JPS5846471B2 - Manufacturing method of ceramic products - Google Patents

Manufacturing method of ceramic products

Info

Publication number
JPS5846471B2
JPS5846471B2 JP51074755A JP7475576A JPS5846471B2 JP S5846471 B2 JPS5846471 B2 JP S5846471B2 JP 51074755 A JP51074755 A JP 51074755A JP 7475576 A JP7475576 A JP 7475576A JP S5846471 B2 JPS5846471 B2 JP S5846471B2
Authority
JP
Japan
Prior art keywords
plastic
ceramic
product
manufacturing
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51074755A
Other languages
Japanese (ja)
Other versions
JPS53212A (en
Inventor
幹夫 村知
文好 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP51074755A priority Critical patent/JPS5846471B2/en
Publication of JPS53212A publication Critical patent/JPS53212A/en
Publication of JPS5846471B2 publication Critical patent/JPS5846471B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明はセラミック製品の製造方法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in methods for manufacturing ceramic products.

従来のセラミック成形法には、セラミック泥漿を石膏型
に流し込んで成形するスリップキャスト法や、セラミッ
ク粉末に粘土などの可塑性のある無機鉱物またはポリビ
ニルアルコールやデンプン等の有機物質を添加し、セラ
ミックに可塑性を持たせてからプレス成形したり、ある
いは押出し成形したりする方法がある。
Conventional ceramic molding methods include slip casting, in which ceramic slurry is poured into a plaster mold, and plastic inorganic minerals such as clay, or organic substances such as polyvinyl alcohol and starch are added to ceramic powder to make the ceramic plastic. There is a method of press molding or extrusion molding after giving the material a .

さらに円筒状のセラミックを成形するにはラバープレス
成形法も適している。
Furthermore, rubber press molding is also suitable for molding cylindrical ceramics.

また近年高精度のセラミック部品を大量生産する方法の
一つとして、プラスチックの成形にすでに多く採用され
ている射出成形法やトランスファー成形法あるいはプレ
ス成形法が検討されはじめた。
In recent years, injection molding, transfer molding, and press molding, which are already widely used in plastic molding, have begun to be considered as methods for mass-producing high-precision ceramic parts.

これらの成形法は、セラミック粉末にプラスチック等の
有機物を添加し混練することによりセラミックに可塑性
を与え、このものを通常プラスチックで行われているの
と同様の方法で射出成形あるいはトランスファー成形し
、得られた射出成形品を加熱してプラスチックを分解除
去(この工程を一般に脱脂工程という。
These molding methods add plasticity to ceramic powder by adding and kneading organic materials such as plastic, and then injection molding or transfer molding is performed in the same manner as is normally done for plastics. The injection molded product is heated to decompose and remove the plastic (this process is generally called the degreasing process).

)せしめた後、高温で焼成または焼結してセラミック製
品を製造するものである。
) and then fired or sintered at high temperatures to produce ceramic products.

これらの成形法を用いるとほとんどのセラミック製品は
製造可能となるが、しかしながらきわめて気孔の大きい
セラミック製品を製造する場合や、粒度がそろっていて
成形性の悪いセラミック粉末を用いる場合には該方法で
は不適当である。
Most ceramic products can be manufactured using these molding methods, however, when manufacturing ceramic products with extremely large pores, or when using ceramic powder with uniform particle size and poor moldability, these methods may not work. It's inappropriate.

なぜなら、脱脂工程においてプラスチックを完全に除去
してしまうと成形体はセラミックのみで形を保持するこ
とができず崩壊してしまい結局成形できないからである
This is because if the plastic is completely removed in the degreasing process, the molded product will be made of ceramic and will not be able to hold its shape and will collapse, making it impossible to mold it.

ここにおいて本発明者等は種々研究した結果、上記成形
性の悪いセラミックでも崩壊することなく射出成形し焼
結し得る方法を見出し、ここに提供するものである。
As a result of various studies, the inventors of the present invention have discovered a method by which even the above-mentioned ceramic having poor formability can be injection molded and sintered without collapsing, and the present invention is provided here.

すなわち、本発明によるセラミック製品の製造方法は、
セラミック粉末にプラスチックを主成分とする有機バイ
ンダーを添加して成形し、得られた成形品をプラスチッ
クの一部が残留するように脱脂処理し、これに無機バイ
ンダーを含浸させた後焼成または焼結することを特徴と
するものである。
That is, the method for manufacturing a ceramic product according to the present invention includes:
Ceramic powder is molded by adding an organic binder mainly composed of plastic, and the resulting molded product is degreased so that some of the plastic remains, impregnated with an inorganic binder, and then fired or sintered. It is characterized by:

さらに詳しく説明すると、セラミック粉末にプラスチッ
クを添加して混練してから通常の手段で成形をし、次に
得られた成形品を加熱して脱脂するが、この時若干のプ
ラスチック分が残留している状態で脱脂炉から取り出し
、次にこの成形品に無機バインダーを含浸させ、そして
焼成する方法である。
To explain in more detail, plastic is added to ceramic powder, kneaded, and then molded using normal means.The resulting molded product is then heated and degreased, but at this time some plastic remains. In this method, the molded product is taken out of the degreasing furnace in the same state as the molded product, and then the molded product is impregnated with an inorganic binder and fired.

脱脂時に残留させるプラスチック量は初期成形品の0.
1〜5重量多が良いが、もし焼成後のセラミック製品の
強度を大きくすることを考えるならば、できるだけ少な
い方が好ましい。
The amount of plastic remaining during degreasing is 0.0% of the initial molded product.
It is better to add 1 to 5 more weight, but if you want to increase the strength of the ceramic product after firing, it is preferable to use as little as possible.

このように成形品中のプラスチックを完全に除去せずに
若干残留せしめた状態として無機バインダーを含浸させ
た成形品を焼成または焼結すると、焼成時にプラスチッ
クが完全に除去されても含浸した無機バインダーが成形
体の崩壊を防ぎ、従って良好なセラミック製品が得られ
る。
If a molded product impregnated with an inorganic binder is fired or sintered with some plastic left in the molded product without being completely removed, even if the plastic is completely removed during firing, the impregnated inorganic binder will remain. prevents the molded body from collapsing, and therefore a good ceramic product can be obtained.

無機バインダーとしては、例えばコロイダルシリカ液、
水ガラス液、リチウムシリケート、アルミナゾル等が用
いられる。
Examples of inorganic binders include colloidal silica liquid,
Water glass liquid, lithium silicate, alumina sol, etc. are used.

本発明による方法を用いると、かなり多くの気孔率を有
するセラミック製品や、成形性の悪いセラミック粉末で
も焼結体とすることができる。
Using the method according to the invention, even ceramic products with a fairly high porosity and ceramic powders with poor formability can be made into sintered bodies.

本発明を更に詳しく説明するために、実施例を以下に示
すが、本発明はこれらの実施例に限定されるものではな
い。
Examples are shown below to explain the present invention in more detail, but the present invention is not limited to these Examples.

また各実施例中の残留プラスチック量は次のように計算
される。
Further, the amount of residual plastic in each example is calculated as follows.

実施例 1 粒径500μ〜2000μのアルミナ粉末に第1表に示
すような組成の樹脂を15重量饅(以下饅は重量型とす
る)添加し、高温ニーダ−にて180℃で60分間混練
する。
Example 1 15 weight dumplings (hereinafter referred to as weight-type dumplings) of a resin having the composition shown in Table 1 are added to alumina powder with a particle size of 500 μm to 2000 μm, and the mixture is kneaded in a high-temperature kneader at 180° C. for 60 minutes. .

混練後、150℃の高温ロールで板状にして、厚さ5間
で2〜10mmのペレットを作製した。
After kneading, the mixture was formed into a plate with a high temperature roll at 150° C. to produce pellets with a thickness of 5 mm and 2 to 10 mm.

このペレットを次の第2表に示す射出成形条件で成形品
を得た。
A molded article was obtained from this pellet under injection molding conditions shown in Table 2 below.

その後、第1図に示すような温度パターンで脱脂を行な
い、プラスチックが約1.5係残存している脱脂品を得
た。
Thereafter, degreasing was carried out using a temperature pattern as shown in FIG. 1 to obtain a degreased product in which approximately 1.5% of the plastic remained.

この脱脂品を第3表に示すようなコロイダルシリカ液に
浸漬して含浸させ、150℃で1時間乾燥後、1750
℃で3時間大気中で焼成し製品を得た。
This degreased product was immersed in a colloidal silica solution as shown in Table 3, and dried at 150°C for 1 hour.
A product was obtained by firing in the air at ℃ for 3 hours.

なおここで製造した製品の形状(寸法D=40mm、
d = 15mm、 t =2mm、 L=50mm)
を第2図に示す。
The shape of the product manufactured here (dimension D = 40 mm,
d = 15mm, t = 2mm, L = 50mm)
is shown in Figure 2.

得られた製品の気孔率は43係であった。The resulting product had a porosity of 43.

参考例 l 実施例1において得られた射出成形品を、脱脂温度を4
00℃まで昇温しでプラスチックを完全に除去したとこ
ろ、成型品は崩壊してしまった。
Reference Example l The injection molded product obtained in Example 1 was heated to a degreasing temperature of 4
When the temperature was raised to 00°C to completely remove the plastic, the molded product collapsed.

実施例 2 粒径1 am以下のムライト粉末に上記第1表に示す組
成のプラスチックを16%添加し、実施例1と同様の条
件で成形後、約1.1係のプラスチックが残留している
状態に脱脂した。
Example 2 16% of the plastic having the composition shown in Table 1 above was added to mullite powder with a particle size of 1 am or less, and after molding under the same conditions as Example 1, approximately 1.1 of the plastic remained. Degreased to condition.

その後下記第4表に示すJIS 3号水ガラス液に浸
漬して含浸させ、120℃で1時間乾燥した。
Thereafter, it was immersed in a JIS No. 3 water glass solution shown in Table 4 below to be impregnated, and dried at 120° C. for 1 hour.

それから1200℃の大気中で1時間焼成したところ気
孔率51係のムライト焼結体が得られた。
Then, when it was fired in the atmosphere at 1200° C. for 1 hour, a mullite sintered body with a porosity of 51 was obtained.

製品の形状は第2図に示したのと同じである。The shape of the product is the same as shown in FIG.

参考例 2 実施例2と同様の条件下で完全に脱脂したところ、参考
例1と同じく崩壊した。
Reference Example 2 When completely degreased under the same conditions as in Example 2, it collapsed as in Reference Example 1.

参考例 3 実施例2と同様の条件下で、第2図に示すような形に成
形品を置いて完全に脱脂したところやはり崩壊してしま
った。
Reference Example 3 Under the same conditions as in Example 2, a molded article was placed in the shape shown in FIG. 2 and completely degreased, but it also collapsed.

参考例 4 実施例1において、約0.7 %のプラスチックを残し
て脱脂を中止し、第2図に示すような形に置いて焼成炉
に入れて1750℃で3時間焼成したところ、やはり崩
壊してしまった。
Reference Example 4 In Example 1, degreasing was stopped leaving about 0.7% of the plastic, and when the plastic was placed in the shape shown in Figure 2 and fired at 1750°C for 3 hours, it still collapsed. have done.

実施例 3 粒径1000μ〜500μのβ−スポジューメンガラス
ピーズ(Li20− A1202− JS 102)に
、上記第1表に示したプラスチックを15%添加し、射
出成形後実施例1と同様にして第1図に示す温度パター
ンに沿って加熱し残留プラスチック量が約0.8俤にな
るように焼成した。
Example 3 15% of the plastic shown in Table 1 above was added to β-spodumene glass beads (Li20-A1202-JS 102) with a particle size of 1000μ to 500μ, and after injection molding, the same procedure as in Example 1 was carried out. The material was heated according to the temperature pattern shown in FIG. 1 and fired so that the amount of residual plastic was about 0.8 yen.

この脱脂面を第5表に示すコロイド状のリチウムシリケ
ートに浸漬して含浸させ、1050℃で1時間大気中で
焼成しセラミック焼結体を作った。
This degreased surface was immersed in colloidal lithium silicate shown in Table 5 to impregnate it, and fired in the air at 1050° C. for 1 hour to produce a ceramic sintered body.

製品の気孔率は45%であった。The porosity of the product was 45%.

又抗折強度は35Kycm2であった。Moreover, the bending strength was 35 Kycm2.

但し、抗折残寒測定用試験片は巾15間、長さ50 m
m1厚さ10間で、上記製法と同じ条件で製造した。
However, the test piece for transverse cold measurement is 15 meters wide and 50 meters long.
It was manufactured under the same conditions as the above manufacturing method, with a thickness of m1 and a thickness of 10.

参考例 5 実施例3において約o、 s %のプラスチックを残し
て脱脂を中止し、第2図のように置いて焼成炉中に入れ
、1050℃で1時間焼成したところ崩壊していた。
Reference Example 5 In Example 3, degreasing was stopped leaving about 0.5% of the plastic remaining, and the plastic was placed as shown in Fig. 2 and placed in a firing furnace, and fired at 1050°C for 1 hour, and found that it had disintegrated.

実施例 4 粒径1000μ〜500μのβ−スポジューメンがラス
ビーズにフェノール樹脂を15饅添加し、180℃で2
分間ホットプレス底形(圧力200Kv/cfIL”
) L、、第2図に示すような成形体(寸法D=50m
m、 d==10mm、 t =4mm、 L=50m
m)を製造した。
Example 4 β-spodumene with a particle size of 1000 μm to 500 μm was prepared by adding 15 ml of phenol resin to lath beads and growing at 180°C for 2 hours.
Minute hot press bottom type (pressure 200Kv/cfIL"
) L,, a molded body as shown in Fig. 2 (dimension D = 50 m
m, d==10mm, t=4mm, L=50m
m) was produced.

該成形体を空気中室温から550℃まで5時間かけて昇
温し取り出したところ残留プラスチック量は13俤であ
った。
When the molded body was heated in air from room temperature to 550° C. over 5 hours and taken out, the amount of residual plastic was 13 tons.

次にこの脱脂面を第5表に示すコロイド状リチウムシリ
ケートに浸漬して含浸し、1050℃にて1時間大気中
で焼成した。
Next, this degreased surface was impregnated by immersing it in colloidal lithium silicate shown in Table 5, and calcined in the air at 1050° C. for 1 hour.

この製品の気孔率は46饅で、変形や崩壊はなかった。The porosity of this product was 46, and there was no deformation or collapse.

参考例 6 実施例4において約1.3%のプラスチックを残して脱
脂を中止し、第2図のように置いて焼成炉中に入れ、1
050℃で1時間焼成したところ崩壊していた。
Reference Example 6 In Example 4, the degreasing was stopped leaving about 1.3% of the plastic, and the plastic was placed as shown in Figure 2 and placed in a firing furnace.
When fired at 050°C for 1 hour, it was found to have collapsed.

以上の各実施例の結果からも明らかなように、本発明の
製造方法を用いれば、従来の製造方法では不可能と考え
られていた気孔率の大きいセラミック製品が製造でき、
しかも焼成時に温度が低くても含浸バインダーの効果に
より所定の強度を得ることができる。
As is clear from the results of the above examples, by using the manufacturing method of the present invention, it is possible to manufacture ceramic products with high porosity, which was thought to be impossible with conventional manufacturing methods.
Moreover, even if the temperature during firing is low, a predetermined strength can be obtained due to the effect of the impregnated binder.

またバインダーを含浸すると、焼成温度が高いと結晶相
(又はガラス相)が転移を起こす材質(例えば安定化ジ
ルコニア、溶融珪石等)で、しかもある程度以上の強度
を必要とする場合に特に有効である。
In addition, impregnation with a binder is particularly effective for materials whose crystal phase (or glass phase) undergoes a transition when the firing temperature is high (e.g., stabilized zirconia, fused silica, etc.) and where a certain level of strength is required. .

本発明の製造方法によって得られたセラミック焼成品は
、気孔率の大きい形状の場合でも強度が優れており、し
たがって精密鋳造用中止や各種セラミック製品、例えば
パイプ、ルツボ、板等に使用することができる。
The fired ceramic products obtained by the manufacturing method of the present invention have excellent strength even in shapes with high porosity, and therefore can be used for precision casting and various ceramic products such as pipes, crucibles, plates, etc. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱脂工程における温度パターンを表わすグラ
フであり、第2図は、本発明の成形に用いた試作品の斜
視図を表わす。
FIG. 1 is a graph showing the temperature pattern in the degreasing process, and FIG. 2 is a perspective view of a prototype used for molding of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミック粉末にプラスチックを主成分とする有機
バインダーを添加して成形し、得られた成形品を加熱し
て該成形品の重量に対して0.1〜5重量俤のプラスチ
ックが残留するように脱脂処理し、これに無機バインダ
ーを含浸させた後焼成することを特徴とするセラミック
製品の製造方法。
1 Add an organic binder mainly composed of plastic to ceramic powder and mold it, and heat the resulting molded product so that 0.1 to 5 weight of plastic remains based on the weight of the molded product. A method for producing a ceramic product, which comprises degreasing the product, impregnating it with an inorganic binder, and then firing it.
JP51074755A 1976-06-24 1976-06-24 Manufacturing method of ceramic products Expired JPS5846471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51074755A JPS5846471B2 (en) 1976-06-24 1976-06-24 Manufacturing method of ceramic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51074755A JPS5846471B2 (en) 1976-06-24 1976-06-24 Manufacturing method of ceramic products

Publications (2)

Publication Number Publication Date
JPS53212A JPS53212A (en) 1978-01-05
JPS5846471B2 true JPS5846471B2 (en) 1983-10-17

Family

ID=13556394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51074755A Expired JPS5846471B2 (en) 1976-06-24 1976-06-24 Manufacturing method of ceramic products

Country Status (1)

Country Link
JP (1) JPS5846471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711082B1 (en) * 1993-10-13 1995-12-01 Snecma Process for manufacturing ceramic cores for foundries.

Also Published As

Publication number Publication date
JPS53212A (en) 1978-01-05

Similar Documents

Publication Publication Date Title
JP2604876B2 (en) Method for manufacturing ceramic honeycomb structure
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
US3880969A (en) Method of preparing an open-celled aromic foam
US3993495A (en) Porous ceramic articles and method for making same
JPH04139079A (en) Production of porous ceramics
GB1471218A (en) Fired monolithic cordierite article and method of making same
JPS5846471B2 (en) Manufacturing method of ceramic products
JPS63297267A (en) Zirconia composite refractory
JP7221498B2 (en) Ceramic filter and its manufacturing method
JP2506503B2 (en) Multilayer ceramic porous body
US4231984A (en) Process for the production of molded phosphate bonded refractory articles
JPH02154982A (en) Tool for heat treatment and manufacture thereof
JP2003089575A (en) Method for producing ceramic structure
DE2342948B2 (en) METHOD FOR MANUFACTURING CERAMIC MATERIAL HOLLOW BODIES AND THEIR USE
KR101305981B1 (en) Manufacturing method of porcelain using organic mold
JPH02199076A (en) Production of porous ceramic material
JPH0796469B2 (en) Heat resistant inorganic fiber molding
JP2571147B2 (en) Porous ceramic body and method of manufacturing the same
JPS629555B2 (en)
JPH0236549B2 (en)
JPH0234244A (en) Gypsum structure for casting
KR920008776B1 (en) Process for the preparation of alumina porous body
JPH04338178A (en) Porous magnesia sintered body and production thereof
JPH06340467A (en) Production of ceramic molded body
JPS6044305A (en) Molding die for manufacturing ceramics foam