JPS5846186B2 - Photoelectric conversion device and its manufacturing method - Google Patents

Photoelectric conversion device and its manufacturing method

Info

Publication number
JPS5846186B2
JPS5846186B2 JP55025006A JP2500680A JPS5846186B2 JP S5846186 B2 JPS5846186 B2 JP S5846186B2 JP 55025006 A JP55025006 A JP 55025006A JP 2500680 A JP2500680 A JP 2500680A JP S5846186 B2 JPS5846186 B2 JP S5846186B2
Authority
JP
Japan
Prior art keywords
light
transparent
insertion region
scanning direction
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55025006A
Other languages
Japanese (ja)
Other versions
JPS56122172A (en
Inventor
光男 今村
敏夫 山下
一三 小宮
勝 大野
博光 谷口
登 由上
喜男 籏手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55025006A priority Critical patent/JPS5846186B2/en
Publication of JPS56122172A publication Critical patent/JPS56122172A/en
Publication of JPS5846186B2 publication Critical patent/JPS5846186B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Description

【発明の詳細な説明】 本発明はファクシミIJ等の送信系に用いる光電変換装
置に関するもので、原稿と1対1に対応する大きさの光
電変換素子を用いて、構造を簡略化することを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion device used in a transmission system such as a facsimile IJ, and it is possible to simplify the structure by using a photoelectric conversion element whose size corresponds one-to-one with the original. purpose.

従来の光電変換装置では、第1図に示す様に送信原稿1
を螢光灯等の照明光源2で、均一に照明し、その反射光
をレンズ3によって光電変換素子4に結像させて時系列
の電気信号を得ている。
In the conventional photoelectric conversion device, as shown in FIG.
is uniformly illuminated by an illumination light source 2 such as a fluorescent lamp, and the reflected light is imaged on a photoelectric conversion element 4 by a lens 3 to obtain a time-series electric signal.

この場合、光電変換素子4は、IC技術によって作られ
たMOS或いはCCD等で、20rran程度のチップ
サイズであるため、送信原稿1としてA4(=200m
X290mm)を用いると、レンズの縮率は1/10程
度となり、送信原稿1から光電変換素子4までの距離は
相当大きく、そのため装置が大型化する欠点があった。
In this case, the photoelectric conversion element 4 is a MOS or CCD made using IC technology, and has a chip size of about 20 rran.
When a lens with a diameter of 290 mm) is used, the reduction ratio of the lens is approximately 1/10, and the distance from the transmission document 1 to the photoelectric conversion element 4 is considerably large, which has the disadvantage of increasing the size of the apparatus.

また、現実には、第1図の如く、1組のレンズで製作可
能であるのは、原稿サイズとしてはB6版用程度迄で、
A4版用の場合には2組のレンズを使用している。
Furthermore, in reality, as shown in Figure 1, one set of lenses can only be used for originals up to B6 size.
For A4 size, two sets of lenses are used.

これはCCD等のチップサイズが大きくなると、即ち総
ビット数が多くなると、コストが急激に上昇し、採算が
合わなくなるからである。
This is because as the chip size of a CCD or the like increases, that is, as the total number of bits increases, the cost increases rapidly and becomes unprofitable.

然るに2組のレンズを用いると、光学的に両替を結合す
るという調整作業が必要となってくる。
However, when two sets of lenses are used, adjustment work is required to optically combine the exchanges.

実際には、この調整作業は現在、製造上の一つの大きな
ネックになっている。
In fact, this adjustment work is currently a major bottleneck in manufacturing.

これに対して光学系としてレンズを用いる代りに第2図
の様に螢光灯等の照明光源2で照明された送信原稿1か
らの反射光を簡単なライトガイド又はオプティカルファ
イバなどの導光系5を通じて大型センサアレイ6に導ひ
く方法も知られている。
On the other hand, instead of using a lens as an optical system, as shown in FIG. 5 to a large sensor array 6 is also known.

この場合には原稿とセンサ間の距離はレンズを用いる系
に較べて大幅に短縮され、全体として小型化出来る利点
はあるが、導光系5とセンサとの位置合せが難しく、又
導光系5が高価であるなどの欠点がある。
In this case, the distance between the document and the sensor is significantly shortened compared to a system using a lens, which has the advantage of being smaller overall, but it is difficult to align the light guide system 5 and the sensor, and the light guide system 5 has disadvantages such as being expensive.

以上の欠点を解決する方法として、導光系を用いないで
、センサと原稿を密着させて直接読み取る方式が提案さ
れている。
As a method for solving the above-mentioned drawbacks, a method has been proposed in which the sensor and the document are brought into close contact with each other and the document is directly read without using a light guiding system.

この方式として第3図a、bに示す如きものがある。As this method, there is a method as shown in FIGS. 3a and 3b.

例えば第3図aについて述べると、透光性基板7上に受
光素子8の列を形成し、その上部に透明保護層9を設け
たものである。
For example, referring to FIG. 3a, a row of light receiving elements 8 is formed on a transparent substrate 7, and a transparent protective layer 9 is provided on top of the array.

なお、この図では電極、配線関係は省略しである。Note that electrodes and wiring relationships are omitted in this figure.

透光性基板7の下方におかれた照明光源2からの光束1
0は透光性基板7、受光素子8同志の間隙、透明保護層
9を通って送信原稿1を照明し、その反射光を受光素子
8で捕え、光電変換するものである。
Luminous flux 1 from the illumination light source 2 placed below the transparent substrate 7
0 illuminates the transmission document 1 through the light-transmitting substrate 7, the gap between the light-receiving elements 8, and the transparent protective layer 9, and the reflected light is captured by the light-receiving element 8 and subjected to photoelectric conversion.

この場合の受光素子より得られる光電変換出力は照明光
源から直接受光素子を照明する光束(妨害光となる)1
0′と原稿面からの反射光束(信号光となる)によるも
のの合成されたものであり、妨害光によってSN比が低
下する欠点がある。
In this case, the photoelectric conversion output obtained from the light receiving element is the luminous flux (which becomes interference light) that directly illuminates the light receiving element from the illumination light source.
0' and the reflected light beam from the document surface (which becomes the signal light), and has the disadvantage that the signal-to-noise ratio decreases due to the interference light.

これに対し、第3図すは受光素子8と透光性基板γの間
に不透光性金属層11と透光性絶縁層12を挿入してい
る。
On the other hand, in FIG. 3, a non-transparent metal layer 11 and a transparent insulating layer 12 are inserted between the light receiving element 8 and the transparent substrate γ.

この様にすると第3図aの如き照明光源からの直接の妨
害光10′は防げ、そう言った意味でのSN比は向上す
る。
In this way, direct interference light 10' from the illumination light source as shown in FIG. 3a can be prevented, and the S/N ratio in this sense is improved.

ところが透明保護膜9の厚み(送信原稿1と受光素子8
の距離に相当する。
However, the thickness of the transparent protective film 9 (transmission original 1 and light receiving element 8
corresponds to the distance of

)としては、送信原稿1に効率良く光を入射させ、その
反射光を受光素子8に導入するためには、ある程度の厚
さを必要とする。
) requires a certain degree of thickness in order to efficiently make light incident on the transmission document 1 and introduce the reflected light into the light receiving element 8 .

極端な場合、送信原稿1と受光素子8を完全に密着させ
てしまうと、透光性基板7の下方の照明光源2からの光
束10は、受光素子8自身や不透光性金属層11に遮ら
れ、受光素子8に対応する送信原稿1に有効に到達しな
い。
In an extreme case, if the original to be transmitted 1 and the light receiving element 8 are brought into close contact with each other, the light beam 10 from the illumination light source 2 below the transparent substrate 7 will be transmitted to the light receiving element 8 itself or the non-transparent metal layer 11. It is blocked and does not effectively reach the transmission document 1 corresponding to the light receiving element 8.

受光素子8や不透光性金属層11のない部分に対応する
送信原稿1には光束10は到達するが、送信原稿1と受
光素子8が完全に密着していたのでは、反射光は受光素
子8に到達し得ない。
The light beam 10 reaches the transmission document 1 corresponding to the portion without the light-receiving element 8 or the non-transparent metal layer 11, but if the transmission document 1 and the light-receiving element 8 were in complete contact with each other, the reflected light would not be received. It cannot reach element 8.

従って前述の如く透明保護層9はある程度の厚さを必要
とする。
Therefore, as described above, the transparent protective layer 9 requires a certain degree of thickness.

ところが実際の製作面から考えると、透明保護層9の製
作の難しさがある。
However, from an actual production standpoint, it is difficult to produce the transparent protective layer 9.

即ち受光素子や配線等の製作プロセスが全部終了した後
、透明であり、且つ耐摩耗の役目をも果す膜を、しかも
厚みをある程度の厚さ、即ち50〜100μmもつける
という事は、蒸着、スパッタ、塗布等いずれの方法によ
っても至難の技である。
In other words, after all the manufacturing processes for the light-receiving element, wiring, etc. are completed, a film that is transparent and also serves as wear resistance is applied to a certain thickness, that is, 50 to 100 μm, by vapor deposition, This is an extremely difficult technique regardless of which method is used, such as sputtering or coating.

従って実際には透明保護層9の代りに、例えば厚みが5
0〜100μm程度のガラス板9′を遮光層、光導電素
子、配線等の出来上った基板7の表面に貼りつけた第4
図の構造のものが考えられる。
Therefore, in practice, instead of the transparent protective layer 9, for example, a layer with a thickness of 5
A fourth glass plate 9' having a diameter of about 0 to 100 μm is attached to the surface of the substrate 7 on which the light shielding layer, photoconductive element, wiring, etc. have been completed.
The structure shown in the figure can be considered.

この様な構造で透光性基板7の下方に置かれた照明光源
2からの光束10は透光性基板7を通り、不透光性金属
11の付いていない透明窓15を通過して、更に透光性
基板9′を通るのであるが、折角、透明窓15で入射光
10を絞っても透光性基板9′を通る時に散乱してしま
い、原稿に入射する時はひろがってしまう。
With this structure, the light beam 10 from the illumination light source 2 placed below the transparent substrate 7 passes through the transparent substrate 7, passes through the transparent window 15 without the non-transparent metal 11, and Furthermore, although the incident light 10 passes through the transparent substrate 9', even if the incident light 10 is narrowed down by the transparent window 15, it will be scattered when passing through the transparent substrate 9', and will be spread out when it enters the document.

従ってこれを防ぐには透光性基板9′の、原稿lこ接す
る面に、第2の不透光性膜をつけて、光を絞る第2の透
明窓を設けなければならない。
Therefore, in order to prevent this, it is necessary to attach a second non-transparent film to the surface of the transparent substrate 9' that comes into contact with the original, and to provide a second transparent window that narrows the light.

ところが、この第2の不透光性膜はある程度原稿にも接
するため、耐摩耗的な性質も併せ持たなければならない
However, since this second non-light-transparent film comes into contact with the original to some extent, it must also have wear-resistant properties.

従ってどの様な材料を選ぶかも問題であるが、透光性基
板9′は厚みが50〜100μm程度の薄いガラス板で
、しかもA4サイズであれば、主走査方向の長さが23
0rrrm程度となる。
Therefore, it is a question of what kind of material to choose, but the transparent substrate 9' is a thin glass plate with a thickness of about 50 to 100 μm, and if it is A4 size, the length in the main scanning direction is 23 mm.
It will be about 0rrrm.

従って薄く且つ大型のガラス板に細いスリット状透明窓
を有する不透光性膜を形成する必要があるが、蒸着マス
クで形成する場合にも、フォトリソ技術で形成する場合
Iこも、いずれも取扱上非常に困難を伴い、しかも精度
ある細いスリット状透明窓を形成する事は難しい。
Therefore, it is necessary to form a light-opaque film with thin slit-shaped transparent windows on a thin and large glass plate, but both methods are difficult to handle, whether it is formed using a vapor deposition mask or photolithography. It is extremely difficult to form a thin slit-shaped transparent window with precision.

本発明は前述の如き欠点を除去するため、厚みの厚い、
透光性絶縁基板の第1及び第2両生面に位相のずれた光
挿入領域を設け、入射光をこれら2つの光挿入領域を通
過させる事によって、原稿に尚たる入射光の散乱による
ひろがりを防ぎ、画像品質の向上を計った光電変換装置
を提供するものである。
In order to eliminate the above-mentioned drawbacks, the present invention provides a thick
By providing phase-shifted light insertion regions on the first and second bidirectional surfaces of the translucent insulating substrate and allowing the incident light to pass through these two light insertion regions, it is possible to prevent the incident light from spreading on the original due to scattering. The purpose of the present invention is to provide a photoelectric conversion device that prevents this problem and improves image quality.

以下図面にもとづいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第5図は本発明の一実施例を示す副走査方向の部分拡大
断筒図である。
FIG. 5 is a partially enlarged sectional view in the sub-scanning direction showing an embodiment of the present invention.

1は原稿、2は螢光灯などの照明光源、7は厚さ1.2
myn程度の透光性絶縁基板、8は前記透光性絶縁基板
7の第1主面に、主走査方向に一列に複数個並んで形成
された受光素子列、9′は受光素子と原稿の間隔を一定
に保ち、且つ原稿1の接触による摩耗を防ぐための透光
性耐摩耗板で、例えば厚み50〜100μm程度の薄い
ガラス板であり、透明な接着剤16を用いて、透光性絶
縁基板T上に接着しである。
1 is a document, 2 is an illumination light source such as a fluorescent lamp, and 7 is a thickness of 1.2
a light-transmissive insulating substrate of about 100 psi, 8 is a plurality of light-receiving element rows formed in a row in the main scanning direction on the first main surface of the light-transmitting insulating substrate 7, 9' is a light-receiving element and a document This is a light-transmitting wear-resistant plate for keeping the interval constant and preventing abrasion due to contact with the original 1. For example, it is a thin glass plate with a thickness of about 50 to 100 μm. It is glued onto the insulating substrate T.

11゜11′はCr等の金属で形成した不透光性膜で、
11は透光性絶縁基板Tの第1主崩に、11′は第2主
崩に、それぞれ主走査方向にのびた光挿入領域15,1
5’の部分を除いて付着している。
11°11' is a non-transparent film made of metal such as Cr,
Reference numeral 11 denotes light insertion regions 15 and 1 extending in the main scanning direction in the first main part and 11' in the second main part of the transparent insulating substrate T, respectively.
It is attached except for the 5' part.

たゾし、15,15’は位相が副走査方向にずれている
However, the phases of 15 and 15' are shifted in the sub-scanning direction.

12はその上を覆う透光性絶縁被膜で、基板γと同質の
ガラス、例えばコーニシグ7059等をスパッタリング
等の方法で全伺につけたものである。
Reference numeral 12 denotes a light-transmitting insulating film covering the substrate γ, which is made of glass of the same quality as the substrate γ, such as Konisig 7059, and is applied over the entire surface by sputtering or the like.

13.14は受光素子8上に形成された電極である。13 and 14 are electrodes formed on the light receiving element 8.

なお、受光素子の副走査方向側にずれた位置から光を通
すために、電極14は、電極中に穴をあけるか、または
第6図に示すようにその部分だ5け、受光素子と受光素
子の中間に相当する部分に電極を迂回して、電極を形成
すれば、光挿入領域15が形成出来る。
In order to pass light from a position shifted toward the sub-scanning direction of the light-receiving element, the electrode 14 may be provided with a hole in the electrode, or as shown in FIG. The light insertion region 15 can be formed by forming an electrode by bypassing the electrode in a portion corresponding to the middle of the element.

或いは電極14を透明電極にしても良い事は当然である
Alternatively, it goes without saying that the electrode 14 may be a transparent electrode.

10は光源2より発せられる照明光で原稿を照明し、反
射光が受光素子へ達する光束である。
Reference numeral 10 denotes a luminous flux that illuminates the document with illumination light emitted from the light source 2, and reflected light reaches the light receiving element.

この場合光源2より出た光は、まず不透光性膜11′に
よって絞られ、光挿入領域15を通過した光のみ、基板
γ中を進み、更に基板7の出口で更に不透光性膜11に
より絞られ、光挿入領域15を通過した光だけが、原稿
11こ向かう。
In this case, the light emitted from the light source 2 is first condensed by the non-transparent film 11', and only the light that has passed through the light insertion region 15 travels through the substrate γ, and then further passes through the non-transparent film at the exit of the substrate 7. Only the light that has been narrowed down by the light insertion area 11 and passed through the light insertion area 15 is directed toward the original 11.

この時透光性耐摩耗板9′中でも光は拡がるが、7と9
′の厚みの比率が10対1より大きいので、第5図の点
線で示す光束10の如くその拡がりは極めて少なく、無
視できる様にする事が可能となる。
At this time, the light spreads even in the transparent wear-resistant plate 9', but between 7 and 9
Since the thickness ratio of ' is greater than 10:1, the spread of the light beam 10 shown by the dotted line in FIG. 5 is extremely small and can be ignored.

7と9′の厚み比率がこの様な値でも、不透光性膜11
′が無く、光挿入領域15′で入射光が絞られなかった
ら、光挿入領域15にはもつと種々な角度から光が入射
し、透光性耐摩耗板9′中での拡がりが大きくなる事は
当然である。
Even if the thickness ratio of 7 and 9' is such a value, the non-transparent film 11
', and if the incident light is not focused in the light insertion area 15', the light will enter the light insertion area 15 from various angles, and the light will spread widely in the light-transmitting wear-resistant plate 9'. Of course it is.

また不透光性膜11が絶縁性のもので形成出来れば、透
明絶縁被膜12は必要としない事は当然であり、また透
光性絶縁被膜12も、透明窓15の部分には付着させな
いか、除去するのであれば、12は透明である必要はな
い事も当然である。
Furthermore, if the non-transparent film 11 can be formed of an insulating material, it is natural that the transparent insulating film 12 is not necessary, and the transparent insulating film 12 may not be attached to the transparent window 15. , it goes without saying that 12 does not need to be transparent if it is to be removed.

次に第5図を用いて動作原理について述べる。Next, the operating principle will be described using FIG.

光源2より発する光束10は第5図に示す様に、光挿入
領域15′及び15を通過した光が原稿1を照明し、原
稿からの反射光は受光素子8に捕獲され、光電変換され
る。
As shown in FIG. 5, the light beam 10 emitted from the light source 2 passes through the light insertion areas 15' and 15 and illuminates the original 1, and the reflected light from the original is captured by the light receiving element 8 and photoelectrically converted. .

この時原稿1からの反射光は、四方六方に散乱されるが
、透光性耐摩耗板9′の厚みを100μm程度以下に選
ぶと、隣接する受光素子へ洩れる反射光は少なく、本来
の受光素子に殆んど捕獲され、分解能は充分得られる。
At this time, the reflected light from the original 1 is scattered in all directions, but if the thickness of the transparent wear-resistant plate 9' is selected to be approximately 100 μm or less, the reflected light leaking to the adjacent light-receiving element will be small, allowing the original light to be received. Most of the light is captured by the element, providing sufficient resolution.

ただ透光性耐摩耗板9′の厚みを極端に薄くすると、光
が原稿1に到達し難く、採光率が悪くなるので、限界が
あり、実際的には上記したように50〜100μm程度
が適当である。
However, if the thickness of the light-transmitting wear-resistant plate 9' is made extremely thin, it will be difficult for light to reach the original 1 and the lighting rate will be poor, so there is a limit. Appropriate.

次に製造プロセスについて第7図を参照しながら述べる
Next, the manufacturing process will be described with reference to FIG.

まず例えば大きさが140mmX 50rran、厚み
1.2franのダウコーニング社製のガラス基板70
59を洗浄した後、500℃〜600℃で、10〜20
分間熱処理する。
First, a glass substrate 70 made by Dow Corning, for example, with a size of 140 mm x 50 rran and a thickness of 1.2 fran.
After washing 59, heat at 500℃ to 600℃ for 10 to 20 minutes.
Heat treat for minutes.

この熱処理は、光導電膜例えばCdS膜形成後、活性化
処理、アニリング等を行う時の熱歪(熱膨張により基板
がのび、パターンピッチが大きくなる。
This heat treatment is performed after forming a photoconductive film, such as a CdS film, and when performing activation treatment, annealing, etc., thermal distortion (thermal expansion causes the substrate to stretch and the pattern pitch to increase).

)によるパターンピッチずれを防ぐためのもので、前も
って活性化温度近傍で熱処理を行っておいて、活性化時
の影響をなくしておくものである。
) This is to prevent pattern pitch deviation due to the activation temperature, and heat treatment is performed in advance near the activation temperature to eliminate the effect of activation.

次に不透光性膜として例えばCr等の金属を、第1、第
2両主筒に蒸着等の方法により形成する。
Next, a metal such as Cr is formed as a light-opaque film on both the first and second main cylinders by a method such as vapor deposition.

次に第7図aのようにいわゆるフォトリソ技術により、
スリット状の光挿入領域15,15’をぬく。
Next, as shown in Figure 7a, using the so-called photolithography technique,
The slit-shaped light insertion regions 15, 15' are removed.

この場合第5図及び第7図に示す様に光挿入領域15,
15’は副走査方向にずれており、両面マスク合せ装置
等を用いて同時にマスク合せ、エツチング等を行うと、
相互間の寸法精度が得られる上に、工程も簡単になる。
In this case, as shown in FIGS. 5 and 7, the light insertion area 15,
15' is shifted in the sub-scanning direction, and if mask alignment, etching, etc. are performed at the same time using a double-sided mask alignment device, etc.
Not only can mutual dimensional accuracy be obtained, but the process can also be simplified.

次に第7図すのように、透光性絶縁被膜12として、例
えば基板7と同質のコーニング7059をスパッタリン
グ等の方法で基板7の第1主面即ち不透光性膜11の上
全何につける。
Next, as shown in FIG. 7, Corning 7059, which has the same quality as the substrate 7, is coated on the entire first principal surface of the substrate 7, that is, the non-transparent film 11, by a method such as sputtering to form the transparent insulating film 12. Put it on.

勿論第2主面即ち不透光性膜11′の上にもつけても悪
くはない。
Of course, it is not a bad idea to apply it also on the second main surface, that is, on the non-light-transparent film 11'.

さらに第7図Cのように光導電膜として、CdS、Cd
Se、CdTe、Te等を蒸着または化学析出等の方法
で、単独または複数個、前記透光性絶縁被膜12の上全
面につけ、ホトリソ技術により第7図dのように、パタ
ーン出しを行う。
Furthermore, as shown in FIG. 7C, CdS, Cd
Se, CdTe, Te, etc. are deposited singly or in plurals on the entire surface of the transparent insulating film 12 by vapor deposition or chemical precipitation, and then patterned as shown in FIG. 7d by photolithography.

然る後ハロゲン化合物と共に熱処理する事により、活性
化をはかり、光導電性をもたせる(受光素子8の形成)
After that, it is activated and made photoconductive by heat-treating it with a halogen compound (formation of light-receiving element 8).
.

次にオーミック電極として、例えばNiCr、Auを真
空蒸着により、金筋につけ、ホトリソ技術により、必要
な部分のみを残し、第T図eのように電極13.14を
形成する。
Next, as an ohmic electrode, for example, NiCr or Au is applied to the gold wire by vacuum evaporation, and electrodes 13 and 14 are formed by photolithography, leaving only the necessary portions, as shown in FIG.

又場合によっては電極の一方にブロッキング電極Teを
つけ、ダイオード特性を持たせる事も出来る。
In some cases, a blocking electrode Te may be attached to one of the electrodes to provide diode characteristics.

なお第7図は副走査方向の一断面を示すもので、第6図
に示す如く、第7図eは電極パターンを迂回させ、受光
素子8の副走査方向によった部分に主走査方向に一列に
並ぶ島状の光挿入領域15を設ける。
Note that FIG. 7 shows a cross section in the sub-scanning direction, and as shown in FIG. 6, in FIG. Island-shaped light insertion regions 15 arranged in a row are provided.

−電極パターンは、この部分だけ、受光素子と受光素子
の間に迂回させている。
- The electrode pattern is detoured only in this part between the light receiving elements.

次に厚み100薊のダウコーニング社のガラスマイクロ
シート+0211を適当な大きさに切って、第7図fに
示すように、前記、基板T上に透明接着剤16を用いて
貼りつけることにより完成する。
Next, Dow Corning's glass microsheet +0211 with a thickness of 100 cm is cut to an appropriate size and is pasted onto the substrate T using transparent adhesive 16, as shown in Figure 7f. do.

上記の実施例から明らかなように、本発明によれば次の
ような優れた効果を奏するものである。
As is clear from the above embodiments, the present invention provides the following excellent effects.

1)透光性絶縁基板7の両生筋に不透光性膜11゜11
′をつけ、光挿入領域15’、15を通過した光だけが
原稿1に当たる。
1) Non-transparent film 11°11 on the translucent insulating substrate 7
', and only the light that has passed through the light insertion areas 15' and 15 hits the original 1.

即ち透光性耐摩耗板9′の厚みより10倍以上厚い透光
性絶縁基板7の両生部で光を絞っているから、前記透光
性耐摩耗板9′内での光の散乱による拡がりを少くする
事ができ、原稿に十分絞った光束を入射させ、画像品質
を向上させる事ができる。
That is, since the light is condensed by the bibulous parts of the transparent insulating substrate 7, which is at least 10 times thicker than the transparent wear-resistant plate 9', the light spreads due to scattering within the transparent wear-resistant plate 9'. This allows a sufficiently narrowed light beam to be incident on the document, thereby improving image quality.

11)透光性耐摩耗板9即ち厚みが50〜100μm程
度の薄いガラス板上に不透光性膜を蒸着、フォトリソ等
により、透明窓のパターンを形成するという事は、該ガ
ラス板が薄いので、プロセス上非常に困難を伴う。
11) Forming a transparent window pattern by vapor depositing a light-opaque film on a light-transmitting wear-resistant plate 9, that is, a thin glass plate with a thickness of about 50 to 100 μm, by photolithography, etc. means that the glass plate is thin. Therefore, the process is extremely difficult.

しかしながら、実施例の如く厚みが厚くて、しかも第1
主面にフォトリソプロセスによるパターン形成を行う透
光性絶縁基板7の第2主筒に、光挿入領域15′を形成
するものでは光挿入領域15.15’間の相対位置、受
光素子8と光挿入領域15′間の相対位置を規定し易い
し、プロセス的にも、工数が短縮でき、生産性の向上が
はかれるものである。
However, as in the example, the thickness is large and the first
In the case where the light insertion region 15' is formed in the second main cylinder of the light-transmitting insulating substrate 7 whose main surface is patterned by a photolithography process, the relative position between the light insertion region 15 and 15', the light receiving element 8 and the light It is easy to define the relative positions between the insertion areas 15', and in terms of process, the number of man-hours can be shortened and productivity can be improved.

以上述べたように本発明によれば、読取性能を向上させ
て高品質の画像を得ることができ、また製造工程も簡略
化され、工業的にも優れた光電変換装置及びその製造方
法を提供するものである。
As described above, according to the present invention, it is possible to improve the reading performance and obtain high-quality images, and the manufacturing process is also simplified, thereby providing an industrially excellent photoelectric conversion device and its manufacturing method. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学読取り系の斜視図、第2図は大型セ
ンサと導光系を用いた光学読取り系の斜視図、第3図a
、bはそれぞれ従来の密着読取り系の主走査方向部分断
面図、第4図は耐摩耗層として、表面に薄いガラス板を
接着したものの部分断簡図、第5図は本発明の一実施例
を示す光電変換装置の副走査方向部分断同図、第6図は
電極を迂回させた状態を示す上面図、第7図a=fは製
造工程を説明するための部分断簡図である。 1・・・・・・原稿、2・・・・・・光源、7・・・・
・・透光性絶縁基板、8・・・・・・受光素子、9′・
・・・・・透光性耐摩耗板、11.11’・・・・・・
不透光性膜、12・・・・・・透光性絶縁層、 13,14・・・・・・電極、 15.15’・・・・・・光挿入 領域。
Figure 1 is a perspective view of a conventional optical reading system, Figure 2 is a perspective view of an optical reading system using a large sensor and light guide system, and Figure 3 a.
, b are partial cross-sectional views in the main scanning direction of conventional contact reading systems, FIG. 4 is a partial cross-sectional view of a thin glass plate bonded to the surface as a wear-resistant layer, and FIG. 5 is a partial cross-sectional view of a conventional contact reading system in the main scanning direction. FIG. 6 is a top view showing a state in which the electrodes are detoured, and FIG. 7 a=f is a partially cutaway view for explaining the manufacturing process. 1... Original, 2... Light source, 7...
...Transparent insulating substrate, 8... Light receiving element, 9'.
...Translucent wear-resistant plate, 11.11'...
Non-transparent film, 12... Transparent insulating layer, 13, 14... Electrode, 15.15'... Light insertion region.

Claims (1)

【特許請求の範囲】 1 透光性絶縁基板と、主走査方向に原稿照射のための
第1の光挿入領域を除いて、前記透光性絶縁基板の第1
主面に形成された第1の不透光性層と、前記第1の不透
光性層の前記第1の光挿入領域と平行に、かつ副走査方
向にずらした第2の光挿入領域を除いて、前記透光性基
板の第2主而に形成された第2の不透光性層と、少なく
とも前記第1の不透光性層を覆う透明絶縁層と、前記第
1の光挿入領域に対し、前記第2の光挿入領域とは反対
の副走査方向で、且つ前記第1の不透光性層上に形成さ
れた主走査方向に並ぶ複数個の受光素子群と、少なくと
も前記受光素子群を覆うよう主走査方向に形成された透
光性耐摩耗板を備え、該透光性耐摩耗板上に置かれた原
稿(こ、前記透光性絶縁基板の第2主面より光を照射し
、前記第2の光挿入領域及び第1の光挿入領域を通過し
、更に透光性耐摩耗板を通過した光が原稿を照射し、そ
の反射光を前記受光素子に入射せしめることを特徴とす
る光電変換装置。 2、特許請求の範囲第1項に記載の光電変換装置に於い
て、受光素子から副走査方向にとり出す2本の電極の内
、前記第1の光挿入領域を通過する一方の電極を、前記
第1の光挿入領域の部分では受光素子と受光素子の中間
に和尚する副走査方向にずれた部分に、迂回した形状に
、または前記光挿入領域部分で、穴のあいた形状となし
たことを特徴とする光電変換装置。 3 特許請求の範囲第2項に記載の光電変換装置におい
て、前記第1の光挿入領域を通過する前記電極を、受光
素子に対応する副走査方向にずれた部分に島状の光挿入
領域が形成されるように構成することを特徴とする光電
変換装置。 4 透光性絶縁基板の第1主面及び第2主面上に形成さ
れた第1及び第2の不透光性層を、両面マスク合せ装置
を用いて同時に形成して、前記第1及び第2の光挿入領
域の相対位置をきめ、然る後該光挿入領域を基準として
、前記第1主面上に透光性絶縁膜、受光素子等を形成し
、更にその上に透光性耐摩耗板を接着することを特徴と
する光電変換装置の製造方法。
[Scope of Claims] 1. A light-transmitting insulating substrate and a first light insertion region of the light-transmitting insulating substrate for irradiating a document in the main scanning direction.
a first light-impermeable layer formed on the main surface; and a second light-insertion region parallel to the first light-insertion region of the first light-impermeable layer and shifted in the sub-scanning direction. a second non-transparent layer formed on the second main body of the transparent substrate; a transparent insulating layer covering at least the first non-transparent layer; a plurality of light-receiving element groups arranged in a sub-scanning direction opposite to the second light insertion region with respect to the insertion region and in the main scanning direction formed on the first light-opaque layer; A light-transmitting wear-resistant plate is formed in the main scanning direction so as to cover the light-receiving element group; The light that passes through the second light insertion area and the first light insertion area and further passes through the transparent wear-resistant plate irradiates the document, and the reflected light is incident on the light receiving element. 2. In the photoelectric conversion device according to claim 1, of the two electrodes taken out from the light receiving element in the sub-scanning direction, the first light insertion One of the electrodes passing through the first light insertion region is arranged in a part shifted in the sub-scanning direction between the light receiving elements in the first light insertion region, or in a detoured shape, or in the first light insertion region. , a photoelectric conversion device characterized in that it has a perforated shape. 3. In the photoelectric conversion device according to claim 2, the electrode passing through the first light insertion region is connected to a light receiving element. A photoelectric conversion device characterized in that an island-like light insertion region is formed in a corresponding portion shifted in the sub-scanning direction. 4. On the first main surface and the second main surface of the transparent insulating substrate. The first and second light-impermeable layers formed in A method for manufacturing a photoelectric conversion device, comprising forming a light-transmitting insulating film, a light-receiving element, etc. on the first main surface with the insertion region as a reference, and further adhering a light-transmitting wear-resistant plate thereon. .
JP55025006A 1980-02-28 1980-02-28 Photoelectric conversion device and its manufacturing method Expired JPS5846186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55025006A JPS5846186B2 (en) 1980-02-28 1980-02-28 Photoelectric conversion device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55025006A JPS5846186B2 (en) 1980-02-28 1980-02-28 Photoelectric conversion device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS56122172A JPS56122172A (en) 1981-09-25
JPS5846186B2 true JPS5846186B2 (en) 1983-10-14

Family

ID=12153848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55025006A Expired JPS5846186B2 (en) 1980-02-28 1980-02-28 Photoelectric conversion device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5846186B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749265A (en) * 1980-09-09 1982-03-23 Sony Corp Line sensor
JPS5880963A (en) * 1981-11-09 1983-05-16 Oki Electric Ind Co Ltd Picture reader
JPS5897861A (en) * 1981-12-08 1983-06-10 Canon Inc Sensor having directivity
JPS60191548A (en) * 1984-03-12 1985-09-30 Hitachi Ltd Image sensor
EP0263497B1 (en) * 1986-10-07 1994-05-18 Canon Kabushiki Kaisha Image reading device

Also Published As

Publication number Publication date
JPS56122172A (en) 1981-09-25

Similar Documents

Publication Publication Date Title
JPH11506381A (en) Fingerprint sensor device
JPH10303439A (en) Optical transmissive layer, opto-electronic device and manufacture thereof
US6108461A (en) Contact image sensor and method of manufacturing the same
JPS5846186B2 (en) Photoelectric conversion device and its manufacturing method
JPH10190944A (en) Image input device
JPH0262847B2 (en)
JPS5846182B2 (en) Photoelectric conversion device
JPH0415630B2 (en)
JPS5846181B2 (en) Close-contact image sensor
JPS59122274A (en) Contact type original reader
JPS63172219A (en) Image sensor
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPS5814073B2 (en) Photoelectric conversion device
JPS59122193A (en) Solid-state image pickup device
JP2910683B2 (en) Fingerprint image input device and method of manufacturing the same
JPH02298072A (en) Completely contact type image sensor
JP2004028667A (en) Photoelectric encoder and method of manufacturing scale
JPS63288560A (en) Contact type image sensor
JPH0511825B2 (en)
JPS6355221B2 (en)
JP3055382B2 (en) Complete contact image sensor and unit
JPH03238965A (en) Close contact type picture reader
JPH03127865A (en) Contact-type sensor
JPH06236980A (en) Photosensor
JPH088416A (en) Close contact image sensor