JPS5846472B2 - Magnetic material with rectangular hysteresis curve - Google Patents

Magnetic material with rectangular hysteresis curve

Info

Publication number
JPS5846472B2
JPS5846472B2 JP53007848A JP784878A JPS5846472B2 JP S5846472 B2 JPS5846472 B2 JP S5846472B2 JP 53007848 A JP53007848 A JP 53007848A JP 784878 A JP784878 A JP 784878A JP S5846472 B2 JPS5846472 B2 JP S5846472B2
Authority
JP
Japan
Prior art keywords
mol
added
oxide
ferrite
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53007848A
Other languages
Japanese (ja)
Other versions
JPS54101810A (en
Inventor
明 井坂
隆 久保
俊夫 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP53007848A priority Critical patent/JPS5846472B2/en
Publication of JPS54101810A publication Critical patent/JPS54101810A/en
Publication of JPS5846472B2 publication Critical patent/JPS5846472B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は矩形履歴曲線を有する磁性材料に関し特に広範
囲な温度領域で動作する記憶磁心材料を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic material having a rectangular hysteresis curve, and in particular provides a storage core material that operates over a wide temperature range.

周知のとおり、電子計算機等における記憶素子としての
環状磁心としては矩形履歴曲線を呈する磁性材料が用い
られている。
As is well known, a magnetic material exhibiting a rectangular hysteresis curve is used as an annular magnetic core as a memory element in electronic computers and the like.

ところで、この種の磁心に用いられる磁性材料としては
、低雑音・低l雑音の観点から磁気履歴曲線が角型であ
ること、磁心駆動電流が小さいことしたがって抗磁力H
6が小さいこと、温度特性が良いこと、低コストである
こと等が望まれている。
By the way, the magnetic material used for this type of magnetic core must have a rectangular magnetic hysteresis curve from the viewpoint of low noise and low l noise, and must have a small core drive current and therefore have a low coercive force H.
6, good temperature characteristics, low cost, etc. are desired.

一力、駆動電流が低く、空気中焼結が可能で低コストの
磁心材料として、L i −Mn −Z n系フェライ
トが知られている。
Li-Mn-Zn-based ferrite is known as a low-cost magnetic core material that has a low driving current and can be sintered in air.

また、このL i −Mn −Z n系フェライトにC
oを添加して温度特性を改良したものも知られている。
Moreover, C in this Li-Mn-Zn ferrite
It is also known that the temperature characteristics are improved by adding o.

このL i −Mn −Z n系フェライトへのCoの
添加効果を知るため、Coの添加量をO〜2.0モ/L
/%の範囲で変化させた各材料よりなる磁心について従
来この種磁心の特性評価方法に従い、第1図に示すごと
き、パルス系列によって、特性を測定した。
In order to understand the effect of adding Co to this L i -Mn -Z n-based ferrite, the amount of Co added was adjusted from O to 2.0 mo/L.
The characteristics of the magnetic cores made of the various materials varied within the range of 0.25% were measured using a pulse sequence as shown in FIG. 1, according to the conventional method for evaluating the characteristics of this type of magnetic core.

第1図において、■fは駆動電流値、Idは妨害電流値
、UV1は非妨害”1”信号の出力電圧の最大値、UV
1は妨害”1”信号の出力電圧の最大値、DVoは妨害
”O”信号の出力電圧の最大値を示す。
In Figure 1, f is the drive current value, Id is the disturbance current value, UV1 is the maximum value of the output voltage of the non-disturbing "1" signal, and UV
1 indicates the maximum value of the output voltage of the disturbance "1" signal, and DVo indicates the maximum value of the output voltage of the disturbance "O" signal.

第2図はその測定結果を示すグラフで、t は非妨害”
■”信号出力パルスのピーキング時間で、パルス立上り
の10係地点から最大値迄の時間で、S/NはUV1/
DV。
Figure 2 is a graph showing the measurement results, where t is "no interference"
■”The peaking time of the signal output pulse, the time from the 10th point of the pulse rise to the maximum value, S/N is UV1/
DV.

で与えた。第2図から明らかなように、L i −Mn
−Z n系フェライトへのCoの添加は、DVoの増
大、従って角型比の劣化を招きS/Nを悪くすることに
なります。
I gave it to you. As is clear from FIG. 2, L i −Mn
-Z Adding Co to n-based ferrite increases the DVo, thereby deteriorating the squareness ratio and worsening the S/N.

すなわち、温度特性の改善のために用いたCoが角型比
、S/Nの点からは、かえって好ましくないことになり
ます。
In other words, Co, which is used to improve temperature characteristics, is actually less desirable in terms of squareness ratio and S/N.

これを解決するためにL i −M n −Co系フェ
ライトにNiを添加することによって、角型比を高く維
持しようとした材料が知られている。
In order to solve this problem, a material is known in which Ni is added to Li-Mn-Co-based ferrite to maintain a high squareness ratio.

第3図は、LiMn−Zn系フェライトへのCo添加量
1.2モル条一定として、Nlを0〜10モル幅の範囲
で種々添加したときの、第2図と同様の測定結果で、N
i添加量の増加とともにDV、が減少し、S/Nが増加
し、第2図との比較から、Niの添加量が、4モル%を
越えた範囲で、Co添加によるDvoの増加、S/Nの
劣化を補償できることがわかる。
Figure 3 shows the same measurement results as in Figure 2 when the amount of Co added to LiMn-Zn ferrite was constant at 1.2 mol, and Nl was added in various amounts in the range of 0 to 10 mol.
As the amount of Ni added increases, DV decreases and S/N increases, and from comparison with FIG. It can be seen that the deterioration of /N can be compensated for.

実際従来公知のL i −Mn −Z n −Co −
N i系フェライトではNiの添加量は4.5モル条以
上必要であるとされている。
In fact, the conventionally known Li-Mn-Zn-Co-
For Ni-based ferrite, it is said that the amount of Ni added must be 4.5 mol or more.

ところで、このL i −Mn −Z n −Co −
N i系フェライトの温度特性(AI(/AT(mA、
’C))について、Co、Niの種々の添加量について
測定したところ、第4図のごとき結果を得た。
By the way, this L i -Mn -Z n -Co -
Temperature characteristics of Ni-based ferrite (AI(/AT(mA,
'C)) was measured for various amounts of Co and Ni added, and the results shown in FIG. 4 were obtained.

第4図から明らかなように、Niの3モル%以上の添加
は、温度特性が−1,0mVCを越えてしまい、Coの
添加によって温度特性を改善したことの意味が失われて
しまうことになる。
As is clear from Figure 4, if 3 mol% or more of Ni is added, the temperature characteristics will exceed -1.0 mVC, and the meaning of the improvement in temperature characteristics caused by the addition of Co will be lost. Become.

本発明は上記に鑑み、L i −M n −Z n −
Co系フェライトの改良を目的とし、Co添加の温度特
性の改善効果を失うことなく、角型比を良好に維持した
低コスト、低駆動電流の記憶磁心材料を提供することを
目的とする。
In view of the above, the present invention provides L i -M n -Z n -
The present invention aims to improve Co-based ferrite, and to provide a low-cost, low-drive-current storage core material that maintains a good squareness ratio without losing the temperature characteristic improvement effect of Co addition.

本発明の記憶磁心材料は、酸化鉄70〜80モル%、酸
化リチウムフル20モル%、および酸化マンガン6〜2
5モル係で合計が100モル条となるように選んだフェ
ライト構成成分に、酸化亜鉛2〜20モル幅、酸化コバ
ルトO〜1.7モル俤(0を含まず)および酸化ニッケ
ルO〜3モル饅(Oを含まず)を添加したリチウム・マ
ンガン・亜鉛・コバルトニッケルフェライトに副成分と
して酸化バナジウム(V2O5) O,o 1〜0.0
3wt%および酸化ビスマス(Bi203)0.01〜
0.6wt%の少くとも一方を添加(但し複合添加の場
合は合量は、0,01〜0.7wt%とする。
The storage core material of the present invention contains 70 to 80 mol% of iron oxide, 20 mol% of lithium oxide, and 6 to 2 mol% of manganese oxide.
In addition to the ferrite constituents selected so that the total is 100 moles in 5 moles, zinc oxide 2 to 20 moles, cobalt oxide O to 1.7 moles (not including 0), and nickel oxide O to 3 moles. Vanadium oxide (V2O5) as a subcomponent to lithium, manganese, zinc, cobalt nickel ferrite added with rice cake (not containing O) O, o 1 to 0.0
3wt% and bismuth oxide (Bi203) 0.01~
At least one of them is added at 0.6 wt% (however, in the case of combined addition, the total amount is 0.01 to 0.7 wt%).

)したことを特徴とする矩形履歴曲線を有する磁性材料
である。
) is a magnetic material with a rectangular hysteresis curve.

簡単に言えば、本発明の磁性材料は、LiMn −Z
n −Co −N i フェライトのNiの添加量を
3モル%以下の範囲に抑え、V2O5,0,01〜0.
03wt%ないしBi2O30,01〜0.6wt %
添加することによって、角型比および温度特性ともに良
好な磁心材料を提供するものである。
Briefly, the magnetic material of the present invention is LiMn-Z
n -Co -N i The amount of Ni added in the ferrite is suppressed to a range of 3 mol% or less, and V2O5,0,01 to 0.
03wt% or Bi2O30.01~0.6wt%
By adding it, a magnetic core material with good squareness ratio and temperature characteristics can be provided.

なお、NiOを3モル%以下にした理由は、上述のよう
に、Ni03モル条を越えると、温度特性が悪くなるこ
とによる。
The reason for setting the NiO content to 3 mol% or less is that, as mentioned above, if the NiO3 mol value is exceeded, the temperature characteristics deteriorate.

またV2O5を0.01〜0、03 w t %、 B
i203を0.01〜0.6wt%。
In addition, V2O5 was added at 0.01 to 0.03 wt%, B
0.01 to 0.6 wt% of i203.

V 505 + B i203を0.01〜0.7wt
%に限定した理由は、この範囲以外では、これらの添
加によるS/Nの改善効果が認められないことによる。
V 505 + B i203 0.01-0.7wt
% is because outside this range, the S/N improvement effect of these additions is not observed.

その他の成分量の限定理由は、上記範囲外では、Bi2
O3やV2O5の添加効果が認められなくなり角型比の
低下、抗磁力H6の増大、温度特性の劣化等を引き起す
ためである。
The reason for limiting the amount of other components is that outside the above range, Bi2
This is because the effect of adding O3 and V2O5 is no longer recognized, causing a decrease in squareness ratio, an increase in coercive force H6, and deterioration of temperature characteristics.

本発明の磁心材料の製造は、上述した組成範囲で調整し
た混合粉末を大気中700〜900℃で予備焼成し、粉
砕、混合してバインダー(例えばホリビニールアルコー
ル)を添加して所望の形状に加圧成型した後、空気雰囲
気中(あるいは酸素雰囲気中)にて1050’C〜12
00℃で本焼成し、同雰囲気中で冷却して行なわれる。
The magnetic core material of the present invention is produced by pre-calcining the mixed powder adjusted to the above-mentioned composition range in the atmosphere at 700 to 900°C, pulverizing and mixing, and adding a binder (for example, hollyvinyl alcohol) to form the desired shape. After pressure molding, it is heated to 1050'C to 12°C in an air atmosphere (or oxygen atmosphere).
The main firing is carried out at 00°C and then cooled in the same atmosphere.

第5図は、本発明の一実施例の特性を示すグラフで、L
120313.5モル%、Mn015.0モル%、Z
n010.0モル条、F e 20371.5モル%、
にCo1.5モル%、Ni 1.0モル%を添カロし
たものに、Bi2O3の種々の量を添加したときの特性
を示す。
FIG. 5 is a graph showing the characteristics of one embodiment of the present invention.
120313.5 mol%, Mn0 15.0 mol%, Z
n010.0 mol article, Fe 20371.5 mol%,
The characteristics obtained when various amounts of Bi2O3 were added to 1.5 mol% of Co and 1.0 mol% of Ni are shown.

この図から明らかなように、Bi2O3が0.01〜Q
、 6 w t%の範囲で添加された場合、抗磁力Hc
はB 1203がQ、1wt俤で最大となり温度特性は
Bi2O3の添加量に依存せず−0,35mA/℃一定
と良好な値を示す。
As is clear from this figure, Bi2O3 is 0.01~Q
, when added in the range of 6 wt%, the coercive force Hc
B 1203 reaches its maximum when Q and 1 wt rise, and the temperature characteristics do not depend on the amount of Bi2O3 added and show a good value of constant -0.35 mA/°C.

またS/Nおよびj雑音がともに改善されることが明ら
かである。
It is also clear that both S/N and j-noise are improved.

第6図は、V2O5を添加する場合の実施例のデータを
示し、L + 20313°5モル%、Mn015.0
モル%、 Zn010.0モル宏Fe20371.5モ
ル俤にCo 1.5モル%、Ni 1.0モル条を添
加したものへV2O5を添加した場合のv20.の添加
量と特性との関係を示す。
FIG. 6 shows the data of the example when V2O5 is added, L + 20313°5 mol%, Mn015.0
V20 when V2O5 is added to 1.5 mol% of Co and 1.0 mol of Ni to 1.5 mol of Zn010.0 mol. The relationship between the amount of addition and characteristics is shown.

この図から明らかなように、VOを0.01=0.03
wt%の範囲で添加5 することによって、HoはV2O5が0.05wt%で
最大となり温度特性はV2O5の添加量に依存せず−0
,35mA/’C一定と良好な値を示す。
As is clear from this figure, VO is 0.01=0.03
By adding V2O5 in the wt% range of 5, Ho reaches its maximum at 0.05wt% of V2O5, and the temperature characteristics do not depend on the amount of V2O5 added and become -0.
, a constant value of 35 mA/'C.

またS/NおよびA雑音がともに改善されることが明か
である。
It is also clear that both S/N and A noise are improved.

第7図は、B 1203と■205の共同添加の場合の
実施例で、Li20313.5モル%、MnO15,0
モル%、Zn010.0モル%、 Fe 20s 71
.5モル%に、Co 1.5モル幅、Ni 1.0モ
ル幅を添加したものへB l 20sおよび■205を
共同添加した場合の特性を示す図で、この図から、Bi
2O3と■205の共同添加では、0.01〜0.07
wt %の範囲で、HoはBi2O3が0.1wt%で
最大で■■2o、の一定添加量が0.3wt%と多くな
るにつれ曲線がブロードになる。
Figure 7 shows an example in which B 1203 and ■205 are jointly added, Li20313.5 mol%, MnO15.0
Mol%, Zn010.0mol%, Fe 20s 71
.. This is a diagram showing the characteristics when B l 20s and ■ 205 are jointly added to 5 mol %, Co 1.5 mol width and Ni 1.0 mol width.
For joint addition of 2O3 and ■205, 0.01 to 0.07
In the range of wt%, Ho has a maximum of ■■2O when Bi2O3 is 0.1wt%, and the curve becomes broader as the constant addition amount increases to 0.3wt%.

温度特性は添加量に依存せず−3,5mA/’Cと良好
な値を示す。
The temperature characteristics do not depend on the amount added and show a good value of -3.5 mA/'C.

またS/Nおよびd雑音が改善されることがわかる。It can also be seen that the S/N and d noise are improved.

以上の実施例から明らかなように、Li−Mn−Zn系
フェライトへ温度特性の改善のためにCoを添加したも
のにおける角型化劣化を改善するためにNiを更に添加
したものにおいて、温度特性の劣化の観点から、Niの
添加を3モルφ以下に抑えた場合における角型比したが
ってS/Nの低下をB1□03ないしv20.の添加で
補うことができ、従って、温度特性およびS/Nしたが
って角型比がともに良好な磁心材料を得ることができる
As is clear from the above examples, the temperature characteristics of Li-Mn-Zn ferrites in which Co was added to improve the temperature characteristics and Ni was further added to improve the squaring deterioration From the viewpoint of deterioration of B1□03 to v20. This can be supplemented by the addition of , and therefore a magnetic core material with good temperature characteristics and good S/N, and therefore squareness ratio, can be obtained.

このようなり t 203や■20.の添加によって、
特性が改善される理由は、L i −Mn −Z n
−Co−Niフェライトへ添加されたBi2O3や■2
05がフェライト製造時における生成反応を円滑に促進
させ、緻密なスピネル型フェライトを形成させるととも
に結晶粒を均一化させるように作用することによるもの
と考えられる。
It goes like this t 203 and ■20. By the addition of
The reason why the characteristics are improved is that L i −Mn −Z n
-Bi2O3 and ■2 added to Co-Ni ferrite
This is thought to be due to the fact that 05 acts to smoothly promote the production reaction during ferrite production, form a dense spinel type ferrite, and make the crystal grains uniform.

上述したように本発明によれば、温度特性、角型比、抗
磁力ともに良好な、従って、S/N、1雑音、駆動電流
ともに良好な磁心材料を得ることができる。
As described above, according to the present invention, it is possible to obtain a magnetic core material that has good temperature characteristics, squareness ratio, and coercive force, and therefore has good S/N, 1 noise, and drive current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、磁心特性の測定に用いられるパルス系列を示
す図で、図において、■f・・・・・・駆動電流値、I
d・・・・・・妨害電流値、UV1・・・・・・非妨害
″′1信号の出力電圧の最大値、D■1・・・・・・妨
害“1”信号の出力電圧の最大値、DVo・・・・・・
妨害”0゛′信号の出力電圧の最大値を示す。 第2図は、Li−M n −Z nフェライトへのCo
の添加の特性変化を示す図、第3図は、L i −M
n−Z n −C。 フェライトへのNiの添加による特性変化を示す図、第
4図は、Li−Mn−ZnフェライトへのCoとNiの
同添加の場合の温度特性の変化を示す図、第5図から第
7図は、本発明の実施例の特性を示す図で、第5図はB
i203の添加量による特性の変化を示す図、第6図
はv205の添加量による特性の変化を示す図、第7図
はB I 20 +■205の添加による特性の変化を
示す図である。
FIG. 1 is a diagram showing a pulse sequence used for measuring magnetic core characteristics.
d...Disturbance current value, UV1...Maximum output voltage of non-disturbing "'1" signal, D■1... Maximum output voltage of disturbance "1" signal Value, DVo...
The maximum value of the output voltage of the disturbance "0" signal is shown.
Figure 3 shows the change in characteristics due to the addition of L i -M
n-Z n-C. Figure 4 is a diagram showing changes in characteristics due to the addition of Ni to ferrite, and Figures 5 to 7 are diagrams showing changes in temperature characteristics when Co and Ni are added to Li-Mn-Zn ferrite at the same time. is a diagram showing the characteristics of the embodiment of the present invention, and FIG.
FIG. 6 is a diagram showing changes in characteristics depending on the amount of i203 added, FIG. 6 is a diagram showing changes in characteristics depending on the amount of v205 added, and FIG. 7 is a diagram showing changes in characteristics due to addition of B I 20 +■205.

Claims (1)

【特許請求の範囲】 1 酸化鉄(Fe203 ) 70〜80モ/L/%
、酸化リチウム(L l 20 ) 7〜20モル係、
および酸化マンガン(MnO)6〜25モル係で合計が
100モルφとなるように選んだフェライト構成成分に
酸化亜鉛(ZnO)2〜20モル条、酸化コバルト(C
od)0〜1.7モル%(0を含まず)および酸化ニッ
ケル(Nip)O〜3モル’%(Oを含まず)を添加し
7たリチウム・マンガン・亜鉛・コバルトニッケルフェ
ライトに、副成分として酸化バナジウム(v2o5)
0.01−0.03wt %aよび酸化ビスマス(Bt
203)0.01〜0.6vvt %の少くとも一力を
添加(但し複合添加の場合は合量は0.01〜o、7w
t%とする。 )したことを特徴とする矩形履歴曲線を有する磁性材料
[Claims] 1. Iron oxide (Fe203) 70-80 mo/L/%
, 7 to 20 moles of lithium oxide (L l 20 ),
2 to 20 moles of zinc oxide (ZnO) and 2 to 20 moles of zinc oxide (ZnO) and cobalt oxide (C
od) 0 to 1.7 mol% (excluding 0) and nickel oxide (Nip) O to 3 mol'% (excluding O) to lithium-manganese-zinc-cobalt-nickel ferrite, and Vanadium oxide (v2o5) as a component
0.01-0.03wt%a and bismuth oxide (Bt
203) Add at least 0.01~0.6vvt% (however, in case of combined addition, the total amount is 0.01~0,7w)
It is assumed to be t%. ) A magnetic material having a rectangular hysteresis curve.
JP53007848A 1978-01-28 1978-01-28 Magnetic material with rectangular hysteresis curve Expired JPS5846472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53007848A JPS5846472B2 (en) 1978-01-28 1978-01-28 Magnetic material with rectangular hysteresis curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53007848A JPS5846472B2 (en) 1978-01-28 1978-01-28 Magnetic material with rectangular hysteresis curve

Publications (2)

Publication Number Publication Date
JPS54101810A JPS54101810A (en) 1979-08-10
JPS5846472B2 true JPS5846472B2 (en) 1983-10-17

Family

ID=11677032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53007848A Expired JPS5846472B2 (en) 1978-01-28 1978-01-28 Magnetic material with rectangular hysteresis curve

Country Status (1)

Country Link
JP (1) JPS5846472B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK150291A (en) * 1991-08-23 1993-02-24 Ferroperm Components Aps CHIP TRANSFORMATIONS AND PROCEDURES FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JPS54101810A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
GB820959A (en) Improvements in or relating to ferromagnetic materials of the ferrite type and methods of manufacturing same
US2685568A (en) Soft ferromagnetic mixed ferrite material
JPS5846472B2 (en) Magnetic material with rectangular hysteresis curve
US3038860A (en) Lithium nickel ferrites
JPS62179704A (en) Fe-based amorphous core excellent in controlling magnetization characteristics
US3065182A (en) Low flux density ferromagnetic material
JPS6217841B2 (en)
JP2504273B2 (en) Microwave / millimeter wave magnetic composition
Demazeau et al. Materials for magnetic recording derived from chromium dioxide
JP2000182816A (en) Manganese-based ferrite, transformer using the same and choke coil
JP2958800B2 (en) Microwave / millimeter wave magnetic composition
SU1539849A1 (en) Ferrite material
JPS6362206A (en) Very small loss ferrite for power source
JPH10340807A (en) Manganese-cobalt ferrite material
JPS61146795A (en) High-permeability mn-zn singing crystal ferrite
GB883291A (en) Improvements in or relating to ferromagnetic ferrite cores
JPS6054907B2 (en) Wide temperature range ferrite storage core
JPH11251126A (en) Oxide permanent magnet and its manufacture
JPS59121157A (en) High frequency magnetic material
Im et al. Memory-core characteristics of cobalt substituted lithium ferrite
JPS5853496B2 (en) Micro flywheel
JPS63222097A (en) Mn-zn based single crystal ferrite
SU490192A1 (en) Ferrite material with a rectangular hysteresis loop
JPH04177807A (en) Ferromagnetic material low-loss manganese-zinc ferrite
JPS59104103A (en) Method of producing voltage nonlinear resistance element