JPS5936864B2 - Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc. - Google Patents

Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.

Info

Publication number
JPS5936864B2
JPS5936864B2 JP92180A JP92180A JPS5936864B2 JP S5936864 B2 JPS5936864 B2 JP S5936864B2 JP 92180 A JP92180 A JP 92180A JP 92180 A JP92180 A JP 92180A JP S5936864 B2 JPS5936864 B2 JP S5936864B2
Authority
JP
Japan
Prior art keywords
raw material
heating
tube
injection
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP92180A
Other languages
Japanese (ja)
Other versions
JPS5699645A (en
Inventor
隆 美浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP92180A priority Critical patent/JPS5936864B2/en
Publication of JPS5699645A publication Critical patent/JPS5699645A/en
Publication of JPS5936864B2 publication Critical patent/JPS5936864B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は射出成形又は移送成形等において成形空所に圧
入する原料可塑化流動体を一射出量分ずつ、成形空所に
圧入する直前でその流動中に加熱する間歇的加熱装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an intermittent method of heating the raw material plasticizing fluid to be press-fitted into a molding cavity in injection molding, transfer molding, etc., one injection amount at a time, during the flow immediately before the raw material plasticizing fluid is press-fitted into the molding cavity. The invention relates to a heating device.

従来射出成形ないし移送成形等において、原料を成形空
所に射出してから成形品を取出すまでの時間は、成形品
の大小その他により一定でないが、例えば成る種の熱可
塑性樹脂の成形においてはおおむね10秒内外であり、
同じく、ゴム類等の熱架橋反応を伴なう成形においては
少なくとも120秒以上の時間を要している。
In conventional injection molding, transfer molding, etc., the time from injecting the raw material into the molding cavity to removing the molded product is not constant depending on the size of the molded product and other factors. It is within 10 seconds,
Similarly, molding of rubbers and the like that involves a thermal crosslinking reaction requires at least 120 seconds or more.

上記両者の時間的相違の原因は後者が成形空所内で架橋
(加硫)の進行に時間を要するためである。
The reason for the difference in time between the two is that the latter requires time for crosslinking (vulcanization) to proceed within the molding cavity.

本発明は主に成形空所内における原料ゴム類等の架橋時
間を短縮するための加熱装置に係る。
The present invention mainly relates to a heating device for shortening the crosslinking time of raw rubber, etc. in a molding cavity.

なお、以下詳細な説明はゴム類の例をもって行なう。Note that detailed explanation will be given below using rubber as an example.

先ずゴム類の熱に係わる特性を若干例示する。First, some examples of the heat-related properties of rubbers will be given.

ゴム類のスコーチ、加硫等の現象は、温度と時間とを要
因変数(パラメータ)とする熱履歴によって進行する。
Phenomena such as scorch and vulcanization of rubber progress according to thermal history with temperature and time as factor variables (parameters).

成形加硫時におけるゴム類の加硫速度は、温度に対して
敏感であり、例えば10℃の温度上昇によりその加硫時
間はほぼ1/2に短縮する。
The vulcanization rate of rubber during molding and vulcanization is sensitive to temperature; for example, a 10° C. temperature increase will shorten the vulcanization time to approximately 1/2.

この性質から、成形空所内における加硫時間を例えば1
5秒前後に短縮するには、可塑化流動体の温度、例えば
80℃を例えば180℃まで上昇せしめて成形空所に圧
入すればよいことが分る。
Due to this property, the vulcanization time in the molding cavity is, for example, 1
It has been found that in order to shorten the time to around 5 seconds, the temperature of the plasticized fluid, for example, from 80° C. to 180° C., can be increased and the temperature of the plasticized fluid is then press-fitted into the molding cavity.

すなわち従来の成形装置の成形時間が長いという欠点を
改良するには型に圧入する原料の温度を高めればよい。
That is, in order to improve the shortcoming of the long molding time of conventional molding equipment, it is sufficient to increase the temperature of the raw material that is press-fitted into the mold.

しかしながら、ゴム類は高温度になる程急速な加硫反応
を示し、一旦加硫(スコーチ)したゴムは、それまでの
可塑性、流動性を不可逆的に失い、流動不能の状態とな
る。
However, rubber exhibits a more rapid vulcanization reaction at higher temperatures, and once vulcanized (scorched) rubber irreversibly loses its previous plasticity and fluidity, it becomes unable to flow.

流路においてこのスコーチが生ずるのを防ぐため、従来
の装置では原料を型に入れる前に十分高温にすることが
できず、例えば流路においては75〜120℃の範囲に
保持し原料が型に入ってから加熱昇温し加泥せしめるた
めに長い時間(通常はぼ120秒以上)を要していた。
In order to prevent this scorch from occurring in the flow path, conventional equipment cannot raise the raw material to a sufficiently high temperature before putting it into the mold. It takes a long time (usually about 120 seconds or more) to heat up and add mud after entering the tank.

この発明の第1の目的は、従来の装置の成形に長時間を
要するという欠点を除くことにある。
The first object of the invention is to eliminate the disadvantage of the long time required for molding of conventional devices.

すなわち、この発明においては原料を型に圧入する直前
に型の温度と同じ高温(例えば170〜180℃)に昇
温した後に型に圧入することにより、原料が型に注入さ
れてから後に昇温されるのを待つ必要を無くすることに
より成形時間を短縮したことが本発明の第一の特色であ
る。
That is, in this invention, the temperature of the raw material is raised to the same high temperature as the mold temperature (for example, 170 to 180°C) immediately before being press-fitted into the mold, and then the raw material is press-fitted into the mold. The first feature of the present invention is that the molding time is shortened by eliminating the need to wait for the molding process to take place.

従来の装置においても、型に注入される直前において原
料をできるだけ昇温しようとする試みが無かったわけで
はない。
Even in conventional devices, attempts have been made to raise the temperature of the raw material as much as possible just before it is poured into the mold.

しかしながら従来の射出成形機、移送成形機等における
原料の加熱(冷却を含む)方法を見るに、原料を機械装
置内で圧縮混練、加熱軟化、貯留射出、流動等の各過程
を経て型に圧入するまでの間、上記各部の構造体を介し
て加熱する方法が一般である。
However, when we look at the heating (including cooling) method of raw materials in conventional injection molding machines, transfer molding machines, etc., the raw materials go through various processes such as compression kneading, heat softening, storage injection, and fluidization in mechanical equipment before being press-fitted into molds. Until then, it is common to use a method of heating via the structures of the above-mentioned parts.

即ち、上記構造体(主にぶ厚い鋼材)の壁の外面からヒ
ーター等を押し当てて加熱したり、構造体の壁中に熱媒
体の流路を設け、これに適温の熱媒体を通じて加熱(又
は冷却)したり、更に原料自体の摩擦等に伴なう発熱を
も加え、以上をもって型の直前の原料温度を所定の温度
例えば75〜120℃の範囲内の任意の一定温度に保持
せしめるようなしている。
In other words, heating can be done by pressing a heater or the like against the outer surface of the wall of the structure (mainly thick steel), or by providing a flow path for a heat medium in the wall of the structure and heating (or (cooling) and also heat generation due to friction of the raw material itself, thereby maintaining the temperature of the raw material immediately before the mold at a predetermined temperature, for example, any constant temperature within the range of 75 to 120 ° C. ing.

このように、従来の加熱装置では上記の如くぶ厚い構造
体を媒体として行なう熱移動であるために、発熱体と被
加熱体(原料)との間の加熱応答性が頻ろ鈍感であり、
原料を型の直前で大巾に昇温せしめることが殆んど不可
能であった。
As described above, in conventional heating devices, heat transfer is performed using a thick structure as a medium as described above, so the heating response between the heating element and the heated object (raw material) is often insensitive.
It was almost impossible to raise the temperature of the raw material to a large extent just before the mold.

そこで、本発明においては熱容量の小さい発熱体を用い
、また一時に加熱される原料の量を少くすることにより
原料を型の直前で大幅に昇温せしめることが出来るよう
にしたことが第二の特色である。
Therefore, the second feature of the present invention is that by using a heating element with a small heat capacity and reducing the amount of raw material heated at one time, it is possible to significantly raise the temperature of the raw material just before the mold. It is a special feature.

また射出成形は一定量づつ間歇的に行なわれるものであ
るが、前述の通り従来の装置では加熱装置の熱容量が大
きいことおよび一時に加熱される原料の量が多いために
、加熱される原料と装置の加熱部との間に熱平衡が成り
立つまでに比較的長時間を要するという欠点があった。
Furthermore, injection molding is performed intermittently for a fixed amount, but as mentioned above, in conventional equipment, the heat capacity of the heating device is large and the amount of raw material heated at one time is large, so the amount of raw material heated and The drawback is that it takes a relatively long time to establish thermal equilibrium with the heating section of the device.

すなわち1回の射出成形について初期に加熱された原料
と後に加熱された原料とでは加熱のされ方が異るので、
加硫の程度が異り成品むらを生ずるという欠点があった
In other words, for one injection molding, the heating method is different for the raw material heated initially and the raw material heated later.
There was a drawback that the degree of vulcanization varied, resulting in unevenness in the finished product.

本発明においては加熱装置の熱容量を小さくしたことと
一時に加熱される原料の量を少くすることにより、加熱
される原料と装置の加熱部との間に短時間に熱平衡を成
立せしめ加熱される原料の加熱のされ方を一射出量内で
均一に保ちうるようにしたことが第三の特色である。
In the present invention, by reducing the heat capacity of the heating device and reducing the amount of raw material heated at one time, thermal equilibrium is established between the raw material to be heated and the heating section of the device in a short time, and the material is heated. The third feature is that the heating of the raw material can be maintained uniformly within one injection amount.

すなわち本発明においては一時に加熱部に存在する原料
は一射出量分の約10%以下であり、原料は加熱部を流
動通過中に昇温され、加熱部の発熱量と流動通加する原
料による除熱量とは等しくなり、熱的に定常状態に達す
るまでの時間が短いため、原料の大部分は均一に加熱さ
れた状態で型に流入するという特色を有する。
In other words, in the present invention, the raw material present in the heating section at one time is about 10% or less of the amount of one injection, and the temperature of the raw material is raised while flowing through the heating section, and the amount of heat generated in the heating section and the raw material flowing through the heating section are increased. The amount of heat removed is equal to the amount of heat removed, and since the time required to reach a thermal steady state is short, most of the raw material flows into the mold in a uniformly heated state.

又、ゴムは熱の不良導体であり、むしろ断熱材に近く、
以下述べる数値は配合されたゴム原料の成分含有率によ
り一定でないが、例えばその熱伝導度は、鉄の1150
0、水の115、空気の6倍と云われている。
Also, rubber is a poor conductor of heat, and is more like an insulator.
The numerical values described below are not constant depending on the component content of the rubber raw materials blended, but for example, the thermal conductivity is 1150% of that of iron.
0, 115 times that of water, and 6 times that of air.

尚、ゴムの比熱は鉄の4倍以上である。Note that the specific heat of rubber is more than four times that of iron.

このゴムの特徴から生ずる上記従来の装置の第二の欠点
は、前述のごとく型に注入されてから原料を周囲から加
熱して遂次内部に加硫を及ぼすまでの熱伝導に手間取り
、成形品の内外に加硫むらを生じ易いことである。
The second drawback of the conventional equipment described above, which arises from the characteristics of this rubber, is that it takes time to conduct heat from the time it is injected into the mold to the time when the raw material is heated from the surroundings and then vulcanized inside, resulting in molded products. The problem is that uneven vulcanization tends to occur inside and outside.

該加硫むらは厚肉の成形品成るいは肉厚の不均一な成形
品の成形等に際し生じやすい重大な欠点である。
The uneven vulcanization is a serious drawback that tends to occur when molding thick-walled molded products or molded products with uneven wall thickness.

本発明においては、原料を型に入る直前に必要温度まで
加熱昇温しているため型の形状のいかんにかかわらず、
従来の装置の如く加硫むらを生じることのないのが特色
である。
In the present invention, the raw material is heated to the required temperature immediately before entering the mold, so regardless of the shape of the mold,
A feature of this method is that it does not cause uneven vulcanization unlike conventional equipment.

本発明は上記従来の装置の欠点の原因に鑑み、成形空所
に射出すべき原料を一時に一対出量の約10%以下づつ
、型の成形空所の直前で、該原料の流動中に加熱し、上
記高温度まで昇温してその高温状態のまま成形空所に連
続的に圧入し、1回で一対出量づつ加熱することにより
次回以降射出すべき原料に上記加熱の影響を及ぼさない
ようなしたことを特色とする。
In view of the causes of the drawbacks of the conventional apparatuses mentioned above, the present invention has been developed to inject the raw material to be injected into the molding cavity at a rate of about 10% or less of the injection amount per unit at a time, while the raw material is flowing, just before the molding cavity of the mold. The material is heated, raised to the above-mentioned high temperature, and continuously press-fitted into the molding cavity in that high-temperature state, and heated one pair at a time, so that the influence of the above-mentioned heating is not exerted on the raw material to be injected from the next time onward. It features something like no other.

即ち、射出成形機又は移送成形機等において、原料可塑
化流動体(液状原料を含む)を、−射出量(可変)ずつ
間歇的に吐出する装置と、型とを結ぶ原料通路の原料の
流動方向に対する直角断面を狭い隙き間(スリット)又
は小口径の孔(それぞれ複数又は単数)よりなる狭窄し
た通路を加熱用通路となし、該加熱用通路内にジュール
熱を発生し得るよう電気抵抗発熱体を配置し、上記原料
流動体を上記発熱体の面に直接触れさせ、又は皮膜様薄
層を介してこれに触れつつ通過し上記型へ圧入する如く
なす。
That is, in an injection molding machine or a transfer molding machine, etc., the flow of raw material in a raw material passage that connects a mold and a device that intermittently discharges raw material plasticizing fluid (including liquid raw material) by -injection amount (variable) A heating passage is a narrow passage whose cross section perpendicular to the direction is made up of a narrow gap (slit) or a small diameter hole (respectively plural or single holes), and an electric resistance is set in the heating passage so that Joule heat can be generated. A heating element is arranged, and the raw material fluid is brought into direct contact with the surface of the heating element, or passes through a film-like thin layer while touching it, and is press-fitted into the mold.

尚この場合加熱用通路内の上記原料流動体の流路の容積
を、上記−射出量(容積)以下、好ましくは上記−射出
量の約10%以下とする。
In this case, the volume of the flow path of the raw material fluid in the heating passage is set to be less than or equal to the above-mentioned injection amount (volume), preferably about 10% or less of the above-mentioned injection amount.

然して、上記加熱用通路の構造体外部から上記抵抗発熱
体に対し間歇的に印加し得゛る電力可変の電源を接続し
、上記原料流動体の間歇的流動に対応して上記電力を抵
抗発熱体に間歇的に印加し、即ち上記原料流動体のおお
むね流動中通型し、同じくおおむね停止中電力を断つ如
くなし、かくして上記抵抗発熱体に生ぜしめたジュール
熱をもって、一時に上記原料の一射出量分の約10%以
下をその流動中に所望温度まで加熱し、加熱した原料を
そのまま型に連続的に圧入することにより1回で一対出
量づつ加熱する如くなしたものである。
Therefore, a variable power source that can intermittently apply power to the resistance heating element from outside the structure of the heating passage is connected, and the electricity is applied to the resistance heating element in response to the intermittent flow of the raw material fluid. The electric power is applied intermittently to the body, that is, the electric power is generally cut off during the flow of the raw material fluid, and the electric power is cut off when the raw material fluid is stopped, and the Joule heat generated in the resistance heating element is used to heat all of the raw material at once. Approximately 10% or less of the injection amount is heated to a desired temperature during its flow, and the heated raw material is continuously press-fitted into the mold as it is, so that one injection amount is heated at a time.

以下図面を参照しつつ本発明の一実施例について詳しく
説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の間歇的加熱装置の一例を適用した射
出成形装置全体の要部を示す一部を断面とする立面図で
ある。
FIG. 1 is an elevational view, partially in cross section, showing the main parts of the entire injection molding apparatus to which an example of the intermittent heating device of the present invention is applied.

図において1は可塑化シリンダで、円筒状をなし、内部
に原料混練移送用の回転スクリュ軸2を収設する。
In the figure, reference numeral 1 denotes a plasticizing cylinder, which has a cylindrical shape and houses a rotating screw shaft 2 for kneading and transferring raw materials therein.

3は原料ゴムで、これはホッパ3′を介してシリンダ1
内に供給される。
3 is raw rubber, which is sent to cylinder 1 via hopper 3'.
supplied within.

可塑化シリンダ1の壁内には加熱流体通路4が設けられ
、これに、適当な温度の加熱流体を通じシリンダ1の原
料可塑化温度を一定の温度に制御する。
A heating fluid passage 4 is provided in the wall of the plasticizing cylinder 1, through which heating fluid at an appropriate temperature is passed to control the plasticizing temperature of the raw material in the cylinder 1 to a constant temperature.

スクリュ軸の基部は、流体圧作動のピストンに連結され
、スクリュ軸2全体が往復し得るようになっている。
The base of the screw shaft is connected to a hydraulically actuated piston, so that the entire screw shaft 2 can reciprocate.

可塑化した原料ゴム3は、上記スクリュ軸2の前方に貯
溜される。
The plasticized raw rubber 3 is stored in front of the screw shaft 2.

そして、射出指示に応答する上記流体圧作動のピストン
により、可塑化した原料ゴム3は、貯溜室からノズル5
を経て、−射出量ずつ、前方へ圧出される。
Then, the plasticized raw rubber 3 is transferred from the storage chamber to the nozzle 5 by the fluid pressure-operated piston that responds to the injection instruction.
After that, it is forced forward by -injection amount.

6は可動金型、7は固定金型を示す。Reference numeral 6 indicates a movable mold, and 7 indicates a fixed mold.

上記両金型6゜7は型締めにより内部に成形空所8を形
成する。
Both of the molds 6 and 7 are clamped to form a molding cavity 8 inside.

両金型6,7内に設けた加熱媒体通路9a等には、適温
の流体を通じ、金型6,7を上記加硫温度に保持する。
A fluid at an appropriate temperature is passed through heating medium passages 9a and the like provided in both molds 6 and 7 to maintain the molds 6 and 7 at the above-mentioned vulcanization temperature.

本発明の間歇的加熱装置は、上記ノズル5と上記金型6
,7との間を連通ずる加熱用通路10により構成する。
The intermittent heating device of the present invention includes the nozzle 5 and the mold 6.
, 7, and a heating passage 10 communicating therebetween.

即ち、該加熱用通路10の構造体9に対し一方から他方
へ連通する孔を穿ち、この孔の一方部ち、ノズル5側の
開口にブツシュ11を、その他方の開口に連結端12を
それぞれ設置し、上記ノズル5とブツシュ11、上記金
型6,7内の成形空所8に通ずる開口と上記連結端12
とをそれぞれ密着し、以上全体を通じて一貫する原料通
路を形成し、ノズル5より圧出する原料流動体を、漏れ
な・く成形空所8に圧入し得る如くなす。
That is, a hole communicating from one side to the other is bored in the structure 9 of the heating passage 10, and the bush 11 is attached to one part of the hole, which is the opening on the nozzle 5 side, and the connecting end 12 is attached to the other opening. The nozzle 5 and the bushing 11, the opening communicating with the molding cavity 8 in the molds 6 and 7, and the connecting end 12.
are brought into close contact with each other to form a consistent raw material passage throughout the entire structure, so that the raw material fluid extruded from the nozzle 5 can be press-fitted into the molding cavity 8 without leaking.

上記ノズル5とブツシュ11又は上記金型の開口と連結
端12等との上記密着は、上記原料の停止した時点で、
それぞれの密着を解き、離間し得る如くなしてもよい。
The close contact between the nozzle 5 and the bush 11 or the opening of the mold and the connecting end 12, etc. is achieved when the raw material stops flowing.
They may be made so that they can be released from each other and separated from each other.

さて、上記加熱用通路10内には、耐熱電気絶縁層14
、14’を距てて薄い板状の(例えば厚さ0. I
Tn7IL以内の)電気抵抗発熱体13゜13′を配置
する。
Now, inside the heating passage 10, there is a heat-resistant electrical insulating layer 14.
, 14' apart from each other in a thin plate shape (for example, thickness 0.I
(within Tn7IL) electric resistance heating elements 13°13' are arranged.

然して、上記電気抵抗発熱体13 、13’のほぼ両端
に接続し、構造体9を貫通する電極15,16:15’
、16’を夫々設け、該電極15,15’:16,16
’のそれぞれ構造体9の外側に突出した導電螺子15“
、16“、15″′。
Therefore, the electrodes 15, 16:15' are connected to almost both ends of the electrical resistance heating elements 13, 13' and penetrate through the structure 9.
, 16' are provided, respectively, and the electrodes 15, 15': 16, 16
conductive screws 15'' protruding from the outside of the structure 9, respectively.
, 16", 15"'.

16”を螺入し、加熱部を構造体9と電気的に絶縁し、
それに固定する。
16", electrically insulating the heating part from the structure 9,
Fix it to it.

然して上記導電螺子15“。16“、15″′、16″
′を通じ上記構造体9の外部に設けた可変電源(図示せ
ず)から、上記原料の間歇的流動に対応して間歇的に、
即ち上記原料のほぼ流動する間、電力を抵抗体13 、
13’に印加する。
However, the conductive screws 15", 16", 15"', 16"
' from a variable power source (not shown) provided outside the structure 9, intermittently in response to the intermittent flow of the raw material.
That is, while the raw material is almost flowing, electric power is transferred to the resistor 13,
13'.

上記加熱用通路10内における抵抗発熱体13 、13
’の対向する間隙が、原料流動体の通過すべき流路10
/となる。
Resistance heating elements 13, 13 in the heating passage 10
'The opposing gap is the flow path 10 through which the raw material fluid passes.
/becomes.

尚、上記間隙又は流路10′は、通常比較的狭くなしく
例えば1mm前後となし)、通過する原料を効率良く加
熱せしめる。
Incidentally, the above-mentioned gap or flow path 10' is usually not relatively narrow (for example, about 1 mm), so that the raw material passing therethrough can be efficiently heated.

一般的に、流路10′の上記間隙が狭い程、又流路10
′の原料流動方向の長さが長い程、上記加熱効果は良好
となるも、該流路10′を通過する上記原料流動体の圧
力降下は、その許容範囲より犬にしてはならない。
Generally, the narrower the gap in the flow path 10', the narrower the gap in the flow path 10'
The longer the length of the flow path 10' in the raw material flow direction, the better the heating effect will be, but the pressure drop of the raw material fluid passing through the flow path 10' must not exceed its allowable range.

更に、又、上記加熱用通路内の上記流路10′の全容積
は、前述の一対出量以下、好ましくは上記−射出量の1
0%以下とすることが必要である。
Furthermore, the total volume of the flow path 10' in the heating passage is less than or equal to the above-mentioned injection amount, preferably 1 of the above-mentioned injection amount.
It is necessary to keep it below 0%.

尚、加熱用通路構造体9に対し、複数の媒体通路17,
17’、1B、1B’を設け、上記媒体通路の一方17
、17’に通じる流体温度をノズル5より圧出する原
料温度(例えば90℃)に等しくし、媒体通路の他の一
方i s 、 i s’に通じる温度を型温度(例えば
170℃)に等しくし構造体9に対し、はぼ原料の通過
する方向に沿って温度勾配を付与する如くす。
Note that for the heating passage structure 9, a plurality of medium passages 17,
17', 1B, and 1B' are provided, and one of the medium passages 17
, 17' is made equal to the raw material temperature (e.g. 90°C) to be extruded from the nozzle 5, and the temperature leading to the other side of the medium passage i s , i s' is made equal to the mold temperature (e.g. 170°C). A temperature gradient is applied to the structure 9 along the direction in which the raw material passes.

ゴム原料流動体がノズル5より流出して、流路1σに入
り込む瞬間の前後の僅少な時間内に、電気抵抗発熱体1
3 、13’に対し上記電力が印加され、ゴム原料は、
該抵抗発熱体13,13’に生するジュール熱によって
、短時間で加硫し得る所望の温度まで加熱昇温され、そ
の状態のまま型へ送られる。
Within a short period of time before and after the moment when the rubber raw material fluid flows out from the nozzle 5 and enters the flow path 1σ, the electric resistance heating element 1
The above electric power is applied to 3 and 13', and the rubber raw material becomes
The Joule heat generated in the resistance heating elements 13, 13' heats the material to a desired temperature that allows vulcanization in a short time, and sends it to the mold in that state.

か(して、上記原料ゴムか、−射出量分だけ通過し、即
ち成形空所8に所望温度の原料が充満し終る瞬間の前後
の僅少な時間内に、上記電力を断つ。
(Then, the power is cut off within a short period of time before and after the moment when the raw material rubber has passed by the injection amount, that is, when the molding cavity 8 is filled with the raw material at the desired temperature.

上記の如く、原料ゴムの間歇的流動に対応して加熱電力
を断続することにより、成形空所8に圧入する原料流動
体を所望のほぼ一定温度に加熱することが出来る。
As described above, by intermittent heating power corresponding to the intermittent flow of the raw material rubber, the raw material fluid press-fitted into the molding cavity 8 can be heated to a desired approximately constant temperature.

尚、上記印加する電力は、通常低圧大電流(例えばIO
V以下、300〜3000A)であることが望ましい。
Note that the power applied above is usually low voltage and large current (for example, IO
V or less, 300 to 3000 A) is desirable.

電気抵抗発熱体13 、13’に印加される上記電力は
、該抵抗発熱体13 、13’が、例えば空気中で、数
秒以内に灼熱し得る程度の過大な電流であるが、上記原
料が、適当なタイミングで流路10′に流入し、該抵抗
発熱体13 、13’に直接触れつつ急速に流れ去るた
め、発熱体13 、13’に発生したジュール熱は、上
記流れ去る原料に殆んど奪い去られ、これによって抵抗
発熱体13,13’は適温に保持され、又、原料ゴムも
過熱による変質の虞れなしに、所望の加硫温度まで一気
に昇温することが出来る。
The electric power applied to the electric resistance heating elements 13, 13' is such an excessive current that the resistance heating elements 13, 13' can become scorched within a few seconds, for example in air. Since it flows into the flow path 10' at an appropriate timing and quickly flows away while directly touching the resistance heating elements 13 and 13', most of the Joule heat generated in the heating elements 13 and 13' is transferred to the flowing raw material. As a result, the resistance heating elements 13, 13' are maintained at an appropriate temperature, and the raw rubber can be heated all at once to the desired vulcanization temperature without the risk of deterioration due to overheating.

上記成形の繰り返しに際し、もし要すれば、型のいわゆ
る湯たまり(図示せず)等を若干太き目に作り、該湯だ
まり内に上記残留ゴムの不用部分を停滞せしめ、成形品
からこれを除去することも出来る。
When repeating the above molding process, if necessary, make a so-called hot water pool (not shown) in the mold slightly thicker, stagnate the unnecessary portion of the residual rubber in the hot water pool, and remove it from the molded product. It can also be removed.

上記残留した原料の不用部分を少なくなし、更に、射出
する原料を均一温度の連続体とする上から、上記流路1
0′の全容積を、上記−射出量の原料容積より小、好ま
しくは上記原料容積の約10%以下とすることが必要で
ある。
In addition to reducing the unnecessary portion of the remaining raw material, the flow path 1
It is necessary that the total volume of 0' be smaller than the raw material volume of the above injection amount, preferably about 10% or less of the above raw material volume.

次に、上記加熱用通路10内に形成する耐熱電気絶縁層
14 、14’に就いて説明する。
Next, the heat-resistant electrical insulating layers 14 and 14' formed in the heating passage 10 will be explained.

これ等の層14,14’は、例えばポリアミドイミドワ
ニス、変性ポリエステルワニス、シリコーンワニス、等
耐熱電気絶縁性ワニス、その他を流延又は塗布して得ら
れる耐熱電気絶縁性塗膜層である。
These layers 14, 14' are heat-resistant electrically insulating coating layers obtained by casting or coating heat-resistant electrically insulating varnishes such as polyamide-imide varnish, modified polyester varnish, silicone varnish, and others.

又は、セラミックコーティングないし琺瑯、グラスライ
ニング等になる耐熱電気絶縁層でもよい。
Alternatively, it may be a heat-resistant electrically insulating layer such as a ceramic coating, enamel, or glass lining.

成るいは、ンリコーンコンパウンド等をもって、別に成
形したものを当てて、上記耐熱電気絶縁層14゜14′
に替えることも出来る。
Alternatively, the heat-resistant electrical insulating layer 14° 14' is coated with a separately molded silicone compound or the like.
You can also change it to

次に上記電気抵抗発熱体13 、13’に就いて述べる
Next, the electric resistance heating elements 13 and 13' will be described.

これ等は、例えばニッケルークロム合金、鉄−クロム−
アルミニウム合金、その他市販の電熱抵抗材料を主に薄
板状になして使用する。
These include, for example, nickel-chromium alloy, iron-chromium alloy,
Aluminum alloy and other commercially available electric heating resistance materials are mainly used in the form of thin plates.

上記以外に、例えば鉄(鋼)、ステンレス等通常電熱抵
抗材として使用しない一般の金属材料も、同様に使用し
得る。
In addition to the above, general metal materials that are not normally used as electrical heating resistance materials, such as iron (steel) and stainless steel, can also be used.

上記材料は、薄板状の外、線状、管状等になし上記加熱
用通路10に配置して抵抗発熱体となし、上記原料流動
体を該発熱体13゜13′の表面に直接触れて通過する
如くなして用いる。
The above-mentioned material is arranged in the heating passage 10 in the shape of a thin plate, a line, a tube, etc. to form a resistance heating element, and the raw material fluid passes through the heating element 13, 13' in direct contact with the surface thereof. Use it as you see fit.

これと別に、上記抵抗発熱体13 、13’の表面に、
例えば弗素樹脂、シリコーン樹脂、ポリアミド、成るい
はセラミック等をコーティングするなどして薄層を形成
し、該薄層を介して通過する原料を加熱するようなして
もよい。
Apart from this, on the surface of the resistance heating elements 13 and 13',
For example, a thin layer may be formed by coating with fluororesin, silicone resin, polyamide, or ceramic, and the raw material passing through the thin layer may be heated.

上記薄層は、電気絶縁性を与え、併せて上記原料流動体
の流動時の抵抗を減殺し、更に、原料残留物の除去に際
し、離型性(非粘着性)をよくする等の効果を有する。
The thin layer provides electrical insulation, reduces resistance during flow of the raw material fluid, and also improves mold releasability (non-adhesiveness) when removing raw material residues. have

第2図は、本発明の加熱装置の他の実施例の一部切欠き
側面図である。
FIG. 2 is a partially cutaway side view of another embodiment of the heating device of the present invention.

即ち、この例では、加熱用通路10の構造体9を、流路
10/を境界として、上部構造体q及び下部構造体9“
02つの部分に分け、両構造体γ、9“を開閉自材とな
し、両者を閉じた場合、第1図の例と同様、上記高圧の
間歇的流動体を漏れなく成形空所に圧入し得て、同じく
開いた場合、上記流路10’の内面を外部に露呈し得る
ようなした。
That is, in this example, the structure 9 of the heating passage 10 is divided into an upper structure q and a lower structure 9'' with the flow path 10/ as a boundary.
If the structure is divided into two parts and both structures γ and 9" are opened and closed, and both are closed, the above-mentioned high-pressure intermittent fluid can be press-fitted into the molding cavity without leaking, as in the example shown in Fig. 1. Similarly, when opened, the inner surface of the flow path 10' can be exposed to the outside.

この第2図の例では、下部構造体9〃を固定し、上部構
造体9′を母螺19をもって、例えば第1図に示す可動
金型6を上下する装置に連結し、金型6と連動して矢印
a方向に開閉し得る如くなしたもので、その他は第1図
に関して説明したものと同様であるので、対応部分に同
一符号を付し、詳細説明は詳略する。
In the example shown in FIG. 2, the lower structure 9 is fixed, and the upper structure 9' is connected to a device for raising and lowering the movable mold 6 shown in FIG. It is constructed so that it can be opened and closed in conjunction with the direction of the arrow a, and the other parts are the same as those explained with reference to FIG.

この第2図の例は、原料ゴムの流動と停止な繰り返す上
記流路10′の内面を、必要に応じて露呈し得るため、
流路10’内の利用不能の原料ゴム等を、成形の度にか
、成るいは必要に応し除去するのに便である。
In the example shown in FIG. 2, the inner surface of the flow path 10' where the raw rubber repeatedly flows and stops can be exposed as necessary.
This is convenient for removing unusable raw material rubber and the like in the flow path 10' each time molding is performed or as needed.

又、上記の如くなすことにより、該流路10′を更に多
様な形状となすことが可能となる。
Moreover, by doing as described above, it becomes possible to form the flow path 10' into even more diverse shapes.

第3図は、本発明の更に他の実施例の要部を示す断面図
である。
FIG. 3 is a sectional view showing essential parts of still another embodiment of the present invention.

同図において、電気抵抗発熱管13“は、上述の加熱用
通路の構造体9並びに電気抵抗発熱体13 、13’等
に替わるもので、電気抵抗発熱体と同様な材質の、比較
的細い円管ないし異形管を複数本並べたものであり、然
して一端にブツシュ11を付設し、他端に同じ(連結端
12を付設し、ノズル5から圧出する原料ゴムを該抵抗
発熱管13“の管内を通過せしめ金型側へ圧送し得る如
くなす。
In the figure, an electric resistance heating tube 13'' is a relatively thin circular tube made of the same material as the electric resistance heating element, replacing the heating passage structure 9 and the electric resistance heating elements 13, 13', etc. described above. A bushing 11 is attached to one end and a connecting end 12 is attached to the other end, and the raw rubber extruded from the nozzle 5 is transferred to the resistance heating tube 13''. It is made so that it can be passed through the pipe and fed under pressure to the mold side.

上記抵抗発熱管13“の上記両端部と電気的に密に接続
する他の構造体の任意の位置に、例えば図の如くブツシ
ュ11及び固定金型7に接続端子15″″及び16″″
を夫々付設し、該端子l 5//// 、 l 6//
//に上記可変電源を接続し、該抵抗発熱管13“ に
上記ジュール熱を生ぜしめ、上記管内を間歇的に通過す
る原料ゴムを前述の如く加熱して型へ送る。
Connect terminals 15'' and 16'' to the bushing 11 and the fixed mold 7, for example, as shown in the figure, at any position of another structure that is electrically closely connected to both ends of the resistance heating tube 13''.
are attached respectively, and the terminals l 5//// and l 6//
The variable power source is connected to //, the Joule heat is generated in the resistance heating tube 13'', and the raw rubber passing intermittently through the tube is heated as described above and sent to the mold.

又、口径の犬なる管中に、より小なる口径の管を挿入し
、上記複数の管の間隙及び/又は肢管の管内を原料流動
体の流路10’となしてもよい。
Alternatively, a tube with a smaller diameter may be inserted into a tube with a larger diameter, and the gaps between the plurality of tubes and/or the inside of the limb tube may be used as the flow path 10' for the raw material fluid.

上記電気抵抗発熱管13“は、その加熱応答性を出来る
だけ素速くなし、更に加熱効率を向上するため、肢管の
口径を小となし、管の肉厚を薄くなし、且複数本並べて
用いることが望ましい。
In order to make the heating response as quick as possible and further improve the heating efficiency, the electrical resistance heating tube 13'' has a small diameter of the limb tube, a thin wall thickness of the tube, and is used in a plurality of tubes arranged side by side. This is desirable.

実施例によれば、内径1.5xm外径2.0 mmのス
テンレス管(シームレス管)50本をもって上記抵抗発
熱管13“となし、射出圧2500kg/crtf、の
原料ゴムを上記型に圧入し、上記成形を行なうことが出
来た。
According to the example, 50 stainless steel pipes (seamless pipes) with an inner diameter of 1.5 x outer diameter of 2.0 mm were used as the resistance heating tube 13'', and raw rubber was press-fitted into the mold at an injection pressure of 2500 kg/crtf. , the above molding could be carried out.

尚上記原料ゴムは該発熱管13“の内壁に付着すること
なく全量が流動し、これにより管内においてスコーチを
生ずることもな(、射出継続中一定の流速(流量)をも
って上記原料ゴムを上記所望温度に昇温して型に送通す
ることが出来る。
The raw material rubber flows in its entirety without adhering to the inner wall of the exothermic tube 13'', thereby preventing scorch from occurring within the tube (during continuous injection, the raw material rubber is flowed at a constant flow rate (flow rate) at the desired rate). It can be heated to a high temperature and passed through a mold.

尚、上記抵抗発熱管13〃は、誤操作等によって管内で
加硫したゴムも射出圧によって押し出し排除することが
可能である。
Note that the resistance heating tube 13 can also push out and remove rubber that is vulcanized inside the tube due to erroneous operation or the like by using the injection pressure.

上記抵抗発熱管13“は、通常他の構造体等による補強
を要しないから、管自体のみにて上記抵抗発熱管を構成
することが出来る。
Since the resistance heating tube 13'' does not normally require reinforcement by other structures, the resistance heating tube 13'' can be constructed only from the tube itself.

従って構造は単純であり、安価に製造することが出来る
Therefore, the structure is simple and can be manufactured at low cost.

これにより前述の例をもって説明したぶ厚い空室構造体
9′、9”並びにそれ等の内部に配置せる抵抗発熱体1
3 、13’等の合計重量に比し、本例の抵抗発熱管1
3“は頗る軽量であり、熱移動の見地より、両者を比較
する時、両者の蓄熱量、温度上昇速度、冷却速度等に多
大の差を見出すものである。
As a result, the thick hollow structures 9' and 9'' described above as well as the resistance heating element 1 disposed inside them
3, 13', etc., compared to the total weight of resistance heating tube 1 of this example.
3" is extremely lightweight, and when comparing the two from the standpoint of heat transfer, there are significant differences in the amount of heat storage, temperature rise rate, cooling rate, etc. between the two.

即ち、上記抵抗発熱管13“を用いる場合、上記原料流
動体の流入に対応して電力を印加し、該原料を流動中所
望の温度まで昇温せしめたり、ないしは上記電力の印加
を止めて上記昇温を停止せしめる場合等における加熱応
答の速さは、本例の抵抗発熱管13“の方が、上述の空
室構造体9′、9“の例よりはるかに敏速且つ正確であ
る。
That is, when using the resistance heating tube 13'', electric power is applied in response to the inflow of the raw material fluid to raise the temperature of the raw material to a desired temperature while flowing, or the application of power is stopped and the raw material is heated to a desired temperature. Regarding the speed of heating response when stopping temperature rise, etc., the resistance heating tube 13'' of this example is much faster and more accurate than the above-mentioned examples of the hollow structures 9' and 9''.

この事は、型内に射入する一射出量分の原料のみを所望
の加硫温度まで加熱し、後続の原料に対して熱の影響を
及ぼさないよう望む場合等において、特に重要な点であ
る。
This is particularly important in cases where it is desired to heat only one injection amount of raw material injected into the mold to the desired vulcanization temperature and not have any effect of heat on subsequent raw materials. be.

本例は上記加熱応答の速やかさにより、例えば上記抵発
熱管13“の管内において、上記原料の流動が停止する
瞬間の直前、例えば直前の1秒間以内に上記電力の印加
を止めることにより、抵抗発熱体13“の保有熱で残り
の流動中の原料を適温に加熱しつつ、流動中の原料によ
り発熱体を冷却し、上記管内に停止してそのまま残留す
る原料をスコーチ(加硫)から回避し、即ち未加硫のま
まとなし、次回成形時、原料としてこれを役立てること
が出来る。
In this example, due to the speed of the heating response, for example, in the resistance heating tube 13'', by stopping the application of the electric power immediately before the moment when the flow of the raw material stops, for example, within one second immediately before, the resistance is increased. While heating the remaining flowing raw material to an appropriate temperature with the heat held by the heating element 13'', the heating element is cooled by the flowing raw material, and the raw material that remains in the pipe is stopped from being scorched (vulcanized). In other words, it can be left unvulcanized and used as a raw material for the next molding.

従って、流路に残留する原料のスコーチを防ぐために特
別の冷却装置を設けることを要しない。
Therefore, it is not necessary to provide a special cooling device to prevent the raw material remaining in the flow path from scorching.

更に、又、次回の成形開始に当り、上記管内の原料が流
動を開始する瞬間の直前、例えば直前の1秒間以内に、
予め上記抵抗発熱管13〃に上記電力を印加することに
より、該管内に残留している原料を含めて、−射出量分
の原料を所望温度まで昇温して型内に送ることが出来る
Furthermore, at the start of the next molding, immediately before the moment when the raw material in the pipe starts to flow, for example, within one second immediately before,
By applying the electric power to the resistance heating tube 13 in advance, the -injection amount of raw material, including the raw material remaining in the tube, can be heated to a desired temperature and sent into the mold.

このようにしてゴム原料の殆んど全量を成形に役立てる
ことかり能となる。
In this way, almost all of the rubber raw material can be used for molding.

また、−射出量の原料の全体をほぼ均一に加熱すること
が出来、良質の製品を得ることができる。
Moreover, the entire injection amount of raw material can be heated almost uniformly, and a high-quality product can be obtained.

尚、上記抵抗発熱器13“は円形管に限るものでなく、
異形管を使用し得ることは当然であり、更に口径の犬な
る管中により小なる口径の管を挿入し上記それぞれの管
の透き間及び/又は上記管内等を流通路となし原料を通
過せしめ上記の如(加熱昇温せしめることも出来る。
Note that the resistance heating element 13'' is not limited to a circular tube,
Of course, it is possible to use a deformed tube, and furthermore, a tube of a smaller diameter is inserted into the tube of the same diameter, and the gaps between the respective tubes and/or the inside of the tube are used as flow paths for the raw material to pass through. (It is also possible to raise the temperature by heating.

更に、上記抵抗発熱管13“の耐圧強度が上記射出圧に
耐えない場合には、肢管の外周上に耐熱電気絶縁層を形
成し、該絶縁層を介して肢管を外側から補強して用いる
ことも容易である。
Furthermore, if the pressure resistance of the resistance heating tube 13'' cannot withstand the injection pressure, a heat-resistant electrical insulating layer is formed on the outer periphery of the limb tube, and the limb tube is reinforced from the outside through the insulating layer. It is also easy to use.

更に上記とは別に、液状熱硬化性樹脂等の成形に際し、
該管内径に見合った棒を抜差し自在に装着し、必要の都
度、上記棒をもって管内に残留する原料を押し出すよう
なすことも容易である。
Furthermore, apart from the above, when molding liquid thermosetting resin etc.
It is also easy to attach a rod corresponding to the inner diameter of the tube so that it can be inserted and removed, and to push out the raw material remaining inside the tube with the rod whenever necessary.

第4図は本発明の間歇的加熱装置の加熱並びに射出指示
に関する系統図の一例であり、図において20、及び2
1は共にリミットスイッチ22及び23はそれぞれ上記
リミットスイッチの位置を紙面に向って左右方向に移動
し得るバーを示す、然してリミットスイッチ20はバー
22上を移動調整して、例えばスクリュ軸2の先端部が
突き当ってそれ以上前進出来ない位置に達した時作動す
るようにし、リミットスイッチ21は上記リミットスイ
ッチ20の位置よりスクリュ軸基部方向に例えば2ru
nH度の位置において作動する如く設置する。
FIG. 4 is an example of a system diagram regarding heating and injection instructions of the intermittent heating device of the present invention.
1, limit switches 22 and 23 each indicate a bar that can move the position of the limit switch in the horizontal direction as seen in the paper.The limit switch 20 can be adjusted by moving on the bar 22, for example, to adjust the position of the limit switch to the tip of the screw shaft 2. The limit switch 21 is actuated when the screw reaches a position where it cannot move forward any further, and the limit switch 21 is moved, for example, by 2ru in the direction of the base of the screw shaft from the position of the limit switch 20.
It is installed so that it operates at a position of nH degrees.

作動突起24はスクリュ軸20基部に固定され、該スク
リュ軸と共に前進後退して上記2個のリミットスイッチ
の接点をそれぞれ作動せしめる。
The operating protrusion 24 is fixed to the base of the screw shaft 20 and moves forward and backward together with the screw shaft to respectively operate the contacts of the two limit switches.

上記接点の作動とは、例えば該リミットスイッチ内の常
時電流を通じている回路(常閉回路)の常閉接点が離れ
て電流が流れなくなるよう変化することを意味する。
The actuation of the contact means, for example, that the normally closed contact of a circuit (normally closed circuit) in which current always flows within the limit switch is separated so that no current flows.

25は射出指示用のスナップスイッチ、26は遅延時間
を任意調整し得るタイムリレー(タイマー)、27はス
クリュ軸2に射出運動を与える射出駆動装置、28は外
部の商用電源、29は電源スィッチ、30はマグネット
スイッチ、31はスライドトランス、32は降圧トラン
スをそれぞれ示す。
25 is a snap switch for instructing injection, 26 is a time relay (timer) that can arbitrarily adjust the delay time, 27 is an injection drive device that gives injection motion to the screw shaft 2, 28 is an external commercial power source, 29 is a power switch, 30 is a magnet switch, 31 is a slide transformer, and 32 is a step-down transformer.

さて、第4図に基すいて射出命令の指示を電流をもって
行なう一例について説明すれば、先ずスナップスイッチ
25より発したる射出指示電流は、リミットスイッチ2
0及び21に入りそれぞれの上記常閉回路を経て前者の
電流はタイムリレー26に至り、該タイムリレーの設定
した遅延時間(例えば0.5秒)だけ遅れて上記射出命
令を射出駆動装置27に伝える。
Now, referring to FIG. 4, an example of instructing an injection command using a current will be explained. First, the injection command current emitted from the snap switch 25 is transmitted to the limit switch 25.
0 and 21, the former current reaches the time relay 26 through the respective normally closed circuits, and the injection command is sent to the injection drive device 27 after a delay time set by the time relay (for example, 0.5 seconds). tell.

よって上記スクリュ軸2による射出開始は実際には上記
射出指示より例えば0.5秒遅れて開始される。
Therefore, the injection by the screw shaft 2 is actually started with a delay of, for example, 0.5 seconds from the injection instruction.

然して射出開始後任意の一射出量分の原料が射出され上
記スクリュ軸2の先端が突き当たる位置に至ると上記リ
ミットスイッチ20が上記の如く作動して射出指示電流
が遮断され射出駆動装置は停止する。
However, after the start of injection, when an arbitrary amount of raw material is injected and the tip of the screw shaft 2 reaches the abutting position, the limit switch 20 is activated as described above, the injection instruction current is cut off, and the injection drive device is stopped. .

次に後者のIJ 、Sットスイッチ21を経た電流は商
用電源28をスライドトランス31に対して断続するマ
グネットスイッチ30の電磁コイルに入り、該電磁コイ
ルを励磁してマグネットスイッチ30を閉じる。
Next, the current passing through the latter IJ and S switch 21 enters the electromagnetic coil of the magnet switch 30 that connects and disconnects the commercial power supply 28 to the slide transformer 31, energizes the electromagnetic coil, and closes the magnet switch 30.

これによって直ちにスライドトランス31の二次側に該
スライドトランス31により任意に調整された電圧が発
生し、該電圧は更に降圧トランス32によって所望の低
圧例えばIOV以下に降圧されて負荷の上記抵抗発熱管
13〃又は上記抵抗発熱体13,13’等に通常大電流
をもって印加される。
As a result, a voltage arbitrarily adjusted by the slide transformer 31 is immediately generated on the secondary side of the slide transformer 31, and this voltage is further stepped down to a desired low voltage, for example, IOV or lower, by the step-down transformer 32, and the voltage is lowered to the resistive heating tube of the load. 13 or the above-mentioned resistance heating elements 13, 13', etc., usually with a large current.

故に上記抵抗発熱管1γに対する電力の印加は上記射出
指示と同時であり、これに対して上記の如く例えば0.
5秒遅れて原料の射出流動が開始される。
Therefore, the electric power is applied to the resistance heating tube 1γ at the same time as the injection instruction, and the electric power is applied to the resistance heating tube 1γ at the same time as the injection instruction.
Injection flow of the raw material is started after a delay of 5 seconds.

該射出流動は一射出量分が通過し終るまで継続し、この
間該原料は例えば上記抵抗発熱管13“の管内を通過す
る間に所望の温度例えば15秒前後をもって加硫に到達
する温度まで一気に昇温しで型方向へ送られ、その高温
状態のままキャビティに突入する。
The injection flow continues until one injection amount has passed, and during this time, the raw material is heated at once to a desired temperature, for example, a temperature that reaches vulcanization in about 15 seconds, while passing through the resistance heating tube 13''. It heats up and is sent toward the mold, where it enters the cavity in its high temperature state.

然して上記スクリュ軸2が前進して先端が突き当たる位
置の直前、例えば直前2mmの位置で上記IJ ミツト
スイッチ21が上記の如く作動し、これによって上記抵
抗発熱管に送る加熱用電流が遮断される。
As the screw shaft 2 moves forward, the IJ Mitswitch 21 operates as described above at a position immediately before, for example, 2 mm before the end of the screw shaft 2 reaches the end, thereby cutting off the heating current sent to the resistance heating tube.

尚該加熱用電流が遮断されて後も上記スクリュ軸の前進
は続き該スクリュ軸が突き当たるまでノズル5先端から
原料を吐出し続ける、上記リミットスイッチ20の位置
を変えることにより上記吐出し続ける原料を多くも少く
も自由に変えることが可能であり、更に上記2個のリミ
ットスイッチをほぼ同時に作動せしめて上記吐出し続け
る原料をほぼゼロとなすことも出来る、又これと同様上
記タイムリレー26のタイム設定を任意に調整し、上記
遅延時間を例えばゼロから任意秒数まで自由に調整する
ことが出来る。
Even after the heating current is cut off, the screw shaft continues to move forward and the raw material continues to be discharged from the tip of the nozzle 5 until the screw shaft reaches the end.By changing the position of the limit switch 20, the raw material can be continued to be discharged. It is possible to freely change the amount to be more or less, and furthermore, by operating the two limit switches at the same time, the amount of raw material that continues to be discharged can be reduced to almost zero.Similarly, the time of the time relay 26 can be changed. The settings can be arbitrarily adjusted, and the delay time can be freely adjusted, for example, from zero to an arbitrary number of seconds.

上記の如くなして射出開始と加熱とのタイミング又は射
出終了と加熱停止とのタイミング等を僅少な時間内で調
整する理由は、このようになすことにより射出成形を連
続して行なうに際し、例えば抵抗発熱管13“の管内に
停止して次回の流動を待機している原料に対し、該流動
の最初から原料をほぼ所望温度に加熱昇温せしめること
が可能となり、又−射出量の原料が通過し終る直前に加
熱電流を断つことにより上記管内にて停止する原料を未
加硫の状態に保つことが出来るようになる。
The reason why the timing of injection start and heating, or the timing of injection end and heating stop, etc. is adjusted within a short time as described above is that by doing so, when performing injection molding continuously, for example, resistance It becomes possible to heat and raise the temperature of the raw material stopped in the exothermic tube 13'' waiting for the next flow from the beginning of the flow to almost the desired temperature, and also allows the injection amount of raw material to pass through. By cutting off the heating current just before the heating is finished, the raw material stopped in the tube can be kept in an unvulcanized state.

尚又上記と反対に射出流動が停止して後の僅少な時間内
便に上記加熱用電流を送り続け、これによって、例えば
上記管内成るいは上i己空室内の原料流動体の流路10
/等に残留するゴムを加泥せしめスクラップとして除去
し易くなすことも出来る。
In addition, contrary to the above, the heating current continues to be sent for a short period of time after the injection flow has stopped, and thereby, for example, the flow path 10 of the raw material fluid in the pipe or the upper cavity is heated.
It is also possible to add mud to the rubber remaining on / etc., making it easier to remove as scrap.

但しこの場合の上記指示電流の通じ方は第4図と異なる
もののその実施方法は上記説明より容易に類推されるで
あろう。
However, although the method of passing the instruction current in this case is different from that shown in FIG. 4, the implementation method can be easily inferred from the above explanation.

本発明の加熱装置による間歇的加熱は、上記原料流動体
の間歇的流動に対応して、はぼその流動時間中のみ該抵
抗発熱体に電力を印加し、その他の時間中は上記電力を
全く印加しないと云うやり方の間歇的加熱に限るもので
なく、上記その他の時間中、原料流動体の通過すべき流
路10′を所望の定温に保つ程度の小電力を送り、射出
開始に対応して上ybt−電力を適当な大電力に切り換
え印加する如くなしてもよい。
Intermittent heating by the heating device of the present invention corresponds to the intermittent flow of the raw material fluid, and applies electric power to the resistance heating element only during the approximate flow time, and does not apply the electric power at all during other times. The present invention is not limited to intermittent heating in which no voltage is applied, but during the other times mentioned above, a small amount of electric power can be applied to maintain the flow path 10' through which the raw material fluid passes at a desired constant temperature to correspond to the start of injection. Then, the upper ybt-power may be switched to an appropriate high power and applied.

更に本発明の間歇的加熱は、該射出の続行する間、つま
りほぼ原料の流れ始めから、はぼその停止までの間を限
って電力を印加する間歇的加熱に限るものでなく、上記
原料の続行する間に、上記電力を任意に断続し、これに
よって−射出量の原料流動体中に温度差を付与して、成
形空所に圧入することも出来る。
Furthermore, the intermittent heating of the present invention is not limited to intermittent heating in which electric power is applied only while the injection continues, that is, from approximately the beginning of the flow of the raw material to the stop of the injection; During the process, it is also possible to optionally switch off and on the electrical power, thereby creating a temperature difference in the injection quantity of the raw material fluid and forcing it into the molding cavity.

このようになすことにより、例えば成形品の表皮と芯部
の物性の異なる成形品を得ること等が出来る。
By doing this, it is possible to obtain, for example, a molded product whose skin and core have different physical properties.

本発明の間歇的加熱装置は、以上の説明に述べたゴム類
に限るものでなく、成形に際し熱架橋反応を伴なう各種
熱硬化性樹脂に対し、更にはゴム類並びに上記各種熱硬
化性樹脂による発泡成形品の製造に際し、同様に使用す
ることが出来る。
The intermittent heating device of the present invention is applicable not only to the rubbers mentioned above, but also to various thermosetting resins that undergo a thermal crosslinking reaction during molding. It can be similarly used in the production of foam molded products using resin.

尚上記型温度を適宜調整して、例えば熱架橋性成分を混
和した熱可塑性樹脂、その他一般の熱可塑性樹脂等に対
しても広く同様に使用することが出来る。
By adjusting the above-mentioned mold temperature appropriately, the present invention can be similarly used for a wide range of thermoplastic resins, such as thermoplastic resins mixed with thermally crosslinkable components, and other general thermoplastic resins.

本発明は、簡単な装置をもってゴム類その他の射出成形
又は移送成形等における加硫(硬化)時間を、無理な(
10秒程度まで短縮することが出来る。
The present invention uses a simple device to reduce the vulcanization (hardening) time in injection molding or transfer molding of rubber and other materials.
It can be shortened to about 10 seconds.

然して、上記成形は安定的に継続し得るものであり、こ
れにより成形サイクルを、従来に比して大巾に短縮し得
て射出即加硫を実現し得るのみならず、成形品の肉厚、
大小に関係なく、成形品全体を均一に加硫せしめ、スク
ラップ発生のおそれも全くな(品質を向上することが出
来る。
However, the above-mentioned molding can be continued stably, and as a result, the molding cycle can be greatly shortened compared to the conventional method, and not only can injection vulcanization be realized immediately, but also the wall thickness of the molded product can be reduced. ,
Regardless of size, the entire molded product can be vulcanized uniformly, and there is no risk of scrap generation (quality can be improved).

本発明の間歇的加熱装置は、その急速な効率的加熱の故
に、上記以外の多様な用途に利用することが出来る有利
な発明である。
The intermittent heating device of the present invention is an advantageous invention that can be used for a variety of applications other than those described above because of its rapid and efficient heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の間歇的加熱装置の一例を適用した射出
成形装置全体の要部を示す一部を断面とする側面図、第
2図は本発明の加熱装置の他の例の一部を断面とする立
面図、第3図は本発明の加”熱装置の更に他の例の要部
を示す断面図、第4図は本発明の間歇的加熱装置並びに
射出指示に関する列の系統図である。 1・・・・・・可塑化シリンダ、2・・・・・・回転ス
クリュ軸、3・・・・・・原料ゴム、31・・・・・・
ホッパ、4・・・・・・加熱流体通路、5・・・・・ツ
ズル、6・・・・・・可動金型、7・・・・・・固定金
型、8・・・・・・成形空所、9・・・・・・構造体、
9′・・・・・・上部構造体、r・・・・・・下部構造
体、9a・・・・・・加熱媒体通路、10・・・・・・
加熱用通路、10’−□・・・・・流路、11・・・・
・・ブツシュ、12・・・・・・連結端、13 、13
’・・・・・・電気抵抗発熱体、13〃・・・・・・電
気抵抗発熱管、14 、14’・・・・・・耐熱電気絶
縁層、15 、15’・・・・・・電極、15〃、15
′ll・・・・・・導電螺子、15////・・・・・
・接続端子、16 、16’・・・・・・電極、16”
、 16”・・・・・・導電螺子、16tut・・・
・・・接続端子、17,17’。 i s 、 i s’・・・・・・媒体通路、19・・
・・・・母螺、20゜21・・・・・・リミット・スイ
ッチ、22,23・・・・・・バー、24・・・・・・
作動突起、25・・・・・・スナップ・スイッチ、26
・・・・・・タイム・リレー、27・・・・・・射出駆
動装置、28・・・・・・電源、29・・・・・・電源
スィッチ、30・・・・・・マグネット・スイッチ、3
1・・・・・・スライド・トランス、32・・・・・・
降圧トランス。
FIG. 1 is a partially sectional side view showing the main parts of the entire injection molding apparatus to which an example of the intermittent heating device of the present invention is applied, and FIG. 2 is a part of another example of the heating device of the present invention. FIG. 3 is a cross-sectional view showing the essential parts of still another example of the heating device of the present invention, and FIG. 4 is an intermittent heating device of the present invention and a system of rows related to injection instructions. It is a diagram. 1... Plasticizing cylinder, 2... Rotating screw shaft, 3... Raw material rubber, 31...
Hopper, 4... Heating fluid passage, 5... Tuzzle, 6... Movable mold, 7... Fixed mold, 8... Molding cavity, 9... structure,
9'... Upper structure, r... Lower structure, 9a... Heating medium passage, 10...
Heating passage, 10'-□...Flow path, 11...
...Button, 12...Connection end, 13, 13
'... Electric resistance heating element, 13... Electric resistance heating tube, 14, 14'... Heat resistant electrical insulating layer, 15, 15'... electrode, 15〃,15
'll... Conductive screw, 15////...
・Connection terminal, 16, 16'... Electrode, 16"
, 16”... Conductive screw, 16tut...
...Connection terminal, 17, 17'. i s, i s'...media path, 19...
...Thread, 20゜21...Limit switch, 22,23...Bar, 24...
Operating projection, 25...Snap switch, 26
...Time relay, 27 ... Injection drive device, 28 ... Power supply, 29 ... Power switch, 30 ... Magnet switch ,3
1...Slide transformer, 32...
Step-down transformer.

Claims (1)

【特許請求の範囲】 1 成形に際し、加硫、架橋、発泡等の反応を伴なうゴ
ム類、合成樹脂等の可塑化原料を、反応の促進を無視し
得る温度範囲に制御して間歇的に吐出する吐出装置と、
吐出装置からの原料を、複数又は単数の、比較的薄肉、
且つ小口径の管内を流通して型に送る電気抵抗発熱管と
、上記抵抗発熱管に通電して、これにジュール熱を発生
させ、管内を通過する原料を、反応直前の高温度まで急
速に加熱するようにした加熱通路と、 前記吐出装置と連動し、原料の流動開始直前の短時間内
か、又は流動開始と同時に、上記抵抗発熱管に加熱用電
力の通電を開始し、原料の流動停止前の短時間内か、又
は流動停止と同時に、上記加熱用電力の通電を断つか、
又は通電する電力を小とする制御回路と、からなること
を特色とする射出成形又は移送成形等における可塑化流
動体の間歇的加熱装置。
[Claims] 1. During molding, plasticizing raw materials such as rubbers and synthetic resins that involve reactions such as vulcanization, crosslinking, and foaming are controlled intermittently to a temperature range where the acceleration of the reaction can be ignored. a discharge device for discharging to;
The raw material from the dispensing device is transferred to a plurality of relatively thin walls,
In addition, electricity is applied to the electric resistance heating tube that flows through the small diameter tube and sends it to the mold, and generates Joule heat, and the raw material passing through the tube is rapidly brought to a high temperature just before reaction. In conjunction with the heating passage configured to heat the material and the discharge device, heating power is started to be applied to the resistance heating tube within a short period of time immediately before the flow of the raw material starts, or at the same time as the flow of the raw material starts, and the flow of the raw material is started. Either the heating power is cut off within a short period of time before the flow stops, or at the same time as the flow stops.
or a control circuit that reduces the amount of electric power supplied.
JP92180A 1980-01-10 1980-01-10 Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc. Expired JPS5936864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP92180A JPS5936864B2 (en) 1980-01-10 1980-01-10 Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP92180A JPS5936864B2 (en) 1980-01-10 1980-01-10 Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.

Publications (2)

Publication Number Publication Date
JPS5699645A JPS5699645A (en) 1981-08-11
JPS5936864B2 true JPS5936864B2 (en) 1984-09-06

Family

ID=11487141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP92180A Expired JPS5936864B2 (en) 1980-01-10 1980-01-10 Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.

Country Status (1)

Country Link
JP (1) JPS5936864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128864U (en) * 1988-02-23 1989-09-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126626U (en) * 1983-02-16 1984-08-25 美浦 隆 Heating device for plasticized polymers in injection molding machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128864U (en) * 1988-02-23 1989-09-01

Also Published As

Publication number Publication date
JPS5699645A (en) 1981-08-11

Similar Documents

Publication Publication Date Title
US4370115A (en) Injection molding method and device
US2386966A (en) High-frequency electrostatic heating of plastics
US2541201A (en) Method of extrusion
US4459250A (en) Process and apparatus of extrusion molding rubbers and thermal cross-linking synthetic resins
CN107107427B (en) Coinjection molding apparatus and injection moulding method
US6361733B1 (en) Ultrasonic injection molding
US2448676A (en) Method of injection molding
US3989793A (en) Injection molding of rubber compounds
JPS5936864B2 (en) Intermittent heating device for plasticized fluid in injection molding or transfer molding, etc.
JP2005324483A (en) Injection molding nozzle
EP0573749B1 (en) Intermittent heating apparatus for plasticized fluids in injection or similar moldings
JP2003340896A (en) Method and apparatus for heating molten material in injection molding machine
KR830001491B1 (en) Intermittent heating apparatus for plasticizing fluid in injection molding or transfer molding
JPS6159218B2 (en)
JPS6085918A (en) Injection molding method to be followed by thermal crosslinking reaction of rubber and synthetic resin
GB2079662A (en) Injection molding method and device
JPS60244514A (en) Molding apparatus for thermally crosslinkable polymer material
JP6094607B2 (en) Injection molding apparatus and injection molding method
US20200238585A1 (en) Injection molding device, injection molding method, and injection molding resin material
US3446889A (en) Method of molding thermoplastics
JPH0834034A (en) Rubber injection molding apparatus and method
JP6056887B2 (en) Injection molding apparatus and injection molding method
JP6094603B2 (en) Injection molding apparatus and injection molding method
JPS5593437A (en) Injection molding process with thermo-linked reaction of rubber and synthetic resin
JP6094608B2 (en) Injection molding apparatus and injection molding method