JPS5845919B2 - Water treatment method for denitrification - Google Patents

Water treatment method for denitrification

Info

Publication number
JPS5845919B2
JPS5845919B2 JP13849380A JP13849380A JPS5845919B2 JP S5845919 B2 JPS5845919 B2 JP S5845919B2 JP 13849380 A JP13849380 A JP 13849380A JP 13849380 A JP13849380 A JP 13849380A JP S5845919 B2 JPS5845919 B2 JP S5845919B2
Authority
JP
Japan
Prior art keywords
tank
water
treated
reaction tank
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13849380A
Other languages
Japanese (ja)
Other versions
JPS5763195A (en
Inventor
清美 村田
宏司 石田
正起 川上
豊 山田
忠光 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13849380A priority Critical patent/JPS5845919B2/en
Publication of JPS5763195A publication Critical patent/JPS5763195A/en
Publication of JPS5845919B2 publication Critical patent/JPS5845919B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、生し尿やし尿混入汚水等の被処理水からそれ
に含有のアンモニア性窒素分を活性汚泥の作用で除去す
る方法であって、処理槽をコンパクトに構成できると共
に、窒素除去能力を向上でき、その上、希釈水や添加薬
剤を不要にしたり、あるいは、少量にしたり、さらには
、処理槽間での被処理水循環を不要にしたりする事が可
能なようにする事を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for removing ammonia nitrogen contained in water to be treated, such as raw human urine or sewage mixed with human waste, by the action of activated sludge, and the treatment tank can be configured compactly. At the same time, the nitrogen removal ability can be improved, and in addition, it is possible to eliminate the need for dilution water and additive chemicals, or to reduce the amount of dilution water and additives, and furthermore, to eliminate the need for circulating treated water between treatment tanks. The purpose is to do.

次に、例示図により本発明の実施態様を説明する。Next, embodiments of the present invention will be described with reference to illustrative figures.

貯留槽1からの生し尿を、前処理装置2で夾雑物を除去
した後反応槽3に供給し、反応槽3にあ・いて、空気等
の酸素含有ガスを給気路4により生し尿中に吹込むと共
に、ポンプ流路5により生し尿を、lOmないし100
rr1.程度の比較的深い下降流路3aとそれに連なる
上昇流路3bにわたって循環流動させて、好気性活性汚
泥の作用により生物化学的酸素要求量を低下させると共
に、アンモニア性窒素分を酸化させ、その酸化処理によ
り生じる亜硝酸及び硝酸を嫌気性活性汚泥の作用により
窒素ガスとして除去する。
The raw human waste from the storage tank 1 is supplied to the reaction tank 3 after removing impurities in the pre-treatment device 2. At the same time, raw urine is blown into the pump channel 5 at a rate of lOm to 100
rr1. By circulating the flow through a relatively deep downward flow path 3a and an upward flow path 3b connected thereto, the biochemical oxygen demand is reduced by the action of aerobic activated sludge, and the ammonia nitrogen content is oxidized. Nitrite and nitric acid produced during treatment are removed as nitrogen gas by the action of anaerobic activated sludge.

上述のように、アンモニア性窒素分が酸化された後還元
されるように、しかも、酸化及び還元が同時的に行われ
るようにするためには、前記反応槽3に釦いて、溶存酸
素量検出値がippm以下に、かつ、酸化還元電位が1
50mV以下になるように、前記給気路4からのガス供
給量を制御弁4aにより人為的あるいは自動的に調整す
る事が望ましい。
As mentioned above, in order for the ammonia nitrogen content to be oxidized and then reduced, and for the oxidation and reduction to be performed simultaneously, a button is pressed on the reaction tank 3 to detect the amount of dissolved oxygen. The value is below ippm and the redox potential is 1
It is desirable to manually or automatically adjust the amount of gas supplied from the air supply path 4 using the control valve 4a so that the voltage is 50 mV or less.

前記反応槽3からの処理済水を硝化槽6に供給して、空
気等の酸素含有ガスを給気路7により吹込んで、残留ア
ンモニア性窒素分の好気性活性汚泥による酸化を行わせ
、その後、被処理水を脱窒槽8に供給する。
The treated water from the reaction tank 3 is supplied to the nitrification tank 6, and oxygen-containing gas such as air is blown in through the air supply path 7 to oxidize the residual ammonia nitrogen with aerobic activated sludge. , supplies the water to be treated to the denitrification tank 8.

前記脱窒槽8にち−いて、亜硝酸及び硝酸を嫌気性活性
汚泥の作用により最終的に還元処理して、アンモニア性
窒素分の除去を十分に行い、その後、被処理水を再曝気
槽9に供給する。
In the denitrification tank 8, nitrous acid and nitric acid are finally reduced by the action of anaerobic activated sludge to sufficiently remove ammonia nitrogen, and then the water to be treated is transferred to the re-aeration tank 9. supply to.

再曝気槽9に勢いて、空気等の酸素含有ガスを給気路1
0により吹込みながら、好気性活性汚泥によって被処理
水の生物化学的酸素要求量を十分に低下させ、さらに、
再曝気槽9からの被処理水から活性汚泥を沈澱槽11に
より分離し、清水を放流、再利用あるいは脱色等の三次
処理する。
Oxygen-containing gas such as air is sent to the re-aeration tank 9 through the air supply path 1
The biochemical oxygen demand of the water to be treated is sufficiently reduced by aerobic activated sludge while being blown in by 0, and further,
Activated sludge is separated from the water to be treated from the reaeration tank 9 in a settling tank 11, and the fresh water is subjected to tertiary treatment such as discharge, reuse, or decolorization.

前記沈澱槽11からの高濃度分離汚泥の一部を返送路1
2により前記反応槽3に、かつ、残部を汚泥貯留槽13
に夫々送る。
A portion of the highly concentrated separated sludge from the settling tank 11 is sent to the return path 1.
2 to the reaction tank 3, and the remainder to the sludge storage tank 13.
Send each to.

前記反応槽3に返送される活性汚泥の濃度は、反応槽3
から再曝気槽9にわたって活性汚泥濃度が110000
pp以上に維持されるべく調整される事が望1しく、捷
た、その返送量は、沈澱分離汚泥の場合、反応槽3への
被処理水投入量Qの2倍ないし10倍程度が望ましい。
The concentration of activated sludge returned to the reaction tank 3 is
The activated sludge concentration is 110,000 from reaeration tank 9 to
It is desirable to adjust the amount to be maintained at pp or more, and in the case of sedimentation-separated sludge, the amount of sludge returned is preferably about 2 to 10 times the amount of water to be treated Q input into the reaction tank 3. .

前記反応槽3に供給される被処理水は、その浮遊固形物
質に対する総窒素の重量比が0.06ない※※し0.1
程度になるように調製される事が、処理全体を良好に行
わせる上で望1しく、そのために、必要に応じて、反応
槽3に供給される被処理水に対して給水路14から希釈
水を、被処理水の5倍以下づつ供給する。
The water to be treated that is supplied to the reaction tank 3 has a weight ratio of total nitrogen to suspended solids of less than 0.06** and 0.1.
It is desirable that the water to be treated be diluted from the water supply channel 14 to the reaction tank 3 as necessary to ensure that the entire treatment is carried out well. Water is supplied at a rate not more than 5 times that of the water to be treated.

もちろん、被処理水の性状によっては希釈水が不必要で
あり、希釈水を必要とする場合、希釈水として自然清水
、海水あるいは水処理により得られる清水等各種の水を
利用でき、また、希釈水は、反応槽3、硝化槽6、脱窒
槽8、再曝気槽9のいずれかあるいはそれらのうち複数
に対して供給してもよい。
Of course, depending on the properties of the water to be treated, dilution water may not be necessary.If dilution water is required, various types of water can be used as dilution water, such as natural fresh water, seawater, or clean water obtained through water treatment. Water may be supplied to one or more of the reaction tank 3, nitrification tank 6, denitrification tank 8, and reaeration tank 9.

尚、本発明は、生し尿のみならずし尿混入下水等、アン
モニア性窒素分及び有機分を含む各種汚水を処理対象に
でき、また、本発明を適用する水処理設備の具体的構成
は各種変更可能である。
The present invention can treat not only raw human urine but also various types of wastewater containing ammonia nitrogen and organic components, such as sewage mixed with human urine, and the specific configuration of the water treatment equipment to which the present invention is applied can be modified in various ways. It is possible.

例えば、前記沈澱槽11に代えて遠心分離機等を利用で
き、それらを汚泥分離装置11と総称する。
For example, instead of the sedimentation tank 11, a centrifugal separator or the like can be used, and these are collectively referred to as the sludge separation device 11.

また、その汚泥分離装置11からの被処理水に対する凝
集沈澱装置を付加して、発生した凝集沈澱汚泥を、反応
槽3、硝化槽6、脱窒槽8、再曝気槽9のいずれかに供
給してもよい。
In addition, a coagulation and sedimentation device is added for the water to be treated from the sludge separation device 11, and the generated coagulation and sedimentation sludge is supplied to any of the reaction tank 3, nitrification tank 6, denitrification tank 8, and reaeration tank 9. It's okay.

次に、前述設備による実施例について説明する。Next, an example using the above-mentioned equipment will be described.

使用した各種の容量は次の通りである。The various capacities used are as follows.

反応槽 32m3(深さ10m) 硝化槽 14□3 脱窒槽 10m3 再曝気槽 7TIL3 沈澱槽 14m3 設備の運転条件は次の通りである。Reaction tank 32m3 (depth 10m) Nitrification tank 14□3 Denitrification tank 10m3 Re-aeration tank 7TIL3 Sedimentation tank 14m3 The operating conditions of the equipment are as follows.

以上要するに、本発明による脱窒用水処理方法は、比較
的深い下降流路3aとそれに連なる上昇流路3bを有す
る反応槽3にむいて、アンモニア性窒素分を含有する被
処理水を活性汚泥と共に循環流動させると共に、活性汚
泥によりアンモニア性窒素分が酸化された後還元される
ように酸素含有ガス供給量を調整し、前記反応槽3で処
理された被処理水を、硝化槽6、脱窒槽8、再曝気槽9
及び汚泥分離装置11にその順に供給し、前記汚泥分離
装置11からの高濃度活性汚泥を前記反応槽3から再曝
気槽9にわたって供給する事を特徴とする。
In summary, in the denitrification water treatment method according to the present invention, water to be treated containing ammonia nitrogen is sent together with activated sludge to a reaction tank 3 having a relatively deep downward flow path 3a and an upward flow path 3b connected thereto. While circulating and flowing, the amount of oxygen-containing gas supplied is adjusted so that the ammonia nitrogen content is oxidized and then reduced by the activated sludge, and the water treated in the reaction tank 3 is transferred to the nitrification tank 6 and the denitrification tank. 8. Re-aeration tank 9
and a sludge separator 11 in that order, and the highly concentrated activated sludge from the sludge separator 11 is supplied from the reaction tank 3 to the reaeration tank 9.

すなわち、上記反応槽3は比較的深い循環タイプである
が故に多量の酸素ガスを被処理水に溶解でき、そして、
反応槽3から再曝気槽9にわたって活性汚泥濃度を例え
ば10000pP以上というように高濃度に維持するか
ら、各種に釦ける処理効率を顕著に向上でき、全体とし
て槽容量を大巾1 に、例えば従来に比して/3ないし/4というように小
さくでき、設備面や敷地面等での経済性を大巾に向上で
き、その上、総窒素除去率が例えば99%以上というよ
うに極めて大きなものになった。
That is, since the reaction tank 3 is of a relatively deep circulation type, a large amount of oxygen gas can be dissolved in the water to be treated, and
Since the activated sludge concentration is maintained at a high concentration, for example, 10,000 pP or more, from the reaction tank 3 to the reaeration tank 9, the treatment efficiency for various types can be significantly improved, and the overall tank capacity can be reduced to 1,000 pP compared to, for example, conventional It can be made as small as /3 or /4 compared to the previous model, greatly improving economic efficiency in terms of facilities and site, etc. Moreover, the total nitrogen removal rate is extremely high, for example, 99% or more. Became.

捷た、反応槽3において高負荷脱窒処理ができるから、
被処理水を無希釈あるいは5倍希釈以下という従来に比
してはるかに小さい希釈倍率で処理でき、水資源確保の
面で有利であるばかりでなく、希釈に伴う処理量増大を
皆無あるいは少しにできた。
Because high-load denitrification treatment can be performed in the broken reaction tank 3,
The water to be treated can be treated without dilution or with a much smaller dilution ratio than conventional methods, such as less than 5 times dilution, which is not only advantageous in terms of securing water resources, but also eliminates or slightly increases the amount of treatment due to dilution. did it.

さらに、反応槽3において総窒素除去率が、例えば90
%以上というように極めて大きなものになるため、脱窒
槽8に釦ける処理負荷が著るしく小さくなって、脱窒槽
8での嫌気性活性汚泥の栄養源としての苛性ソーダやメ
タノール等の薬剤投入を不要あるいは極めて少量にでき
、省資源節約及びランニングコスト低減を行えるように
なった。
Furthermore, the total nitrogen removal rate in the reaction tank 3 is, for example, 90
% or more, the processing load on the denitrification tank 8 is significantly reduced, making it difficult to introduce chemicals such as caustic soda and methanol as a nutrient source for the anaerobic activated sludge in the denitrification tank 8. It is now unnecessary or can be done in extremely small quantities, saving resources and reducing running costs.

しかも、従来一般に、ある槽で処理された被処理水の大
部分を上流側に位置する別の槽に還元させる形態を必要
としており、設備が複雑化していたが、本発明によれば
単純に反応槽から汚泥分離装置11に被処理水を流すだ
けで処理する事も可能であり、設備をシンプルにするこ
ともできる。
Furthermore, in the past, it was generally necessary to return most of the water to be treated in one tank to another tank located upstream, which made the equipment complicated, but with the present invention, it is simple. It is also possible to treat the water by simply flowing the water to be treated from the reaction tank to the sludge separator 11, and the equipment can also be simplified.

【図面の簡単な説明】 図面は本発明に係る脱窒用水処理方法の実施の態様を例
示するフローシートである。 3・・・・・・反応槽、3a・・・・・・下降流路、3
b・・・・・・上昇流路、6・・・・・・硝化槽、8・
・・・・・脱窒槽、9・・・・・・再曝気槽、11・・
・・・・汚泥分離装置。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a flow sheet illustrating an embodiment of the denitrification water treatment method according to the present invention. 3... Reaction tank, 3a... Downflow path, 3
b... Rising channel, 6... Nitrification tank, 8.
... Denitrification tank, 9 ... Reaeration tank, 11 ...
...Sludge separation equipment.

Claims (1)

【特許請求の範囲】 1 比較的深い下降流路3aとそれに連なる上昇流路3
bを有する反応槽3において、アンモニア性窒素分を含
有する被処理水を活性汚泥と共に循環流動させると共に
、活性汚泥によりアンモニア性窒素分が酸化された後還
元されるように酸素含有ガス供給量を調整し、前記反応
槽3で処理された被処理水を、硝化槽6、脱窒槽8、再
曝気槽9及び汚泥分離装置11にその順に供給し、前記
汚泥分離装置11からの高濃度活性汚泥を前記反応槽3
から再曝気槽9にわたって供給する事を特徴とする脱窒
用水処理方法。 2 前記反応槽3に釦いて、溶存酸素量検出値がII)
13m以下に、かつ、酸化還元電位が1−50 mV以
下になるように酸素含有ガス供給量を調整すると共に、
浮遊固形物質に対する総窒素の重量比が0.06ないし
0.1になるように被処理水を調製し、かつ、前記反応
槽3から再曝気槽9にわたって活性汚泥濃度を1000
0ppff1以上に維持する事を特徴とする特許請求の
範囲第1項に記載の方法。
[Claims] 1. A relatively deep descending channel 3a and an ascending channel 3 connected thereto.
In the reaction tank 3 having b, the water to be treated containing ammonia nitrogen is circulated and flowed together with activated sludge, and the amount of oxygen-containing gas supplied is controlled so that the ammonia nitrogen is oxidized by the activated sludge and then reduced. The water to be treated that has been adjusted and treated in the reaction tank 3 is supplied to a nitrification tank 6, a denitrification tank 8, a reaeration tank 9, and a sludge separation device 11 in that order, and the highly concentrated activated sludge from the sludge separation device 11 is The reaction tank 3
A water treatment method for denitrification characterized by supplying water from the reaeration tank 9 to the reaeration tank 9. 2 Press the button on the reaction tank 3 and check the detected amount of dissolved oxygen (II)
While adjusting the oxygen-containing gas supply amount so that the distance is 13 m or less and the redox potential is 1-50 mV or less,
The water to be treated is prepared so that the weight ratio of total nitrogen to suspended solids is 0.06 to 0.1, and the activated sludge concentration is adjusted to 1000 from the reaction tank 3 to the reaeration tank 9.
2. The method according to claim 1, wherein the method is maintained at 0ppff1 or more.
JP13849380A 1980-10-02 1980-10-02 Water treatment method for denitrification Expired JPS5845919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13849380A JPS5845919B2 (en) 1980-10-02 1980-10-02 Water treatment method for denitrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13849380A JPS5845919B2 (en) 1980-10-02 1980-10-02 Water treatment method for denitrification

Publications (2)

Publication Number Publication Date
JPS5763195A JPS5763195A (en) 1982-04-16
JPS5845919B2 true JPS5845919B2 (en) 1983-10-13

Family

ID=15223391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13849380A Expired JPS5845919B2 (en) 1980-10-02 1980-10-02 Water treatment method for denitrification

Country Status (1)

Country Link
JP (1) JPS5845919B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990695A (en) * 1982-11-15 1984-05-25 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPS5990698A (en) * 1982-11-16 1984-05-25 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP5001587B2 (en) * 2006-06-09 2012-08-15 シャープ株式会社 Waste water treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
JPS5763195A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
US4160724A (en) Waste water treatment
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
CN108996840B (en) Sewage treatment equipment and method for strengthening combination of biological denitrification and flat ceramic membrane
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
CN104710077A (en) Treatment system and treatment method of synthetic rubber wastewater
JPS5881491A (en) Purification of filthy water with activated sludge
CN112174430B (en) Advanced sewage treatment method and device by ozone oxidation-biochemical coupling
CN209778572U (en) Petrochemical industry sewage treatment system
JPS5845919B2 (en) Water treatment method for denitrification
RU2768939C1 (en) Method for biological treatment of highly concentrated waste water from methanol
CN110117135B (en) Garbage leachate treatment method
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
CN108911439A (en) Novel TFT-LCD organic waste-water treating apparatus
CN111825213A (en) One-tank type mainstream anaerobic ammonia oxidation fluidized bed membrane bioreactor and sewage treatment method thereof
JPS60896A (en) Treating process for night soil
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
KR100542676B1 (en) Apparatus and method for treating wastewater using membrane
JPS6358639B2 (en)
JP2514676B2 (en) Treatment method of organic waste liquid
JPH03232597A (en) Treatment of organic waste water
KR100369924B1 (en) Method and system of sewage and waste water treatment
JPS6218232B2 (en)
JPH0232960B2 (en)
KR20010092160A (en) Sewage and waste water disposal plant
JPS6244998B2 (en)