JPS5846681A - Schottky junction type field effect transistor - Google Patents

Schottky junction type field effect transistor

Info

Publication number
JPS5846681A
JPS5846681A JP14516981A JP14516981A JPS5846681A JP S5846681 A JPS5846681 A JP S5846681A JP 14516981 A JP14516981 A JP 14516981A JP 14516981 A JP14516981 A JP 14516981A JP S5846681 A JPS5846681 A JP S5846681A
Authority
JP
Japan
Prior art keywords
gate electrode
field effect
section
type
operating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14516981A
Other languages
Japanese (ja)
Inventor
Yasoo Harada
原田 八十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14516981A priority Critical patent/JPS5846681A/en
Publication of JPS5846681A publication Critical patent/JPS5846681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To realize fine adjustment of characteristic by etching the entire part or by MESA etching the operating layer even after the electrode pattern is formed through the employment of such structure of FET to be formed at the contact surface between metal and semiconductor that the gate electrode is buried within the operating layer. CONSTITUTION:1, 2, 3, 5 are respectively semi-insulating GaAs substrate, operating layer consisting of N type GaAs, source and drain electrodes. The gate electrode 4 is buried within the operating layer 2 and 8 is the high resistance material GaAlAs provided in such a manner as covering the side of gate electrode 4. Moreover, an insulator 9 such as Si3N4 is provided in place of the high resistance layer 8, the operating layer 2 is formed thick in order to reduce the source resistance, drain resistance and only the gate electrode 5 is formed thin as the MESA structure 6.

Description

【発明の詳細な説明】 本発明は金属と半導体との接触面(−形成されるシプッ
トキ播含を有する電界効果型トフンジスタ(以下PIT
と略す)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor (hereinafter referred to as PIT) having a metal-semiconductor contact surface (hereinafter referred to as PIT
(abbreviated as)).

第1図(二現存するショットキ型FRTの基本的構造の
断面図を示す、(1)は半絶縁性のG&A8半導体基板
、(21は該基板(1)上C:設けられたN型の04A
llから成る動作層、 +31i4)はこの動作jli
(21とオーミッグ接触したソース、ドレイン電極、(
5;はこの両電極+31+4j間に位置し、動作層(2
)とショットキ接合Y成丁ゲート電極である。
Figure 1 (2) shows a cross-sectional view of the basic structure of the existing Schottky type FRT.
The behavioral layer consisting of ll, +31i4) is this behavior jli
(Source and drain electrodes in Ohmig contact with 21, (
5; is located between these two electrodes +31+4j, and the active layer (2
) and a Schottky junction Y-shaped gate electrode.

斯る構成csJFgTの特性を左右する大きな要素とし
てはソース峨極(31とゲー)41極(51との間のソ
ース抵抗(RB)並びCニドレイン電極(4)とゲート
磁極(5)との間のドレイン抵抗(R11)である、特
性同上の為(;はこれ等の抵抗(R8)(Rtl)ik
’極力低くする必要がある。その為に11!2図(;示
すように動作III(21の厚みな大きく、シ、ゲート
題極(5)の箇所のみン薄くしてメ夛構造16)とする
とか、或いは第5図に示すよう4−動作層(21の厚み
?厚くシ、ゲート成極(5)直下の半絶縁性のfi41
i(11に隆起部(7)を形成せしめる構成が存在して
いる。尚この上うC:ゲート電極(5)箇所の動作層(
2)の厚みt第1図−二示した基本構造と等しく設定し
たのはゲートピンチオフ電圧を一定とする為である。
The major factors that influence the characteristics of csJFgT with such a configuration are the source resistance (RB) between the source electrode (31 and the gate electrode) and the 41 pole (51), and the source resistance (RB) between the C drain electrode (4) and the gate magnetic pole (5). The drain resistance (R11) is the same as the characteristics (; is the resistance (R8) (Rtl) ik
'It needs to be as low as possible. For that purpose, as shown in Figure 11!2 (;, the thickness of 21 is large, and only the gate pole (5) is made thinner, making it a multiple structure 16), or as shown in Figure 5. As shown in Figure 4, the thickness of the active layer (21? thick), the semi-insulating fi41 directly under the gate polarization (5).
There is a structure in which a protrusion (7) is formed at i (11).
2) Thickness t is set equal to the basic structure shown in FIGS. 1-2 in order to keep the gate pinch-off voltage constant.

このようなVヨットキ型IP]j’rの動作原理はソー
ス、ドレイン゛磁極131(4)間に流れる1iEfl
lL′%:ゲート鴫極(5)直下の動作層(214::
形成される空乏層(11で制御するものであり、従って
その電流値は動作1!!i (21のゲート磁極(5)
直下の厚さとキャ゛リヤ濃度C;依って基本的に決定さ
れる。
The operating principle of such a V-type IP j'r is that 1iEfl flows between the source and drain magnetic poles 131 (4).
lL'%: Active layer (214:: directly under the gate electrode (5)
The depletion layer formed (is controlled by 11, and therefore its current value is 1!!i (gate magnetic pole (5) of 21).
The thickness directly below and the carrier concentration C are basically determined.

まfe コrJJ (/ ヨyトキ型FRTQJON、
OFF動作は空乏層OQが基板(1)に到達したか否か
に依って行われ、空乏層(11)が基板(IIに僧した
時にゲート電極(5)に印加している電圧ケビンテオフ
電圧(Vl>)と称する。そして実際此種のFK’l’
1に:便用するC;際してはドレイン4c流とこのピン
チオフ電圧の制御が重妾となる。この制御方法としては
終局的には動作ya t’t+の厚みやその組成等であ
るが、第1図。
Mafe KorJJ (/ Yoyitoki type FRTQJON,
The OFF operation is performed depending on whether the depletion layer OQ reaches the substrate (1) or not, and the voltage applied to the gate electrode (5) when the depletion layer (11) reaches the substrate (II) Vl>).In fact, this kind of FK'l'
1: Use C; In some cases, control of the drain 4c flow and this pinch-off voltage becomes important. This control method ultimately depends on the thickness of the operation ya t't+, its composition, etc., as shown in FIG.

第2図並びにII6図何へ構造のものも動作層(2)を
成長させた後−二ゲート電極(5)を設けるので、製造
工程中に特性ill定しつつ、所望の特性が得られた時
点で工程χ中止するとかの制御は不可能であった。
Figure 2 and Figure II6 In any structure, after the active layer (2) is grown, the two gate electrodes (5) are provided, so the desired characteristics can be obtained while determining the characteristics during the manufacturing process. It was impossible to control whether the process χ was stopped at that point.

本発明は斯様な問題点に鑑みて為されたものであって、
第4図以降を参照しつつ詳述する。第4図に於てill
、(21,131,+51は夫々第1図乃至第5図と同
様Cコ半絶縁性の(lA9基板、N型L)&A8から成
る動“作層、ソース、ドレイン各電極で1本発明構造が
従来構造と基本的(;異るところはゲー)4極(4)が
動作層(21内C二埋め込まれているところC二ある。
The present invention was made in view of such problems, and
This will be explained in detail with reference to FIG. 4 and subsequent figures. In Figure 4 ill
, (21, 131, +51 are respectively similar to those shown in FIGS. 1 to 5). The active layer consists of semi-insulating (lA9 substrate, N type L) & A8, and each source and drain electrode has one structure according to the present invention. The structure is basically different from the conventional structure (the difference is that it is a game).The four poles (4) are embedded in the active layer (21).

尚、この第4図C二於て(8Fはゲート電極(4νの側
面Y4*う如く設けられた高抵抗材料で例えば()a−
A/A8が用いられる。
In addition, in this Figure 4C2 (8F is a high resistance material provided like the gate electrode (4ν side surface Y4*), for example ()a-
A/A8 is used.

次にこの第4図の構造を具体的数値等Y挙げて更に詳し
く説明する。
Next, the structure shown in FIG. 4 will be explained in more detail by citing specific numerical values.

107Ω−国以上の抵抗率Y示すQIA!!基板(1)
上にゲート電極(4)となるモリブデンン電子ビーム蒸
着法にて約800OA成擾させた後、ゲート電極(4)
として必要な巾1例えば1μmだけt残存させてプクズ
マエ7テング法にてエツチング除去する8次に結晶成長
炉に挿入し、先ず101〜104Ω−国程度の抵抗”4
1に:有丁6GK(X)AJ(1〜x)−A8 (x+
o、s ) Yモツプデンの厚みと同じ厚みまで成員さ
せて高抵抗材料(8)ン得、aいてキャリヤflkK1
〜2X10  ts   のN型tnaahs動作層′
0 (21v1500〜2000A堆槓する。峡後C二この
動作層(2)上(ニソース、ドレイン(極I;(14)
χAu+0・合金とN1とt用いて形成Tる。この’(
tii3114)間隔は5〜42mである。
QIA showing resistivity Y higher than 107Ω-country! ! Board (1)
After depositing approximately 800 OA of molybdenum on top using electron beam evaporation, the gate electrode (4) is formed.
Leave the required width 1, for example, 1 μm, and remove it by etching using the Pukuzumae 7 Tenning method. 8 Next, insert it into a crystal growth furnace, and first make a resistance of 101 to 104 Ω - about the same as that of Japan.
To 1: 6 GK (X) AJ (1~x) - A8 (x+
o, s) A high-resistance material (8) is obtained by forming the material to the same thickness as that of Y motsupuden, and a carrier flkK1 is obtained.
~2X10 ts N-type tnaahs working layer'
0 (21v1500~2000A deposit. After the isthmus C2 on this working layer (2) (Ni source, drain (pole I; (14)
Formed using χAu+0 alloy, N1 and t. this'(
tii3114) Spacing is 5-42 m.

このよう書ニして得られたFgT≦;於て、所望の値よ
りピンチオフ電圧(Vp)が茜い場合(二は動作層(2
1の表面gNaOH−’8202系のエッチャントで僅
かづつエツチングする事C二依ってビンデオフ゛鴫圧(
vp)vJvrIi!lの値−二まで制御する≠が出米
る。
If the pinch-off voltage (Vp) obtained in this way is lower than the desired value (the second is the operating layer (2
The surface of 1 is etched little by little with NaOH-'8202 etchant.
vp)vJvrIi! ≠, which controls the value of l to -2, appears.

尚、高抵抗材料闇はゲート°鑞jf114)の浮遊容i
i?減少せしめる一ン持っている。
In addition, the high-resistance material is the floating capacity of the gate
i? I have one that reduces it.

弔5図11本発明の他の実施例を示しており、44図の
ものt−1本構成とし、ソース抵抗(R8)。
5. Figure 11 shows another embodiment of the present invention, in which the one shown in Figure 44 has a configuration of t-1 and a source resistor (R8).

ドレイン抵抗(HD1g下げる為砿;吻作1(2)の厚
みY厚(し、その代りC:ゲート4極(4)直上の動作
1−(2)4二jfm(6)t−設けたものである。
Drain resistance (to lower HD1g; thickness of 1 (2) Y thickness (instead C: operation 1-(2) 42 jfm (6) t- provided directly above gate 4 poles (4) It is.

Ijs6図は更e:別の実施例Y示しており、第4因の
高抵抗層(樹の代・ハ二81m5<’4の絶縁物(9)
を設けだものである。具体的(二は基板(11表面上−
二81S−N41に:形成した後、ゲート形成部域1;
窓開けした後、ゲート電極ン構成するモリブデンン堆積
し。
The figure Ijs6 further shows another example Y, in which the fourth factor, the high resistance layer (the insulator (9)
is established. Concrete (2 is the substrate (11 on the surface)
281S-N41: After forming, gate forming area 1;
After opening the window, molybdenum is deposited to form the gate electrode.

ブフズマエッデング技術にて所望形状のゲート磁極(4
)並びに811N4の絶縁物(9)!得、以後は先の実
施例と同様に動作層(21並びにソース、ドレイン電極
t31 (41t’影形成る。尚、この実施例g;於け
る動作層(2;の厚みは2600又〜2800又でソー
ス抵抗(R8)、  ドレイン抵抗(RD )は低いも
のが得られる。
Gate magnetic poles of desired shape (4
) and 811N4 insulator (9)! From then on, the active layer (21) and the source and drain electrodes t31 (41t' are shaded) in the same way as in the previous example.The thickness of the active layer (2) in this example g is 2600 to 2800 mm. With this, low source resistance (R8) and low drain resistance (RD) can be obtained.

また第7図も本発明の実施例を示しており、この実施例
C二於てはソース、ドレインIIL極131(41も動
作@ 121内6二堀め込まれている。即ち基板(11
上に51gn4(91Y成長させた後、ゲート電極領域
の窓開はンし1次4:ソース、ドレイン電極!31(4
)並びCニゲート電極(5)をモリブデン1;依って形
成し、鯖いてI X 10−19−国 以下の抵抗率Y
有する偽伝導のN″” GaAl1 uav 4000
二5L]00iFffi長させ、その後は他の実施例と
同様に動作1i1121t−得る。
FIG. 7 also shows an embodiment of the present invention, and in this embodiment C2, the source and drain IIL poles 131 (41) are also embedded in the operation @ 121. That is, the substrate (11
After growing 51gn4 (91Y) on top, open a window in the gate electrode area and form a primary 4: source, drain electrode!31(4
) array C gate electrode (5) is formed with molybdenum 1;
False conduction with N″” GaAl1 uav 4000
25L] 00iFffi, and thereafter operate similarly to the other embodiments to obtain 1i1121t-.

コUJ N” G a A I(laはソース、ドレイ
ン4m+3+14)とトンネル効果に依るオーム性な得
る為のものである。
This is to obtain ohmic properties due to the tunnel effect.

更に第8図は第7図の実施例構造C:於けるソース抵抗
、ドレイン抵抗を下げる為i二動作層(21t−厚くシ
、ゲート電極15)箇所のみtメチ構造(6)として薄
くしている。
Furthermore, FIG. 8 shows the example structure C in FIG. 7: In order to lower the source resistance and drain resistance, only the i-bi-operating layer (21t-thick, gate electrode 15) is made thinner as a t-metal structure (6). There is.

以上に述ぺた如く1本発明C;係るシブ1トキ型FM’
l”はゲート電極が動作層内に埋設された構成であるの
で、電極パターン形成後でも動作lll1t−全面或い
はメチエッチする事に依って特性の微調整が可能となり
、所−の特性のFETt−高い精度で得る事が出来る。
As mentioned above, the present invention C;
Since the gate electrode is buried in the active layer, it is possible to fine-tune the characteristics by etching the entire surface or the etching layer even after the electrode pattern is formed. Accuracy can be achieved.

鍛後響二本実明F1丁構造な可能ならしめた動作層結晶
成長過程に就いて説明な加えておく0例えば第9図ta
ll:示す如(、半絶縁性GILAII結晶から成る基
板(11の主結晶表面(100)上6;例えばモリブデ
ン、或いはタングステン等のゲート電極金属(4)を電
子ビーム蒸着法(:で堆積する。その後ドライエツチン
グ技術を用いてGILAI結晶の軸<110>と平行な
方間シニ巾710μ程度のストクイプY形成する。続い
て清浄処理後、 As0I!1−Ga−Ht 糸気相法
、或いはトリメデル、トリメテルアルミニワム等を用い
た有機金属材料便用の熱分解法等を採用して第9図11
)+(0)4:示す如く動作層(2(を構成するN型G
&A8 &結晶成長させる。その時の成長温度に700
〜750℃で、結晶主表面<100>軸方向の成長速度
は100〜500^/11 i Hの範囲で制御される
。この時の結晶成長は基板(1)結晶の露出部から始ま
り、4m金属(4)の高さまで違すると、第9図(11
1のように(i金属(4)表面に沿って横方向に成員が
始まり、その横方向の成長は縦方向の成員速度の約20
〜50倍であるので、モリブデンは直ちCM型()&A
8結晶の動作層(211二埋め込まれる。この時の動作
11112)の横方向の成員は50tm程度まで可能で
ある。この成長結晶動作層(2)め電子移動度は、1〜
3 X 10  /as’リキャリャ濃fil−を二対
して約5000国/V・8・Oである。そしてこの成長
結晶動作層(2)と4橋金属(4)との界面特性、即ち
ショットキ特性は、$11/。
I would like to add an explanation of the active layer crystal growth process that made the F1 structure possible, for example, Figure 9.
As shown, a gate electrode metal (4) such as molybdenum or tungsten is deposited by electron beam evaporation (6) on the main crystal surface (100) of a substrate (11) consisting of a semi-insulating GILA II crystal. Thereafter, a dry etching technique is used to form a strip Y with a width of about 710μ parallel to the axis <110> of the GILAI crystal.Subsequently, after a cleaning treatment, As0I!1-Ga-Ht thread vapor phase method or trimedel, Figure 9-11 is obtained by employing a pyrolysis method for organometallic materials using trimether aluminum and the like.
)+(0)4: As shown, the N-type G
&A8 &Grow crystals. 700 to the growth temperature at that time.
At ~750°C, the growth rate in the <100> axis direction of the crystal main surface is controlled in the range of 100~500^/11<i>H. At this time, the crystal growth starts from the exposed part of the crystal of the substrate (1), and if the height of the metal (4) is varied by 4 m, as shown in Fig. 9 (11).
As in 1, (i metal (4) membership starts laterally along the surface, and its lateral growth is about 20% of the longitudinal membership rate.
~50 times, so molybdenum is immediately CM type ()&A
The lateral member of the 8-crystal active layer (211 and 2 embedded, at this time 11112) can be up to about 50 tm. The electron mobility for this grown crystal operating layer (2) is 1 to
3 x 10 /as'recarrier thick fil- to 2 is about 5000 countries/V.8.O. The interface characteristics between the grown crystal operating layer (2) and the four-bridge metal (4), that is, the Schottky characteristics, are $11/.

第2図、′!lN3図6二示した従来のものと、電流−
磁圧特性、電圧−容量特性等C二於て大差はなかった。
Figure 2, ′! lN3 Fig. 6 The conventional one shown in Figure 6 and the current -
There was no significant difference in magnetic pressure characteristics, voltage-capacitance characteristics, etc. in C2.

動作111(2)としてはGILAlg:、限る事z<
、GIX)Aj’(1−43AI(X=α6〜0.4)
やGl&PやInP等の化合物半導体も同様(二用い得
るであろう、また結晶層(2)の横方向の成長はモリブ
デン等の金属以外にも110m、ailN41Al!2
oi  等の絶縁物上シ;も同じよう(;生じる事が実
験的(;確められている。
As operation 111(2), GILAlg:, limit z<
, GIX)Aj'(1-43AI(X=α6~0.4)
Similarly, compound semiconductors such as Gl&P and InP can also be used, and the lateral growth of the crystal layer (2) is 110 m in addition to metals such as molybdenum, ailN41Al!2
It has been experimentally confirmed that the same phenomenon occurs on insulating materials such as oi.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6因は従来のPBTの構造を示す断面図、
1%4因乃至s8図は本発明FITの構造を示す断IT
i図、第9図は本発明に於ける結晶成長過程Y示す断面
図であつ工、(1)は基板、(2)は動作19.15)
はゲート磁極、(8)は高抵抗材料、(9)は粘縁物、
V夫々示している。
Figures 1 to 6 are cross-sectional views showing the structure of conventional PBT;
The 1%4 factor to s8 diagram is a cut IT diagram showing the structure of the FIT of the present invention.
Figure i and Figure 9 are cross-sectional views showing the crystal growth process Y in the present invention, (1) is the substrate, (2) is the operation 19.15)
is a gate magnetic pole, (8) is a high-resistance material, (9) is a sticky material,
V is shown respectively.

Claims (1)

【特許請求の範囲】 1)基板表面C二股けた導電材料から成るゲーFiit
橋と、該ゲート電極も含めた上記基板表向(;形成した
半導体材料から成る動作層と、該動作1−上C;上紀ゲ
ート電極Y狭む如く被着したソース、ドレイン成極と、
から成るシ!y)キ型電界効果トフンVスタ。 2)上記基板は半絶縁性の化合物半導体である事ン等黴
とした特許請求の範囲第1項記載のショットキ型罐界効
果トフンジスタ。 6)上ε半絶縁性の化合物半導体はGILAJである事
【特徴とした特許請求の範囲第2項記載のりヨットキy
J14界効果トフンジスタ。 4)上記動作層はN型のeaム8である事を特徴とする
特許請求の範囲第1項、第2項又は′#I5項妃載のシ
ョットキ型゛峨界効果トフンジスタ。 5)上記ゲート電極はモリブデンである事を特徴とする
特許請求の範囲第1項、第2項、第3項又は44項記載
のνgy)キ型電界効果トフンジスタ。 6)上記ゲート電極の側面は高抵抗材料1;依って覆わ
れている事な特徴とした特許請求の範囲第1項、第2項
、第3項、第4項、又は第5項記載のV目ットキ型電界
効果) ?ンジスタ。 7】上記ゲート電極のt!1ikiは絶縁材料6二依っ
て覆われている事な特徴とした特許請求の範囲第1項、
s2項、第5項、第4項又は第5項記載のりヨ1トキ型
電界効果トフンνス!。 8)上記ゲート鴫砂直上の動作Rk他の箇所の動作層よ
り薄く構成した亭t’!!I#徴とする特許請求の範1
8第1項、第2項、第3項、第4項、第5項第6項又は
117項e載のりヨ7トキ型磁界効果[フンラスタ。
[Claims] 1) A game device made of a conductive material with a bifurcated substrate surface C.
a bridge, the surface of the substrate including the gate electrode (; an operating layer made of a formed semiconductor material; the operation 1-upper C; upper gate electrode Y; source and drain polarization deposited in a narrow manner;
Consisting of! y) Type-K field effect tofun V star. 2) The Schottky type can field effect transistor according to claim 1, wherein the substrate is a semi-insulating compound semiconductor. 6) The upper ε semi-insulating compound semiconductor is GILAJ.
J14 world effect tofunjista. 4) The Schottky type field effect transistor as claimed in claim 1, 2, or '#I5, wherein the active layer is an N-type beam 8. 5) A νgy) Q-type field effect transistor according to claim 1, 2, 3 or 44, wherein the gate electrode is made of molybdenum. 6) The side surface of the gate electrode is covered with a high-resistance material 1; V-eye type electric field effect)? Njista. 7] t! of the above gate electrode! Claim 1 characterized in that 1 is covered with an insulating material 6,
s2, 5th, 4th or 5th term 1-type field effect function νs! . 8) The operating layer directly above the gate sand is made thinner than the operating layer at other locations! ! Claim 1 characterized by I#
8 Section 1, Section 2, Section 3, Section 4, Section 5, Section 6 or Section 117e 7 Toki-type magnetic field effect [Funrasta.
JP14516981A 1981-09-14 1981-09-14 Schottky junction type field effect transistor Pending JPS5846681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14516981A JPS5846681A (en) 1981-09-14 1981-09-14 Schottky junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14516981A JPS5846681A (en) 1981-09-14 1981-09-14 Schottky junction type field effect transistor

Publications (1)

Publication Number Publication Date
JPS5846681A true JPS5846681A (en) 1983-03-18

Family

ID=15379022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14516981A Pending JPS5846681A (en) 1981-09-14 1981-09-14 Schottky junction type field effect transistor

Country Status (1)

Country Link
JP (1) JPS5846681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302842A (en) * 1992-07-20 1994-04-12 Bell Communications Research, Inc. Field-effect transistor formed over gate electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302842A (en) * 1992-07-20 1994-04-12 Bell Communications Research, Inc. Field-effect transistor formed over gate electrode
US5401665A (en) * 1992-07-20 1995-03-28 Bell Communications Research, Inc. Method of fabricating a field-effect transistor over gate electrode

Similar Documents

Publication Publication Date Title
US2900531A (en) Field-effect transistor
US4262296A (en) Vertical field effect transistor with improved gate and channel structure
US4404732A (en) Self-aligned extended epitaxy mesfet fabrication process
US4482907A (en) Planar-type field-effect transistor having metallized-well electrodes and a method of fabrication of said transistor
JPH0358177B2 (en)
US11949019B2 (en) Thin film semiconductor switching device
JP2577345B2 (en) Semiconductor device
JPS5846681A (en) Schottky junction type field effect transistor
JPS5844771A (en) Junction type field effect transistor and manufacture thereof
JPS6339110B2 (en)
JPS6237890B2 (en)
JPS6154673A (en) Field-effect type semiconductor device
JPS58148464A (en) Mes type field effect transistor
KR102580260B1 (en) A space-free vertical field effect transistor comprising an active layer having vertically grown grains
JPS59165463A (en) Manufacture of compound semiconductor field effect transistor
JP2713152B2 (en) Single electron tunneling effect element and method of manufacturing the same
JPS58145162A (en) Manufacture of semiconductor device
JPS59127871A (en) Manufacture of semiconductor device
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPS62113476A (en) Thin-film transistor
JP2802971B2 (en) Semiconductor device
JPS6353709B2 (en)
JPH024137B2 (en)
JPS5833715B2 (en) semiconductor equipment
JPH0226791B2 (en)