 100sec -1 was 13,000 poise. This highly polymerized polymer is melted at 370°C and extruded through a T-die with a slit width of 1.5 mm, and the resulting raw fabric is stretched at 200°C twice in the direction perpendicular to the machine axis and then twice in the machine axis direction. Then, heat set at 285℃ for 10 seconds at a fixed length, and then heat set at 283℃ for 10 seconds in the machine axis direction.
% and 5% in the direction perpendicular to the machine axis. The elongation of the biaxially stretched film obtained here,
The shrinkage rate at 260°C and the average coefficient of linear expansion from 260°C to room temperature were measured. The results are shown in Table 1. Next, this stretched film was degreased with acetone, and an adhesive having the following composition of 7.5 parts of RV-300 (Toyobo), 1 part of Coronate L (Japan Polyurethane Industries), and 17.5 parts of methyl ethyl ketone was applied using a bar coater (No. 20).
This was dried in vacuum at 40°C for 1 hour to remove methyl ethyl ketone. The above adhesive was similarly applied to a 35μ thick electrolytic copper foil and dried. The stretched film and copper foil were thermocompressed between two rollers heated to 150°C, and further heat treated at 170°C for 10 minutes to harden the adhesive layer. Table 1 shows the heat resistance of the obtained laminated film and the peel strength of the copper foil. Example 2 The original fabric obtained in Example 1 was heated at 200°C by 2 times in the direction perpendicular to the machine axis direction, and then by 2 times in the machine axis direction.
Stretch it twice, heat set it at 270℃ for 10 seconds, and then
It was shrunk by 4% in the direction of the machine axis and by 2% in the direction perpendicular to the machine axis for 60 seconds at 265°C. The stretched film obtained here was laminated with copper foil in the same manner as in Example 1. The elongation at room temperature of the stretched film, the shrinkage rate at 260 ° C., the average linear expansion coefficient from 260 ° C. to room temperature, and the heat resistance of the laminated film,
Table 1 shows the peel strength of the copper foil. Example 3 The original fabric obtained in Example 1 was heated at 210°C by 2.5 times in the direction perpendicular to the machine axis direction, and then in the machine axis direction.
It was stretched 2.5 times, heat set at 270°C for 10 seconds at a constant length, and further shrunk by 6% in the machine axis direction and 2% in the direction perpendicular to the machine axis for 60 seconds at 265°C. This stretched film was laminated with copper foil in the same manner as in Example 1. Elongation of the stretched film at room temperature, 260
Table 1 shows the shrinkage rate at °C, the average coefficient of linear expansion from 260 °C to room temperature, the heat resistance of the laminated film, and the peel strength of the copper foil. Example 4 A highly polymerized polyester was obtained in the same manner as in Example 1 using 190.80 parts of diphenyl isophthalate, 48.56 parts of hydroquinone, 20.81 parts of resorcinol, and 0.070 parts of antimony trioxide. The melting point of this polyester is 325℃, 380℃, shear rate
The melt viscosity at 100 sec -1 was 11000 poise. This highly polymerized polyester was extruded and stretched in the same manner as in Example 1, heat-set at 265°C for 10 seconds at a constant length, and further stretched for 30 seconds in the machine axis direction at 263°C.
% and 4% in the direction perpendicular to the machine axis, respectively. The biaxially stretched film obtained here was used in Example 1.
I did the same thing and glued it with copper foil. Table 1 shows the elongation of the stretched film at room temperature, the shrinkage rate at 260°C, the average coefficient of linear expansion from 260°C to room temperature, the heat resistance of the laminated film, and the peel strength of the copper foil. Comparative Example 1 A laminated film was prepared in the same manner as in Example 1 except that polyethylene terephthalate film was used as the substrate film, and the heat resistance of the laminated film and the peel strength of the copper foil were measured. The result is the first
Shown in the table. 【table】
Claims (1)
電性金属層を積層した積層フイルムにおいて、該
ポリエステルフイルムが、イソフタル酸残基及び
ハイドロキノン残基を主たる成分とする、溶融成
形可能な全芳香族ポリエステルよりなるフイルム
であつて室温での伸度が10%以上、260℃におけ
る収縮率が1%以下、260℃から室温までの平均
線膨張係数が8×10-5mm/mm/℃以下の特性を有
する延伸フイルムであることを特徴とするポリエ
ステル積層フイルム。1. A laminated film in which a conductive metal layer is laminated on at least one side of a polyester film, where the polyester film is a film made of a melt-formable wholly aromatic polyester whose main components are isophthalic acid residues and hydroquinone residues. Stretched film with properties such as elongation at room temperature of 10% or more, shrinkage rate at 260°C of 1% or less, and average linear expansion coefficient from 260°C to room temperature of 8 x 10 -5 mm/mm/°C or less. A polyester laminated film characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084780A JPS5795454A (en) | 1980-12-05 | 1980-12-05 | Polyester laminated film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084780A JPS5795454A (en) | 1980-12-05 | 1980-12-05 | Polyester laminated film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5795454A JPS5795454A (en) | 1982-06-14 |
JPS6225099B2 true JPS6225099B2 (en) | 1987-06-01 |
Family
ID=15912422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17084780A Granted JPS5795454A (en) | 1980-12-05 | 1980-12-05 | Polyester laminated film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5795454A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59210950A (en) * | 1983-05-16 | 1984-11-29 | Toyobo Co Ltd | Metal-plated polyester molding and production thereof |
JPS60225747A (en) * | 1984-04-25 | 1985-11-11 | 帝人株式会社 | Functional film |
JPS6141539A (en) * | 1984-08-06 | 1986-02-27 | 鐘淵化学工業株式会社 | Aromatic polyester molded shape on which metal is laminated |
JPS61130041A (en) * | 1984-11-28 | 1986-06-17 | ポリプラスチックス株式会社 | Manufacture of molded shape having excellent size stability |
DE3711986A1 (en) * | 1986-04-11 | 1987-10-15 | Hitachi Ltd | SPIRAL COMPRESSOR AND METHOD FOR THE PRODUCTION THEREOF |
JP4690185B2 (en) * | 2005-12-07 | 2011-06-01 | 三菱樹脂株式会社 | Water vapor barrier transparent laminate |
-
1980
- 1980-12-05 JP JP17084780A patent/JPS5795454A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5795454A (en) | 1982-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4466217B2 (en) | Aromatic liquid crystal polyester film and laminate | |
JP2008030464A (en) | Method for manufacturing liquid crystal polyester laminated film and liquid crystal polyester laminated film | |
JPS6225099B2 (en) | ||
JP4706680B2 (en) | Composite film | |
JPS6225503B2 (en) | ||
JPH0770535A (en) | Polyester-base hot-melt adhesive | |
JPH02191638A (en) | Biaxially oriented polyester film | |
US4369207A (en) | Process for production of laminated film structure of aromatic polyester | |
JP3040147B2 (en) | Laminated polyester film | |
JPH08104763A (en) | Polyester film and polyester film composite | |
WO1985003905A1 (en) | Heat-resistant film or sheet | |
JPS62130844A (en) | Laminated film | |
JP4904019B2 (en) | Biaxially oriented polyester film | |
JP2988947B2 (en) | Polymer molded products | |
WO1994013475A1 (en) | Biaxially oriented copolyester/polyolefin bi- or trilayer film and method for making the same | |
JPWO2009091072A1 (en) | Polyester resin, process for producing the same, and biaxially oriented polyester film using the same | |
EP0671993A1 (en) | Biaxially oriented copolyester film for magnetic recording disks and magnetic recording disks made therefrom | |
JPS583813B2 (en) | spiral tube | |
JP2000103878A (en) | Polyester film for decorative metal plate | |
JPH0523939B2 (en) | ||
JPH0260728A (en) | Polyester biaxially oriented film | |
JP5694865B2 (en) | Polyester composition, method for producing the same, and biaxially oriented polyester film | |
JPS62124937A (en) | Laminated film | |
JPH09302111A (en) | Polyester film for capacitor | |
JP5209218B2 (en) | Biaxially oriented polyester film |