JPS5845944B2 - Injection molding method for crosslinkable polymer materials - Google Patents

Injection molding method for crosslinkable polymer materials

Info

Publication number
JPS5845944B2
JPS5845944B2 JP16712180A JP16712180A JPS5845944B2 JP S5845944 B2 JPS5845944 B2 JP S5845944B2 JP 16712180 A JP16712180 A JP 16712180A JP 16712180 A JP16712180 A JP 16712180A JP S5845944 B2 JPS5845944 B2 JP S5845944B2
Authority
JP
Japan
Prior art keywords
molding
injection
cavity
molding material
tubular heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16712180A
Other languages
Japanese (ja)
Other versions
JPS5789941A (en
Inventor
堅太郎 森
伊三五 美浦
隆 美浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16712180A priority Critical patent/JPS5845944B2/en
Publication of JPS5789941A publication Critical patent/JPS5789941A/en
Publication of JPS5845944B2 publication Critical patent/JPS5845944B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 この発明は架橋性高分子材料を射出成形する方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in methods for injection molding crosslinkable polymeric materials.

なお、ここでいう高分子材料とはゴム類および合成樹脂
を意味し、また架橋とは合成樹脂の架橋結合のほかゴム
のカロ硫をも含むものである。
The term "polymer material" as used herein refers to rubbers and synthetic resins, and "crosslinking" includes not only crosslinking of synthetic resins but also Calosulfur of rubber.

従来、架橋性高分子材料の射出成形は、成形材料をスク
リュー押出機で可塑化し、次いで押出機から押出された
可塑化材料を押出機とキャビティを結ぶ通路内を通る間
に一射出量分ずつ、はぼ一定の温度に刃口熱し、加熱さ
れた材料をキャビティに圧入して架橋成形を行っている
Conventionally, in injection molding of crosslinkable polymer materials, the molding material is plasticized in a screw extruder, and then the plasticized material extruded from the extruder is passed through a passage connecting the extruder and the cavity, in which case each injection amount is The cutting edge is heated to a constant temperature, and the heated material is press-fitted into the cavity to perform crosslinking.

この方法では、押出機から押出してキャビティに圧入さ
れるーサイクル分の成形材料が架橋成形に要する時間は
、成形材料をキャビティに圧入するのに要した時間と、
キャビティに最後に圧入された成形材料が架橋に要した
時間との和に相当するが、キャビティに最後に到達した
成形材料が架橋する1でには到達後金くとも上記圧入に
要した時間以上の時間を要し、この待ち時間が空費され
ることは成形サイクルの短縮という見地から効果的でな
い。
In this method, the time required for cross-linking of the molding material that is extruded from the extruder and press-fitted into the cavity is equal to the time required to press-fit the molding material into the cavity;
This corresponds to the sum of the time required for crosslinking of the molding material that was last press-fitted into the cavity, but if the molding material that reached the cavity last is crosslinked, the time after reaching the cavity is at least longer than the time required for press-fitting. , and wasting this waiting time is not effective from the standpoint of shortening the molding cycle.

また、成形材料は押出機を出てからキャビティに圧入さ
れる1で通路内でほぼ一定の温度に力ロ熱されるので、
キャビティに最初に圧入された材料と最後に圧入された
材料との間に圧入時間差による架橋開始時期のずれが生
じ、このことは成形品の品質の点でも好1しくない。
In addition, since the molding material is forced into the cavity after leaving the extruder, it is heated to a nearly constant temperature in the passage.
There is a shift in the timing of starting crosslinking between the material press-fitted first and the material press-fitted last into the cavity due to the press-fitting time difference, which is also unfavorable in terms of the quality of the molded product.

この発明は、架橋性高分子材料の改良された射出成形方
法を提供するもので、くわしく言うと成形時に架橋反応
を伴う架橋性高分子材料を射出成形する方法において、
キャビティに圧入する成形材料の−すイクル分をキャビ
ティへの移送中に急速に刃口熱し、かつ前記加熱温度を
成形材料の移送の初期から終期に向けて次第に上昇させ
、キャビティに成形材料が充満した後、上記成形材料の
−すイクル分全体をほぼ同時に架橋させて成形すること
を特徴とするものである。
The present invention provides an improved injection molding method for a crosslinkable polymeric material. Specifically, in a method for injection molding a crosslinkable polymeric material that involves a crosslinking reaction during molding,
The molding material to be press-fitted into the cavity is rapidly heated at the cutting tip while being transferred to the cavity, and the heating temperature is gradually increased from the beginning to the end of the transfer of the molding material, so that the cavity is filled with the molding material. After that, the entire cycle of the molding material is crosslinked almost simultaneously and molded.

以下これを添付の図面にもとづいて詳しく訝明する。This will be explained in detail below based on the attached drawings.

第1図は本発明実施装置の1例を示したもので、1は成
形材料の投入口4および管内に加熱流体通路5を有する
ンリング2と、その内部に設げられた材料混練移送用の
回転スクリュー3とからなる押出機であり、スクリュー
3はその基部が図示されてない液体圧作動のピストンに
連結されて往復運動できるようになっている。
FIG. 1 shows an example of an apparatus for carrying out the present invention, in which 1 is a ring 2 having a molding material inlet 4 and a heated fluid passage 5 in the pipe, and a ring 2 provided inside the ring 2 for kneading and transferring the material. The extruder is composed of a rotating screw 3, and the base of the screw 3 is connected to a hydraulically operated piston (not shown) so that it can reciprocate.

押出機1で可塑化された成形材料は、後退したスクリュ
ー前方のシリンタ゛内に貯留され、ここから−成形サイ
クル外の材料が管状ヒータ11に押出される。
The molding material plasticized by the extruder 1 is stored in a cylinder in front of the retracted screw, from which material outside the molding cycle is extruded to the tubular heater 11.

管状ヒータ11は直径の比較的小さい管を集めた多管式
のものからなって摺り、接続片15.16を通じて外部
から印カ目される電圧によってジュール熱を発生し、こ
れにより上記管内を通路として通過する成形材料を力ロ
熱するようになっている。
The tubular heater 11 is composed of a multi-tube type made up of relatively small diameter tubes, and generates Joule heat by applying a voltage from the outside through the connection pieces 15 and 16, thereby causing the passage inside the tubes to be heated. It is designed to heat the molding material passing through it.

図中12はノズル、13は管状ヒータ11の取付基板、
14はその袋ナツトである。
In the figure, 12 is a nozzle, 13 is a mounting board for the tubular heater 11,
14 is the bag nut.

管状ヒータ11の先端部分は、第2図に示すようにノズ
ル12を介しこれと金型突部6との間で例えば球面接触
により圧着して結合し、必要に応じて両者を離間できる
ようにしてもよい。
As shown in FIG. 2, the tip of the tubular heater 11 is crimped and connected to the mold protrusion 6 through a nozzle 12, for example, by spherical contact, so that the two can be separated as necessary. You can.

管状ヒータ11を出た成形材料は次いで架橋成形用の金
型へ送られる。
The molding material leaving the tubular heater 11 is then sent to a mold for crosslinking molding.

金型は固定金型6と可動金型7とで内部にキャビティ8
が成形されており、上記両金型の固定板9,10にはそ
れぞれヒータ9,10が内蔵され、とのヒータにより金
型の温度を成形材料の架橋温度とほぼ等しく保持するよ
うになっている。
The mold consists of a fixed mold 6 and a movable mold 7 with a cavity 8 inside.
is molded, and heaters 9 and 10 are built into the fixed plates 9 and 10 of both molds, respectively, and the temperature of the mold is maintained approximately equal to the crosslinking temperature of the molding material by the heaters. There is.

以上は架橋成形材料の押出機から金型に至る1での尚れ
の大要を述べたが、次にこの発明の特徴である管状ヒー
タにおける成形材料の特殊な温度制御、すなわち管状ヒ
ータの管内を通過する一敗形すイクル分の材料の加熱温
度を、管内にむける材料の移送の初期から終期に向けて
次第に上昇させる手段について説明する。
The above has described the outline of the process from the extruder for the crosslinked molding material to the mold.Next, we will discuss the special temperature control of the molding material in the tubular heater, which is a feature of this invention. A means for gradually increasing the heating temperature of the material for one cycle passing through the pipe from the beginning to the end of the material transfer into the pipe will be explained.

管状ヒータによる成形材料の力ロ熱手段は、管状ヒータ
に所要の電力を供給することと、供給電力を自動的に制
御することの二つに太きく分けられる。
Means for heating the molding material using the tubular heater can be roughly divided into two: supplying the required power to the tubular heater and automatically controlling the supplied power.

以下これらの一具体例を電気系統図で示した第3図につ
いて詳しく説明する。
Hereinafter, a specific example of these will be explained in detail with reference to FIG. 3, which shows an electrical system diagram.

図において、17.18はリミットスイッチ、19.2
0は前記リミットスイッチ移動用のバーである。
In the figure, 17.18 is a limit switch, 19.2
0 is a bar for moving the limit switch.

リミットスイッチ17はバー19の上を移動してスクリ
ュー軸3の先端部が管状ヒータ11の取付基板13に突
当ったとき作動するようになっており、一方リミツトス
イッチ18は上記のリミットスイッチ17の位置からス
クリュー軸3の基部方向へ例えば4間程度の位置におい
て作動するように設定されている。
The limit switch 17 moves on the bar 19 and is activated when the tip of the screw shaft 3 hits the mounting board 13 of the tubular heater 11. On the other hand, the limit switch 18 moves on the bar 19. It is set to operate at a position of, for example, about 4 degrees from the position toward the base of the screw shaft 3.

スクリュー軸3の基部には作動突起21が固定されてお
り、この突起はスクリュー軸と共に前進後退してリミッ
トスイッチ17゜18のそれぞれの接点を作動させるよ
うになっている。
An operating protrusion 21 is fixed to the base of the screw shaft 3, and this protrusion moves forward and backward together with the screw shaft to operate the respective contacts of the limit switches 17 and 18.

この接点の作動とは、リミットスイッチ内の常時電流を
通じている回路(常閉回路)の接点が離れて電流が直れ
なくなるよう変化することをいう。
Activation of this contact means that the contacts of the circuit (normally closed circuit) in which current always flows inside the limit switch are separated and the current changes so that it cannot be restored.

図中22は射出指示用のスナップスイッチ、23は射出
指示の遅延時間を任意に調整しうるタイマー、24はス
クリュー軸に射出出力を与える駆動装置、25は電源、
26は電源スィッチ、27はマグネットスイッチ、28
はスライドトランス、29ば降圧トランス、30は制御
装置である。
In the figure, 22 is a snap switch for injection instruction, 23 is a timer that can arbitrarily adjust the delay time of injection instruction, 24 is a drive device that provides injection output to the screw shaft, 25 is a power source,
26 is a power switch, 27 is a magnet switch, 28
29 is a slide transformer, 29 is a step-down transformer, and 30 is a control device.

射出命令の指示は、1ずスナップスイッチ22から発し
た射出指示電流はリミットスイッチ17゜18に入りそ
れぞれの上記常閉回路を経て一方はタイマー23に至り
、このタイマーの設定した遅延時間たとえば05秒だけ
遅れて射出命令を射出駆動装置24に伝える。
In order to issue an injection command, first, the injection command current emitted from the snap switch 22 enters the limit switches 17 and 18, passes through each of the above-mentioned normally closed circuits, and one reaches the timer 23, and the delay time set by this timer, for example, 05 seconds. The injection command is transmitted to the injection drive device 24 with a delay of 10 minutes.

これによってスクリュー軸3による射出開始は実際には
上記射出指示より05秒遅れて開始される。
As a result, the injection by the screw shaft 3 is actually started 05 seconds later than the injection instruction.

そして射出開始後−成形サイクル外の材料が射出され、
スクリュー軸3の先端が管状ヒーター1の取付基板13
に突当たる位置に至るとリミットスイッチ17が作動し
射出指示電流が遮断されて射出1駆動装置24は停止す
る。
and after the start of injection - material outside the molding cycle is injected;
The tip of the screw shaft 3 is the mounting board 13 for the tubular heater 1
When it reaches the position where it hits, the limit switch 17 is activated, the injection instruction current is cut off, and the injection 1 drive device 24 is stopped.

次に、西方のリミットスイッチ18を経た電流は、電源
25をスライドトランス28に導くマグネットスイッチ
27の電磁コイルに入り、との電磁コイルを励磁してこ
れを閉じ、管状ヒータ11に刃口熱用電力を送る。
Next, the current passing through the limit switch 18 on the west side enters the electromagnetic coil of the magnet switch 27 that leads the power source 25 to the slide transformer 28, energizes and closes the electromagnetic coil, and sends it to the tubular heater 11 for heating the blade tip. send electricity.

そしてスクリュー軸3の先端部がヒータの取付基板13
に突当る位置の手前、たとえば4關の位置に至ったとき
、リミットスイッチ18が作動してマグネットスイッチ
27を開く。
The tip of the screw shaft 3 is a mounting board 13 for the heater.
When the limit switch 18 is activated to open the magnet switch 27, for example, when the position reaches the fourth position, the limit switch 18 is activated.

この電磁コイルを励磁する電流信号は同時に制御装置3
0に入り、この制御装置は降圧トランス29および/ま
たはスライドトランス28を操作して管状ヒーター1に
供給する電力量を時間に従って自動制御する。
The current signal that excites this electromagnetic coil is simultaneously transmitted to the control device 3.
0, this control device operates the step-down transformer 29 and/or the slide transformer 28 to automatically control the amount of power supplied to the tubular heater 1 according to time.

第4図は上記自動制御を詳しく説明するためのもので、
第3図に示した降圧トランス29を磁気漏れ変圧器31
に変え、この変圧器を操作部として自動制御する1例を
示したものであり、図にむいて31は可動鉄片、32は
油圧ンリンタ\32はシャフトである。
Figure 4 is for explaining the above automatic control in detail.
The step-down transformer 29 shown in FIG.
In this figure, 31 is a movable iron piece, 32 is a hydraulic linter, and 32 is a shaft.

シリンダシャフト32はaの指尖の方向に出入自在で先
端に固定した可動鉄片31を移動し、これによって磁気
漏れ変圧器31の漏洩磁束すなわち漏洩リアクタンスを
調整し、上記2次側すなわち管状ヒータ11へ供給する
電力量を増減する。
The cylinder shaft 32 is movable in and out in the direction of the fingertip a, and moves a movable iron piece 31 fixed to the tip thereof, thereby adjusting the leakage magnetic flux, that is, the leakage reactance, of the magnetic leakage transformer 31, and the secondary side, that is, the tubular heater 11. Increase or decrease the amount of electricity supplied to

第5図は可動鉄片31の出入を油圧で調節して上記電力
量を目標値と一致させるための油圧系統を示したもので
、33はオイルポンプ、34は減圧弁、35は流量制御
弁、36は方向制御弁である。
FIG. 5 shows a hydraulic system for hydraulically adjusting the movement in and out of the movable iron piece 31 to make the amount of electric power match the target value, in which 33 is an oil pump, 34 is a pressure reducing valve, 35 is a flow rate control valve, 36 is a directional control valve.

さて、押出機1の射出時間をたとえは10秒と仮定して
考察すると、管状ヒータ11の管内を通過する間に加熱
されてキャビティ8に圧入される一成形すイクル分の材
料は、その温度を、射出開始時の短時間たとえは13秒
間で架橋しつる温度たとえは180℃から射出終了時の
より短時間たとえは3秒間で架橋しつる温度たとえば2
00’C強1で、はぼ直線的な勾配をつけて」−昇させ
れば、キャビティ内の材料全体が射出終了後3秒で同時
に架橋される。
Now, if we assume that the injection time of the extruder 1 is 10 seconds, the material for one molding cycle that is heated while passing through the tube of the tubular heater 11 and press-fitted into the cavity 8 will be at that temperature. The temperature at which crosslinking occurs in a short time, say 13 seconds, at the start of injection, for example, 180°C, and the temperature at which crosslinking occurs in a short time, say, 3 seconds, at the end of injection, say 2.
If the material is raised with a nearly linear gradient at 0.00C or more, the entire material within the cavity will be crosslinked at the same time within 3 seconds after the injection is completed.

したかって、−4形すイクル分の材料の射出開始から終
了1での間、時間の経過に従って力ロ熱出力を上記条件
が満たされるだげ増大さぜることが心安である。
Therefore, it is safe to increase the thermal output as time passes from the start of injection of material for -4 cycles to the end 1 as long as the above conditions are satisfied.

このために、射出開始を検知してマグネットスイッチ2
7の電磁コイルを励磁する電流信号を同時に方向制御弁
36に送り、これによって油圧シリンダ32へ一定圧力
、一定量の油を圧入し、ンリンタ゛シャフト32に固定
した可動鉄片31をその定位置から磁束の中心に対して
外側方向へ一定の速度をもって遠ざけて磁気漏れ変圧器
31の漏洩磁束を減少し、これにより2次側の誘起電圧
を増して管状ヒータ11に供給する電力量すなわち管状
ヒータ11の熱出力を増大する。
For this purpose, the magnetic switch 2 detects the start of injection.
A current signal that excites the electromagnetic coil 7 is simultaneously sent to the directional control valve 36, thereby injecting a certain amount of oil at a certain pressure into the hydraulic cylinder 32, and moving the movable iron piece 31 fixed to the printer shaft 32 from its fixed position. The leakage magnetic flux of the magnetic leakage transformer 31 is reduced by moving away from the center of the magnetic flux in the outward direction at a constant speed, thereby increasing the induced voltage on the secondary side, and increasing the amount of electric power supplied to the tubular heater 11. increase the heat output of

次に、射出終了の時点を検知して方向制御弁36のこれ
と反対の方向制御弁に電流信号を送り、上記と反対方向
に油圧を通じて可動鉄片31を元の定位置に戻させる。
Next, when the end of injection is detected, a current signal is sent to the opposite directional control valve of the directional control valve 36, and the movable iron piece 31 is returned to its original position through hydraulic pressure in the opposite direction.

管状ヒータ11に供給する電力量のほぼ直線的な出力増
力口について、計数的にその数値を算出して制御するこ
とは困難でないが、実際の作業では、成形品の観察おま
ひ、流量制御弁35の調節によって行う変化率の増減な
らひに可動鉄片31または後述する第6図に示したスラ
イドトランス37の刷子37の定位置を変えることによ
って行う出力位置の増減などにより所望の最適条件を容
易に見出すことかできる。
Although it is not difficult to numerically calculate and control the almost linear output power inlet that supplies the amount of electric power to the tubular heater 11, in actual work, it is difficult to observe the molded product, the flow rate control valve, etc. Desired optimum conditions can be easily achieved by increasing or decreasing the rate of change by adjusting 35, or by increasing or decreasing the output position by changing the fixed position of the movable iron piece 31 or the brush 37 of the slide transformer 37 shown in FIG. 6, which will be described later. It is possible to find out.

第6図は、第3図に示したスライドトランス28に代え
て、油圧を動力として360°以内の任意の回転角度を
往復しうる揺動モータ38を結合したスライドトランス
37を示したもので、図にわいて37は刷子、38.3
8は油圧出入口、39.39は上記スライドトランスの
1次側タラプ、40.40は2次側タップである。
FIG. 6 shows a slide transformer 37 in place of the slide transformer 28 shown in FIG. 3, which is coupled with a swing motor 38 that can reciprocate at any rotation angle within 360 degrees using hydraulic pressure as power. In the diagram, 37 is a brush, 38.3
8 is a hydraulic inlet/outlet, 39.39 is a primary side tap of the slide transformer, and 40.40 is a secondary side tap.

刷子37の回転軸は、揺動モータ38と同心に結合され
ていて、前記モータの揺動回転の11に刷子37を任意
の定位置から曲の任意の定位置丑で任意の一定速度で往
復することができ、これにより降圧トランス29に送る
べき2次側電圧を制御することができる。
The rotating shaft of the brush 37 is concentrically connected to a swing motor 38, and during the swing rotation of the motor, the brush 37 is reciprocated from any fixed position to any fixed position in the song at any constant speed. This allows the secondary voltage to be sent to the step-down transformer 29 to be controlled.

揺動モータ38を作動させる油圧は、第5図に示した油
圧シリンダ32を揺動モータ38に代えて行えはよい。
The hydraulic pressure for operating the swing motor 38 may be provided by replacing the hydraulic cylinder 32 shown in FIG. 5 with the swing motor 38.

なむ、管状ヒータにおける成形材料の力ロ熱制御手段は
、上述した実施態様の方式に限らず、たとえば揺動モー
タ38を超変速電動モータその[也の組合ぜをもって代
えることができる。
In addition, the means for controlling the force and heat of the molding material in the tubular heater is not limited to the method of the embodiment described above; for example, the swing motor 38 can be replaced by a super variable speed electric motor or a combination thereof.

また、上述の電力量を制御対象とする自動制御は、上記
の例以外に曲の電気的または電子的制御も可能である。
In addition to the above-mentioned example, the above-mentioned automatic control that controls the amount of electric power can also be performed by electrically or electronically controlling the music.

さらに、上述の自動制御については、−酸形サイクル分
の射出材料の流速が常にほぼ一定であることを前提とし
ているが、実際上その流速は厳密には不変とは言えず、
射出開始時その曲に1菫少な流速差を生ずるのが常であ
る。
Furthermore, although the above-mentioned automatic control assumes that the flow rate of the injection material for the -acid type cycle is always approximately constant, in reality, the flow rate cannot be said to be strictly constant;
At the start of injection, there is usually a flow velocity difference of one violet in the song.

したがって、もしそのような1菫少な流速差を取上げて
問題とし、これに対応しつる精度をもって上記自動制御
を実施しようとするのであれは、たとえは管状ヒーター
1のノスル12出口近くに測温用センサーを組込み、こ
のセンサーを検出端として上述した曲の多岐に亘る自動
制御方式の中から適当なものを選び、上記電力量を制御
対象として制御することもできる。
Therefore, if such a one-violet difference in flow velocity is to be taken up as a problem and the above-mentioned automatic control is to be carried out with high accuracy, for example, a temperature measuring device should be installed near the outlet of the nostle 12 of the tubular heater 1. It is also possible to incorporate a sensor, use this sensor as a detection end, select an appropriate one from among the wide range of automatic control methods for the songs described above, and control the amount of electric power as the control target.

豊た、上記自動制御による射出成形とは別に、管状ヒー
ター1に供給する電力量を一定とする代りに、管状ヒー
タの管内を通過する成形材料の流速を変えて、上記管内
を通過した時点の材料温度に上述の温度差を付けて制御
を行うこともできる。
In addition to injection molding using the above-mentioned automatic control, instead of keeping the amount of power supplied to the tubular heater 1 constant, the flow rate of the molding material passing through the tube of the tubular heater is changed to increase the flow rate at the time it passes through the tube. Control can also be performed by adding the above-mentioned temperature difference to the material temperature.

この場合に成形材料の流速を変える手段としては、たと
えば可塑化シリンダ先端の貯留室から成形材料を射出す
る上記シリンダに送る油量を調節する流量制御弁を、上
記の例に做って自動制御すれはよい。
In this case, as a means to change the flow rate of the molding material, for example, a flow control valve that adjusts the amount of oil sent from the storage chamber at the tip of the plasticizing cylinder to the cylinder that injects the molding material, can be automatically controlled in accordance with the above example. It's fine.

この発明によれは、成形時に熱架橋反応を痒う架橋性高
分子材料の射出成形において、キャビティへの射出終了
後キャビティ内に圧入された成形材料の架橋時間を成形
品の大小にかかわりなく数秒内に短縮することができる
ばかりでなく、キャビティ内の材料全体が同時に架橋成
形されるので、従来品よりも品質の良好な成形品を得る
ことができる。
According to this invention, in injection molding of a crosslinkable polymer material that causes a thermal crosslinking reaction during molding, the crosslinking time of the molding material press-fitted into the cavity after injection into the cavity is several seconds regardless of the size of the molded product. Not only can the cavity be shortened, but also the entire material within the cavity is cross-linked at the same time, making it possible to obtain a molded product of better quality than conventional products.

なお、本発明とその実施装置は、射出成形に限るもので
なく、これを曲の成形技術、例えは移送成形(注入成形
とも呼ぶ)にも、はぼその11利用することができる。
It should be noted that the present invention and its implementation device are not limited to injection molding, but can also be used in song molding techniques, for example transfer molding (also called injection molding).

即ち移送成形の原料貯留室と成形空所を結ぶ原料通路の
一部に本発明実施装置の力ロ熱装置(抵抗発熱管による
)を組込み、同様に架橋を早めることが可能である。
That is, it is possible to similarly speed up crosslinking by incorporating the force heating device (based on a resistance heating tube) of the apparatus according to the present invention into a part of the raw material passage connecting the raw material storage chamber of transfer molding and the molding cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施装置の一部断面図、第2図は第1図
の部分拡大断面図、第3図は本発明実施装置の電気系統
図、第4図は管状ヒータへの供給電気量の自動制御装置
の1例を示す斜視図、第5図は第4図の自動制御装置の
調節用油圧系統図、第6図はスライドトランスの斜視図
である。 1・・・押出機、2・・・可塑化ンリンダ、3・・・回
転スクリュー軸、6・・・固定金型、7・・・可動金型
、8・・・キャビティ、11・・・管状ヒータ、24・
・・射出、駆i装置、30・・・温度制御装置。
Fig. 1 is a partial sectional view of the device implementing the present invention, Fig. 2 is a partially enlarged sectional view of Fig. 1, Fig. 3 is an electrical system diagram of the device implementing the present invention, and Fig. 4 is the electricity supplied to the tubular heater. FIG. 5 is a perspective view of an example of an automatic quantity control device, FIG. 5 is a hydraulic system diagram for adjusting the automatic control device of FIG. 4, and FIG. 6 is a perspective view of a slide transformer. DESCRIPTION OF SYMBOLS 1... Extruder, 2... Plasticizing cylinder, 3... Rotating screw shaft, 6... Fixed mold, 7... Movable mold, 8... Cavity, 11... Tubular Heater, 24・
...Injection, driving device, 30...Temperature control device.

Claims (1)

【特許請求の範囲】[Claims] 1 成形時に架橋反応を伴う架橋性高分子材料を射出成
形する方法において、キャビティに圧入スる成形材料の
−すイクル分をキャビティへの移送中に急速に加熱し、
かつ前記刃口熱温度を成形材料の移送の初期から終期に
向けて次第に上昇させ、キャビティに成形材料が充満し
た後、上記成形材料の−すイクル分全体をほぼ同時に架
橋させて成形することを特徴とする架橋性高分子材料の
射出成形方法。
1. In a method of injection molding a crosslinkable polymer material that involves a crosslinking reaction during molding, the molding material press-fitted into the cavity is rapidly heated during transfer to the cavity,
In addition, the thermal temperature at the cutting edge is gradually increased from the beginning to the end of the transfer of the molding material, and after the cavity is filled with the molding material, the entire cycle of the molding material is crosslinked almost simultaneously and molded. Characteristic injection molding method for crosslinkable polymer materials.
JP16712180A 1980-11-27 1980-11-27 Injection molding method for crosslinkable polymer materials Expired JPS5845944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16712180A JPS5845944B2 (en) 1980-11-27 1980-11-27 Injection molding method for crosslinkable polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16712180A JPS5845944B2 (en) 1980-11-27 1980-11-27 Injection molding method for crosslinkable polymer materials

Publications (2)

Publication Number Publication Date
JPS5789941A JPS5789941A (en) 1982-06-04
JPS5845944B2 true JPS5845944B2 (en) 1983-10-13

Family

ID=15843821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16712180A Expired JPS5845944B2 (en) 1980-11-27 1980-11-27 Injection molding method for crosslinkable polymer materials

Country Status (1)

Country Link
JP (1) JPS5845944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215526A (en) * 1988-02-24 1989-08-29 Meiki Co Ltd Heating method for heating cylinder of injection device and device there

Also Published As

Publication number Publication date
JPS5789941A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
US2386966A (en) High-frequency electrostatic heating of plastics
US4370115A (en) Injection molding method and device
US3354501A (en) Plasticizing apparatus with automatic temperature controlling means
US4438064A (en) Injection molding process for synthetic resin and its apparatus
JP2000238094A (en) Injection molder for thermoplastic resin
US5382147A (en) Intermittently heated injection molding apparatus
JPS5845944B2 (en) Injection molding method for crosslinkable polymer materials
KR100285094B1 (en) Temperature control device and method for high temperature nozzle used in runnerless injection molding process
JPS6260252B2 (en)
JPS6159218B2 (en)
JP6488120B2 (en) Injection molding machine
JPH0834034A (en) Rubber injection molding apparatus and method
US20220152899A1 (en) Shooting pot temperature regulation
KR830001491B1 (en) Intermittent heating apparatus for plasticizing fluid in injection molding or transfer molding
JPS6418620A (en) Mold temperature adjusting apparatus for injection molding machine
JPH08300428A (en) Injection molding machine
CN111886120A (en) Injection molding apparatus, injection molding method, and resin material for injection molding
KR20160077623A (en) Injection device of injection molding machine
GB2079662A (en) Injection molding method and device
JPH04368831A (en) Continuous injection molding method
JPS646273Y2 (en)
JPS5936864B2 (en) Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.
JP2007098815A (en) Apparatus and method for controlling nozzle temperature of injection molding machine
JPH04347614A (en) Method and apparatus for injection molding
JPH0536216B2 (en)