JPS6145936B2 - - Google Patents

Info

Publication number
JPS6145936B2
JPS6145936B2 JP55023788A JP2378880A JPS6145936B2 JP S6145936 B2 JPS6145936 B2 JP S6145936B2 JP 55023788 A JP55023788 A JP 55023788A JP 2378880 A JP2378880 A JP 2378880A JP S6145936 B2 JPS6145936 B2 JP S6145936B2
Authority
JP
Japan
Prior art keywords
resin
acid
polyester resin
coating
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023788A
Other languages
Japanese (ja)
Other versions
JPS56120326A (en
Inventor
Nobuyuki Nakamura
Isao Shirahata
Shigeharu Shiotani
Hisako Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2378880A priority Critical patent/JPS56120326A/en
Publication of JPS56120326A publication Critical patent/JPS56120326A/en
Publication of JPS6145936B2 publication Critical patent/JPS6145936B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改善された二重被覆絶縁構造を有する
マグネツトワイヤーの製造方法である。 現在、例えばテレフタル酸で代表される芳香族
ジルカルボン酸を多価カルボン酸成分の主成分と
して用い、これに3価以上の多価アルコールを含
む多価アルコールを反応させて得たポリエステル
系樹脂を適当量の溶剤にて溶解した絶縁塗料を導
体上に塗布しこれを300℃又はそれ以上の温度で
加熱し、樹脂中の遊離ヒドロキシル基により硬化
させて得た絶縁電線は優れた電気特性を示すこと
からマグネツトワイヤーとして広く使用されてい
る。 かかるマグネツトワイヤーに使用される絶縁塗
料は導体上への絶縁被覆形成を容易とするため比
較的多量の溶剤を用い粘度を調整して使用するの
が一般的である。これに使用される溶剤としてフ
エノール、クレゾール、キシレノールなどのフエ
ノール類にキシレン、ソルベントナフサなどを希
釈剤として加えたものが使用されるが、これらの
溶剤は毒性が強くしかもその回収が充分には行な
えず、一部を燃焼させて排出しているのが現状で
ある。それ故作業環境の改善、省資源の見地から
も溶剤を使用しないでマグネツトワイヤーを製造
する方法が強く望まれていた。 これらの要望に対し遊離ヒドロキシ基により硬
化可能な非直線性ポリエステル樹脂を少なくとも
100℃に加熱溶融しながら塗布する方法(特公昭
51−24704号)が試みられている。この場合用い
るポリエステル樹脂としては溶融時にはもはや実
質的に縮合反応が生起しない程度まで縮合した樹
旨を使用せねばならない。 一方、充分な特性を出すのに高縮合樹脂を使用
すると溶融塗装が困難となり、これを緩和するた
めには少量ではあるが溶剤を添加せねばならず、
これでは本来の目的からずれたものである。 更にポリエチレンテレフタレート等の熱可塑性
樹脂を導体上に押出成型することによりエナメル
線型の絶縁電線を製造する方法(特開昭55−4875
号)が提案されているが、この方法で得られる絶
縁電線は単に熱可塑性樹脂を導体に被覆したのみ
であるので得られる絶縁被膜の硬度、熱軟化特性
をはじめ熱的特性が不充分でこの絶縁電線をマグ
ネツトワイヤーとして使用した場合次のような欠
点が見出されている。即ち、これら樹脂は結晶性
ポリマーであるのでコイル加工時に伸長或いは曲
げ等の加工が加わると皮膜に微細な亀裂、いわゆ
るクレージングが生じ電気特性を低下させてしま
うことと、コイルの乾燥工程や機器の温度上昇に
より樹脂の結晶化温度以上に加熱された場合に結
晶化による可撓性の消失が見られた。また、エナ
メル線の耐熱劣化性の試験法として、JIS C
3203,3210,3211等に規定されている所定時間加
熱後の可撓性ゆ観察する方法(例えばポリエステ
ルエナメル銅線においては200℃6時間加熱後の
巻付性)においてやはり皮膜樹脂の結晶化により
全く可撓性を消失してしまうことである。また、
これら熱可塑性樹脂は機械的強度特にJISに規定
されている耐摩耗性に劣ることも欠点であつた。 発明者等は溶剤を使用せず更に上記欠点のない
ポリエステル絶縁のマグネツトワイヤーを得るべ
く鋭意検討した結果、一般にフイルム、フアイバ
ー、成型品等に商用されている直鎖状ポリエステ
ル系樹脂を酸素雰囲気中で該樹脂の融点以上の温
度で加熱処理することにより高度にゲル化したポ
リエステル系樹脂となり、該樹脂層を下層としこ
の外側に熱可塑性ポリアミド樹脂を被覆して得ら
れた絶縁電線が上述の如き欠点が解消され、従来
の溶剤型塗料を用いて製造されたマグネツトワイ
ヤーに遜色ないマグネツトワイヤーとしての必要
な特性を有していることを見出しこの発明を達成
したものである。 即ち、本発明方法は導体上に芳香族またはその
一部を脂肪族に置き換えたジカルボン酸を主とす
る酸成分と、脂肪族ジオールを主とするジオール
成分とからなるエステル結合を主成分とする実質
的に直鎖状のポリエステル系樹脂を溶融或いは押
出し被覆して後、これを酸素雰囲気中で用いた樹
脂の融点以上の温度で該ポリエステル系樹脂のゲ
ル分率が20重量%以上となるまで加熱し架橋せし
めたのち、その外側に熱可塑性ポリアミド樹脂を
被膜厚が全被覆層厚の50%以下となるように溶融
或いは押出し被覆することを特徴とするものであ
る。 本発明における直鎖状ポリエステル系樹脂を構
成する酸成分で芳香族ジカルボン酸としては例え
ばテレフタル酸、イソフタル酸、ナフタレンジカ
ルボン酸、ジフエニルジカルボン酸、ジフエニル
スルホンジカルボン酸、ジフエノキシエタンジカ
ルボン酸、ジフエニルエーテルジカルボン酸、メ
チルテレフタル酸、メチルイソフタル酸等が挙げ
られるが特にテレフタル酸が好ましい。また、酸
成分である芳香族ジカルボン酸の30モル%以下、
好ましくは20モル%以下の割合でコハク酸、アジ
ピン酸、セバチン酸等の脂肪族ジカルボン酸が含
まれてもよい。また直錯状ポリエステル系樹脂を
構成する脂肪族ジオールとしてはエチレングリコ
ール、トリメチレングリコール、テトラメチレン
グリコール、ヘキサンジオール、デカンジオール
等が挙げられるが、特にエチレングリコール、テ
トラメチレングリコールが好ましい。また脂肪族
ジオールの一部がオキシ(アルキレン)グリコー
ル、例えばポリエチレングリコール、ポリテトラ
メチレングリコールであつてもよい。これら成分
より得られる代表的なポリエステル系樹脂として
はポリエチレンテレフタレート樹脂(PET)、ポ
リプチレンテレフタレート樹脂(PBT)、ポリエ
チレンナフタレート樹脂等が挙げられる。 一方、上層被覆に使用する熱可塑性ポリアミド
樹脂としては脂肪族、脂環族、或いは脂肪族と芳
香族の共重合ポリアミド樹脂があるが、6.6−ナ
イロンが一般的である。 本発明でいうポリエステル系樹脂のゲル分率と
は、絶縁電線よりポリアミド層を塩酸、ギ酸等に
より剥ぎとつた後、ポリエステル樹脂皮膜を剥ぎ
取り、これをm−クレゾールを使用して90℃で加
熱溶解させた場合に試料樹脂皮膜重量に対する不
溶解残分の比率であり、この不溶解残分が20%未
満であると本発明の二重被覆した絶縁電線のマグ
ネツトワイヤーとしての特性が得られ難くなる。 また、ポリアミド被膜厚が全被覆層厚の50%以
上となつた場合は、耐熱性の低下が見られ好まし
くない。また、上層にポリアミドを被覆した効果
としては機械特性、特に耐摩耗性及び表面のスベ
リ性が改良される。 次に本発明の実施例を示す。 実施例 1 ポリエチレンテレフタレート樹脂(帝人社製商
品名テトロンTR4550BH、以下PETと称す。融
点250−260℃)を直径0.85mmの銅線上に押出機を
用いて27μ厚に押出した。押出条件は押出機の入
口から出口まで260−280−300℃、ヘツド部300
℃、線速100m/分である。押出被覆した線は直
ちに加熱炉(炉長5m、炉温400℃)中をくり返し
5回通して加熱架橋せしめた後、この上に別の押
出機により6.6−ナイロン樹脂(東レ社製商品名
アミランCM3001、融点255℃)を11μ厚に押出
した。押出条件は入口から出口まで250−270−
290℃、ヘツド部290℃である。なお、ポリエステ
ル被覆層のゲル分率を調べるためこうして得た絶
縁電線より前記方法で下層樹脂のゲル分率を測定
したところ93%であつた。 実施例 2 実施例1の装置を用い同じ押出条件でPETを
25μ厚に押出した後、加熱炉を2回通して加熱架
橋せしめた後、この上に別の押出機で同様の条件
で6.6−ナイロンを10μ厚に押出した。なお、下
層のポリエステル樹脂のゲル分率は35%であつ
た。 参考例 1 実施例1の装置を用い同じ押出条件でPETを
25μ厚に押出した後、加熱炉を通さないでこの上
に別の押出機で同様の条件で6.6−ナイロンを10
μ厚に押出した。なお、下層ポリエステル樹脂の
ゲル分率は0%であつた。 参考例 2 実施例1の装置を用い同じ押出条件でPETを
17μ厚に押出した後、加熱炉を3回通して加熱架
橋せしめた後、この上に別の押出機で同様の条件
で6.6−ナイロンを20μ厚に押出した。なお、下
層ポリエステル樹脂のゲル分率は52%であつた。 比較例 1 実施例1の装置を用い同じ条件でPETを33μ
厚に押出して絶縁電線を得た。 比較例 2 比較例1と同条件でPETを33μ厚に押出し
後、これを炉長5m、炉温400℃の加熱炉中を5回
通して加熱処理した。 実施例1〜2、参考例1〜2、および比較例1
〜2で得られたそれぞれの絶縁電線の諸特性を
JIS C 3210に従つて測定した結果を表1に示
す。
The present invention is a method of manufacturing a magnet wire having an improved double coated insulation structure. Currently, for example, polyester resins obtained by using aromatic dicarboxylic acids such as terephthalic acid as the main component of the polycarboxylic acid component and reacting polyhydric alcohols containing polyhydric alcohols of trihydric or higher hydric acid are being used. An insulated wire obtained by applying an insulating paint dissolved in a certain amount of solvent onto a conductor, heating it at a temperature of 300°C or higher, and curing it by free hydroxyl groups in the resin exhibits excellent electrical properties. Widely used as magnet wire. In order to facilitate the formation of an insulating coating on the conductor, the insulating paint used for such magnet wires is generally used by adjusting the viscosity using a relatively large amount of solvent. The solvent used for this is a mixture of phenols such as phenol, cresol, and xylenol with addition of xylene, solvent naphtha, etc. as a diluent, but these solvents are highly toxic and cannot be recovered sufficiently. Currently, some of the waste is burned and emitted. Therefore, from the viewpoint of improving the working environment and saving resources, there has been a strong desire for a method of manufacturing magnet wire without using solvents. In response to these demands, at least non-linear polyester resins that can be cured by free hydroxyl groups have been developed.
Method of coating while heating and melting at 100℃ (Tokukosho)
51-24704) is being attempted. The polyester resin used in this case must be a resin that has been condensed to such an extent that substantially no condensation reaction occurs when melted. On the other hand, if a high condensation resin is used to achieve sufficient properties, melt coating becomes difficult, and in order to alleviate this problem, it is necessary to add a small amount of solvent.
This deviates from the original purpose. Furthermore, a method of manufacturing an enameled wire type insulated wire by extrusion molding a thermoplastic resin such as polyethylene terephthalate onto a conductor (Japanese Patent Laid-Open No. 55-4875
However, since the insulated wire obtained by this method is simply a conductor coated with thermoplastic resin, the resulting insulation coating has insufficient hardness, thermal softening properties, and other thermal properties. When insulated wires are used as magnet wires, the following drawbacks have been found. In other words, since these resins are crystalline polymers, if they are stretched or bent during coil processing, microscopic cracks, or so-called crazing, will occur in the coating, reducing the electrical properties, and the coil drying process and equipment When the resin was heated to a temperature higher than its crystallization temperature, loss of flexibility due to crystallization was observed. In addition, as a test method for heat deterioration resistance of enameled wire, JIS C
3203, 3210, 3211, etc., which observes the flexibility after heating for a predetermined period of time (e.g., the windability of polyester enamelled copper wire after heating at 200°C for 6 hours), it is also possible to observe the flexibility due to crystallization of the coating resin. This results in a complete loss of flexibility. Also,
These thermoplastic resins also have a disadvantage in that they are inferior in mechanical strength, particularly in abrasion resistance as specified by JIS. The inventors conducted extensive research to obtain a polyester-insulated magnet wire that does not use solvents and does not have the above-mentioned drawbacks. As a result, the inventors conducted a thorough study to obtain a polyester-insulated magnet wire that does not use solvents and does not have the above-mentioned drawbacks. A highly gelled polyester resin is obtained by heat treatment at a temperature higher than the melting point of the resin, and an insulated wire obtained by using the resin layer as a lower layer and coating the outside with a thermoplastic polyamide resin is produced as described above. The present invention was achieved by discovering that the above drawbacks are overcome and the magnet wire has the necessary characteristics comparable to magnet wires manufactured using conventional solvent-based paints. That is, the method of the present invention uses an ester bond as a main component on a conductor, which is composed of an acid component mainly consisting of an aromatic group or a dicarboxylic acid whose part is replaced with an aliphatic group, and a diol component mainly consisting of an aliphatic diol. After melting or extrusion coating a substantially linear polyester resin, this is used in an oxygen atmosphere at a temperature higher than the melting point of the resin until the gel fraction of the polyester resin reaches 20% by weight or more. After being heated and crosslinked, a thermoplastic polyamide resin is coated on the outside by melting or extrusion so that the coating thickness is 50% or less of the total coating layer thickness. Examples of the aromatic dicarboxylic acid component of the linear polyester resin in the present invention include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenoxyethanedicarboxylic acid, Examples include diphenyl ether dicarboxylic acid, methyl terephthalic acid, and methyl isophthalic acid, with terephthalic acid being particularly preferred. In addition, 30 mol% or less of aromatic dicarboxylic acid, which is an acid component,
Preferably, aliphatic dicarboxylic acids such as succinic acid, adipic acid, and sebacic acid may be contained in a proportion of 20 mol% or less. Examples of aliphatic diols constituting the straight complex polyester resin include ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, and decanediol, with ethylene glycol and tetramethylene glycol being particularly preferred. Further, a portion of the aliphatic diol may be oxy(alkylene) glycol, such as polyethylene glycol or polytetramethylene glycol. Typical polyester resins obtained from these components include polyethylene terephthalate resin (PET), polybutylene terephthalate resin (PBT), polyethylene naphthalate resin, and the like. On the other hand, the thermoplastic polyamide resin used for the upper layer coating includes aliphatic, alicyclic, or aliphatic and aromatic copolymer polyamide resins, and 6,6-nylon is generally used. In the present invention, the gel fraction of polyester resin refers to the polyamide layer removed from an insulated wire using hydrochloric acid, formic acid, etc., then the polyester resin film is removed and heated at 90°C using m-cresol. It is the ratio of undissolved residue to the weight of the sample resin coating when it is dissolved, and if this undissolved residue is less than 20%, the characteristics of the double-coated insulated wire of the present invention as a magnet wire cannot be obtained. It becomes difficult. Furthermore, if the polyamide coating thickness is 50% or more of the total coating layer thickness, heat resistance will deteriorate, which is undesirable. Furthermore, the effect of coating the upper layer with polyamide is that mechanical properties, particularly abrasion resistance and surface slipperiness, are improved. Next, examples of the present invention will be shown. Example 1 Polyethylene terephthalate resin (trade name Tetron TR4550BH manufactured by Teijin Ltd., hereinafter referred to as PET, melting point 250-260°C) was extruded onto a copper wire having a diameter of 0.85 mm using an extruder to a thickness of 27 μm. The extrusion conditions are 260-280-300℃ from the inlet to the exit of the extruder, and 300℃ at the head.
°C, linear velocity 100 m/min. The extrusion-coated wire was immediately passed through a heating furnace (furnace length: 5 m, furnace temperature: 400°C) 5 times to heat crosslinking. CM3001 (melting point 255℃) was extruded to a thickness of 11μ. Extrusion conditions are 250−270− from inlet to outlet.
290℃, head part 290℃. In order to examine the gel fraction of the polyester coating layer, the gel fraction of the lower layer resin was measured using the method described above using the insulated wire thus obtained, and it was found to be 93%. Example 2 PET was produced using the same extrusion conditions as in Example 1.
After extruding to a thickness of 25 μm, it was passed through a heating furnace twice to heat crosslink, and then 6.6-nylon was extruded on top of this to a thickness of 10 μm using another extruder under the same conditions. Note that the gel fraction of the polyester resin in the lower layer was 35%. Reference example 1 PET was produced under the same extrusion conditions using the equipment of Example 1.
After extruding to a thickness of 25μ, 6.6-nylon was added to 10% of this in another extruder under the same conditions without passing it through a heating furnace.
It was extruded to a thickness of μ. Note that the gel fraction of the lower layer polyester resin was 0%. Reference example 2 PET was produced under the same extrusion conditions using the equipment of Example 1.
After extruding it to a thickness of 17μ, it was passed through a heating furnace three times to heat crosslinking, and then 6.6-nylon was extruded on top of this to a thickness of 20μ using another extruder under the same conditions. Note that the gel fraction of the lower layer polyester resin was 52%. Comparative Example 1 PET was heated to 33μ using the same conditions as in Example 1.
An insulated wire was obtained by extruding it thickly. Comparative Example 2 After extruding PET to a thickness of 33 μm under the same conditions as Comparative Example 1, it was heat-treated by passing it through a heating furnace with a furnace length of 5 m and a furnace temperature of 400° C. five times. Examples 1-2, Reference Examples 1-2, and Comparative Example 1
- Characteristics of each insulated wire obtained in 2.
Table 1 shows the results measured according to JIS C 3210.

【表】【table】

【表】 以上の実施例から明らかな如く、本発明方法に
より得られる絶縁電線は優れた諸特性を保持する
もので、その実用的価値は極めて大きいものであ
る。
[Table] As is clear from the above examples, the insulated wire obtained by the method of the present invention maintains various excellent properties, and its practical value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に芳香族またはその一部を脂肪族に置
き換えたジカルボン酸を主とする酸成分と、脂肪
族ジオールを主とするジオール成分とからなるエ
ステル結合を主成分とする実質的に直鎖状のポリ
エステル系樹脂を溶融或いは押出し被覆した後、
これを酸素雰囲気中で用いた樹脂の融点以上温度
で該ポリエステル系樹脂のゲル分率が20重%以上
となるまで加熱し架橋せしめたのち、その外側に
熱可塑性ポリアミド樹脂を皮膜厚が全被膜厚の50
%以上となるように溶融或いは押出し被覆するこ
とを特徴とするマグネツトワイヤーの製造方法。
1 Substantially straight chain whose main component is an ester bond consisting of an acid component mainly consisting of dicarboxylic acid with aromatics or part of them replaced with aliphatic on the conductor, and a diol component mainly consisting of aliphatic diol. After melting or extruding polyester resin,
This is heated in an oxygen atmosphere at a temperature higher than the melting point of the resin used until the gel fraction of the polyester resin becomes 20% by weight or higher to crosslink it, and then a thermoplastic polyamide resin is coated on the outside to the full thickness. 50 thick
% or more.
JP2378880A 1980-02-27 1980-02-27 Manufacture of magnet wire Granted JPS56120326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2378880A JPS56120326A (en) 1980-02-27 1980-02-27 Manufacture of magnet wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2378880A JPS56120326A (en) 1980-02-27 1980-02-27 Manufacture of magnet wire

Publications (2)

Publication Number Publication Date
JPS56120326A JPS56120326A (en) 1981-09-21
JPS6145936B2 true JPS6145936B2 (en) 1986-10-11

Family

ID=12120056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2378880A Granted JPS56120326A (en) 1980-02-27 1980-02-27 Manufacture of magnet wire

Country Status (1)

Country Link
JP (1) JPS56120326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158903U (en) * 1987-04-04 1988-10-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158903U (en) * 1987-04-04 1988-10-18

Also Published As

Publication number Publication date
JPS56120326A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US2683100A (en) Copolyesters and their use for electrical insulation
US3297785A (en) Melamine-aldehyde resin modified polyester reaction products
US4163826A (en) Self-bonding magnet wires and coils made therefrom
CA1116394A (en) Method of producing electrically insulating, highly flexible and/or solderable coatings
US3306771A (en) Plural ester-imide resins on an electrical conductor
US3931418A (en) Process for the production of insulating coatings on electrical conductors
US3406045A (en) Cross-linked polyethylene terephthalate overcoat for insulated electrical conductors
JPS6145936B2 (en)
JP2007231204A (en) Adhesive film, and method for producing flat cable using the same
US2991326A (en) Insulation system for electrical apparatus containing liquid dielectrics
US3309334A (en) Polymeric copolyesters of phthalic acids, a bis-(hydroxyphenyl)alkane and a diphenolic acid
JPS5919607B2 (en) Manufacturing method of polyester magnet wire
US3313781A (en) High molecular weight polyester suitable for use as electrically insulating material, and method of making the same
JPS6254215B2 (en)
US3645900A (en) Electro-insulating varnishes
JPH0136204B2 (en)
JP2003138167A (en) Insulating coating material for enamel wire
US4611021A (en) Ether modified polyester resins
JP2006161037A (en) Biaxially oriented film
US4699956A (en) Polymers adaptable for wire enamels
KR830002598B1 (en) Process for manufacturing polyester series resin insulated wires
JPH0210190B2 (en)
JPS6254144B2 (en)
US4454278A (en) Polyestercarbonates adaptable for wire enamels
JP3884597B2 (en) Insulating paint