JPS5845379A - High speed sputtering device - Google Patents

High speed sputtering device

Info

Publication number
JPS5845379A
JPS5845379A JP17948381A JP17948381A JPS5845379A JP S5845379 A JPS5845379 A JP S5845379A JP 17948381 A JP17948381 A JP 17948381A JP 17948381 A JP17948381 A JP 17948381A JP S5845379 A JPS5845379 A JP S5845379A
Authority
JP
Japan
Prior art keywords
arc
voltage
target
sputtering
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17948381A
Other languages
Japanese (ja)
Inventor
Tatsuo Asamaki
麻蒔 立男
Naokichi Hosokawa
細川 直吉
Takashi Misumi
三隅 孝志
Yoshiaki Sato
嘉明 佐藤
Kiyoshi Nashimoto
梨本 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP17948381A priority Critical patent/JPS5845379A/en
Publication of JPS5845379A publication Critical patent/JPS5845379A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To perform stable sputtering at a high speed by controlling target voltage to voltage lower than arc-extinguishing voltage by a detected target current signal and recovering the voltage to the target voltage in a sputtering state after the arc extinguishment. CONSTITUTION:The inside of a vacuum chamber 3 is evacuated to a required degree of vacuum by an evacuation system. A magnetic field is formed in parallel with the bar-like shaft of a target 1 by a coil power source 12, and an electric field intersecting orthogonally with the magnetic field is formed by a sputtering power source 10. Magnetron discharge is induced in such a way and plasma is generated by said discharge, by which plasma the target 1 is sputtered and a film is formed on a substrate 2. In case an electric arc is generated near the surface of the target 1, the arc is extinguished by a control circuit 20 which detects the arc from the increase in the output current of the power source 10, drops the voltage of the power source 10 to the voltage lower than the arc- extinguishing voltage automatically and restores the voltage in a sputtering state again after the arc extinguishment.

Description

【発明の詳細な説明】 この発明はスパッタ装置、特に電源系統にターゲット電
流制御機能を持つスパッタ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sputtering apparatus, and particularly to a sputtering apparatus having a target current control function in a power supply system.

スパッタ装置には高速化・低温化が望まれ、この方向で
スパッタ技術が進展してきている。高速化のためにスパ
ッタ装置のターゲットは、負の高電圧が印加されるがこ
の高電圧印加状態で長時間の連続運転を行なうと、真空
基円に設けられたターゲット近傍で1弧を発生し正常な
運転が出来なくなることがある。1弧の発生はターゲッ
トの材質によ−)【相違し、たとえばターゲットが銅の
場合は殆んど1弧を発生しないが、ターゲットがアルミ
ニツムの場合には頻繁に1弧を発生する。この1弧現象
は、ターゲット上に発生した鋭い突起と高密度のプラズ
マの作用によりて生ずるものと考えられる。
Sputtering equipment is desired to have higher speed and lower temperature, and sputtering technology is progressing in this direction. To increase speed, a high negative voltage is applied to the sputtering equipment target, but if continuous operation is performed for a long time with this high voltage applied, an arc will be generated near the target provided in the vacuum base circle. You may not be able to drive normally. The occurrence of one arc depends on the material of the target. For example, if the target is copper, one arc will hardly occur, but if the target is aluminum, one arc will frequently occur. This one-arc phenomenon is thought to be caused by the action of a sharp protrusion generated on the target and high-density plasma.

またこれらの1弧を発生した場合の対策とし【継電器な
どで特定の時間の関電源な切断する方法などを試みたが
、この方法は、スパッタ速度を実質的に低下させるのみ
ならず、被膜の性質を劣化させたり、場合によっては基
板に用いられる半導体素子を破損したりする欠点があっ
た。
In addition, as a countermeasure in the event that one arc occurs, we have attempted to use a relay or the like to cut off the electrical source at a specific time, but this method not only substantially reduces the sputtering speed but also damages the film. This has the drawback of deteriorating properties and, in some cases, damaging semiconductor elements used in the substrate.

この発明の目的は、これらの欠点を除き高速で安定なス
パッタ装置を提供することにある。
An object of the present invention is to eliminate these drawbacks and provide a high-speed and stable sputtering device.

この発明の他の目的は、1弧の発生に応答して制御信号
を発生し、その制御信号によって応答の速い消弧な行な
うスパッタ装置を提供することにある。
Another object of the present invention is to provide a sputtering apparatus which generates a control signal in response to the occurrence of one arc and extinguishes the arc with a quick response based on the control signal.

二の発明のさらに他の目的は、1弧の発生を除いたスパ
ッタ装置を提供することにある。
Still another object of the second invention is to provide a sputtering apparatus that eliminates the generation of one arc.

この発明のスパッタ装置は、ターゲット電流を検出する
手段と、該検出電流信号により1弧が発生することまた
は電弧発生のおそれがあることを検知しターゲット電圧
を1弧を行なわない消弧スパッタ状態の電圧へ制御する
手段と、電弧消滅後スパッタ状態のターゲット電圧に回
復する手段とを含み、1弧の発生をなくし安定で高速度
のスパッタを行う。
The sputtering apparatus of the present invention includes a means for detecting a target current, and a means for detecting the generation of one arc or the possibility of generation of an electric arc based on the detected current signal, and changing the target voltage to an arc-extinguishing sputtering state in which one arc is not performed. The present invention includes means for controlling the voltage and means for restoring the target voltage to the sputtering state after the arc disappears, thereby eliminating the occurrence of one arc and performing stable and high-speed sputtering.

次に、この発明を図面により詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図はスパッタ装置にこの発明を適用した実施例の構
成図である。このスパッタ装置は、端部分に突起を有す
る棒状ターゲット1と、このターゲラ)1に対して同軸
状に配置されて被膜を形成印4の方向に排気する排気系
(図示せず)と、この真空室3の圧力調整をするガス導
入系5とこのターゲット1に負電圧と電力を供給するス
パッタ電源10と、前記円筒軸と平行に磁界をつくるコ
イル11とコイル11の励磁電源12とから構成される
。この場合には1弧の発生をスパッタ電源lOの出力電
流の増加で検出し、スパッタ電源電圧を1弧の消滅する
消弧電圧以下に自動的に下げ消弧した後に再びスパッタ
状態の電圧にもどす制御回路20によって1弧を除いて
いる。
FIG. 1 is a block diagram of an embodiment in which the present invention is applied to a sputtering apparatus. This sputtering apparatus consists of a rod-shaped target 1 having a protrusion at its end, an exhaust system (not shown) disposed coaxially with respect to the target 1 and evacuating the coating in the direction of a forming mark 4, and a vacuum It consists of a gas introduction system 5 for adjusting the pressure of the chamber 3, a sputtering power supply 10 for supplying negative voltage and power to the target 1, a coil 11 for creating a magnetic field parallel to the cylinder axis, and an excitation power supply 12 for the coil 11. Ru. In this case, the occurrence of one arc is detected by an increase in the output current of the sputtering power source IO, and the sputtering power source voltage is automatically lowered below the arc extinguishing voltage at which one arc is extinguished, and then returned to the sputtering state voltage again. One arc is excluded by the control circuit 20.

第2図は、この制御回路20の詳細を示す回路系統図で
ある。スパッタ電源10の出力電圧は三極管21のカソ
ードに供給され、そのプレートで抵抗器などから構成さ
れる電流検出手段24を経由してターゲラ)1に供給さ
れている。1弧はスパッタ電源に流れる電流の急増によ
って判定されるので電流検出手段24によって電弧発生
によるターゲット電流の増加を容易に検出できる。この
電流検出手段24により検出された信号は信号変換部2
5を径て駆動部26により三極管21のグリッドを制御
する。
FIG. 2 is a circuit diagram showing details of this control circuit 20. The output voltage of the sputter power supply 10 is supplied to the cathode of the triode 21, and is supplied to the target array 1 via the current detection means 24, which is composed of a resistor or the like, on the plate of the triode 21. Since one arc is determined by a rapid increase in the current flowing through the sputtering power supply, the current detection means 24 can easily detect an increase in target current due to the occurrence of an electric arc. The signal detected by this current detection means 24 is transmitted to the signal converter 2
5, the grid of the triode 21 is controlled by a drive section 26.

第1図のスパッタ装置の動作は次のようになる。The operation of the sputtering apparatus shown in FIG. 1 is as follows.

真空室3は排気系により lXl0 〜3X10  ’
l”orr程度の圧力に排気される。コイル電源12が
ターゲットの棒状軸と平行に磁界を形成し、スパッタ電
源10がこの磁界に直交する電界を形成することによっ
ていわゆるマグネトロン放電を起こし、これによりプラ
ズマをつくり、このプラズマがターゲラ)1をスパッタ
して幕板2の上に被膜を形成する。1弧がターゲットの
表面近辺に発生した場合には制御回路20によって消弧
する。
The vacuum chamber 3 is 1Xl0 ~ 3X10' depending on the exhaust system.
The coil power source 12 forms a magnetic field parallel to the rod-shaped axis of the target, and the sputter power source 10 forms an electric field perpendicular to this magnetic field, thereby causing a so-called magnetron discharge. Plasma is created, and this plasma sputters the target ray (1) to form a film on the curtain plate 2. When 1 arc is generated near the surface of the target, it is extinguished by the control circuit 20.

第3図(S)および(b)はターゲット電流(IT)お
よびターゲット電圧(VT)と時間(1)との関係を示
し、この実線部分は連続的な電流制御を行うこの発明の
第一の実施例を示す。この実施例の構成は第1図および
第2図の説明によるが、第1図の点線、30の接続はさ
れていない。
FIGS. 3(S) and (b) show the relationship between target current (IT), target voltage (VT), and time (1), and the solid line portion shows the first embodiment of the present invention that performs continuous current control. An example is shown. The configuration of this embodiment is as explained in FIGS. 1 and 2, but the connection indicated by the dotted line 30 in FIG. 1 is not made.

この動作はターゲット電流検出手段24が時刻(1a)
において電流の増加を検出すると、信号変換部25およ
び駆動部26で増巾された信号は三極管21のグリッド
を連続的に制御してプレート電圧を降下させ、この結果
ターゲット電圧(VT)4!Sを、消弧電圧(Va)以
下に降下させる。1弧がなくなれば、ターゲット電流(
IT)の減少を検出し駆動部26による信号は三極管2
1のグリッドを制御してプレート電圧を上昇させて元の
スパッタ状態にもどされる。このように制御されたター
ゲット電流(IT) 41は一定となる。
This operation is performed when the target current detection means 24 detects the time (1a).
When an increase in current is detected at , the signal amplified by the signal converter 25 and driver 26 continuously controls the grid of the triode 21 to lower the plate voltage, resulting in a target voltage (VT) of 4! S is lowered below the arc-extinguishing voltage (Va). When one arc disappears, the target current (
IT) is detected and the signal from the drive unit 26 is sent to the triode 2.
The original sputtering state is restored by controlling grid No. 1 to increase the plate voltage. The target current (IT) 41 controlled in this manner remains constant.

第3図(sl)および何の点線部分であるターゲット電
流(IT) 42およびターゲット電圧(VT) 46
は時間制御によるこの発明の第二の実施例を示す。
Figure 3 (sl) and the dotted line portions of target current (IT) 42 and target voltage (VT) 46
shows a second embodiment of the invention using time control.

この実施例の構成は、第一の実施例とほぼ同じであるが
この動作は次のように相違する。すなわちターゲット電
流(IT) 42が設定値の1.1倍程度以上に増加し
た場合に、直ちにターゲット電圧(VT)46を消弧電
圧(Va)以下に下げ、消弧時間(Ta)経過後再び初
めのターゲット電圧(VT)に回復させるものである。
The configuration of this embodiment is almost the same as that of the first embodiment, but the operation is different as follows. In other words, when the target current (IT) 42 increases to about 1.1 times the set value or more, the target voltage (VT) 46 is immediately lowered to below the arc-extinguishing voltage (Va), and after the arc-extinguishing time (Ta) has elapsed, the target voltage (VT) 46 is lowered again. This is to restore the initial target voltage (VT).

この回路は、たとえば電流検出手段24により検出され
た電流信号を、ターゲット電流の1.1倍以上で単安定
マルチバイブレータ回路を働かせて消弧時間(Tci)
に相当するゲート信号をつくる信号変換部25に供給し
、このゲート信号の間だけ消弧電圧以下に下げる駆動部
26とから構成される。
For example, this circuit operates a monostable multivibrator circuit on a current signal detected by the current detection means 24 at 1.1 times or more of the target current to determine the arc extinction time (Tci).
, and a drive section 26 that supplies the gate signal to a signal conversion section 25 that generates a gate signal corresponding to , and lowers the voltage below the arc-extinguishing voltage only during this gate signal.

ここで消弧時間(Ta)は、スパッタのターグ。Here, the arc extinction time (Ta) is the target of sputtering.

トの材質、導入ガス物質などKよりて相違するがスバ、
りおよび消弧が効果的に出来るように調節すれば良い。
Although the material of the tip and the substance of the introduced gas differ depending on the K,
It is only necessary to adjust the arc so that it can be effectively suppressed and extinguished.

第4図(alおよび(唱まターゲット電−(IT)およ
び磁界なつくるコイル電流(IM)の時間関係の図であ
り、1弧の制御を磁界で行う第三の実施例を示す。
FIG. 4 is a diagram of the time relationship between the coil current (IM) generated by the chanting target electric current (IT) and the magnetic field, and shows a third embodiment in which one arc is controlled by the magnetic field.

この実施例の構成は、第1図の制御回路2017)信号
が点[30のごとく励磁電源12に接続されターゲット
電流の検出手段24により検出された信号は第二の実施
例と同様な゛ゲート信号により駆動部26を働かせこれ
によって励磁電源12を制御するものである。この場合
は、第2図の電流検出手段24がスパッタ電源10接続
され、駆動部接続されることになる。
The configuration of this embodiment is such that the control circuit 2017 in FIG. 1 is connected to the excitation power source 12 as shown in FIG. The driving section 26 is activated by the signal, thereby controlling the excitation power source 12. In this case, the current detection means 24 shown in FIG. 2 is connected to the sputtering power supply 10 and connected to the drive section.

通常磁界のない場合は1o−1〜1O−ITorr程度
の圧力でスパッタを生ずるが、磁界のある場合には前述
のとおりio−”〜10−” Torrでスパッタを生
ずることを利用し、磁界によって1弧を制御するととく
特徴がある。
Normally, in the absence of a magnetic field, sputtering occurs at a pressure of about 10-1 to 10-1 Torr, but in the presence of a magnetic field, as mentioned above, sputtering is produced at io-" to 10-" Torr. There is a special feature when controlling one arc.

第5図((転)および(ロ)は、ターゲット電流(IT
)およびコイル電流(IM)の時間関係の図であり、こ
の発明の第四の実施例を示すものである。この場合は第
三の実施例と同じように磁界を制御することにより電流
の発生を防止するもので第5図(b)のようにコイル電
流(IM)を−特写になるように制御すると、放電は消
弧時間(Ta)の間電弧の有無とは無関係に停止する。
Figure 5 ((ro) and (b) shows the target current (IT
) and the time relationship between the coil current (IM) and shows a fourth embodiment of the present invention. In this case, as in the third embodiment, the generation of current is prevented by controlling the magnetic field, and if the coil current (IM) is controlled so as to produce a -special image as shown in Fig. 5(b), The discharge stops during the arc extinguishing time (Ta) regardless of the presence or absence of the electric arc.

1弧が発生してもこの時間、(Td)の間に消弧し【し
まう。これはコイル電流を交流的に制御することにより
可能である。
Even if one arc occurs, it will be extinguished during this time (Td). This is possible by controlling the coil current in an alternating current manner.

この場合の構成は第1図の制御回路2oに相当するもの
は不要であり、励磁電源12自体に消弧手段を含むこと
になる。励磁電源にはあらかじめ定められた周数数の交
流で駆動され、ai5図伽)のよ5にコイル電流を制御
し、この結果ターゲット電流(IT)は第5図(l]の
ごとく流れることになる。
In this case, the configuration does not require a circuit equivalent to the control circuit 2o in FIG. 1, and the excitation power source 12 itself includes an arc extinguishing means. The excitation power source is driven by an alternating current with a predetermined number of cycles, and the coil current is controlled as shown in Figure 5 (a), and as a result, the target current (IT) flows as shown in Figure 5 (l). Become.

第6図(a)および(b)は、ターゲット電流(IT)
およびターゲット電圧(VT)の時間関係の図であり、
この発明の第五の実施例を示す。この場合は第四の実施
例と逆に励磁電源12を一定とし、ターゲット電圧(V
T)な周期的に消弧電圧(Va)以下に制御して1弧の
発生を防止するものである。
Figures 6(a) and (b) show the target current (IT)
and a diagram of the time relationship of target voltage (VT),
A fifth embodiment of this invention will be shown. In this case, contrary to the fourth embodiment, the excitation power source 12 is kept constant, and the target voltage (V
T) is periodically controlled to be lower than the arc extinguishing voltage (Va) to prevent the occurrence of one arc.

第6図−)のように1弧の発生とは無関係ターゲ、ト電
圧(Vl・) ft一時消弧電圧(Va)以下になるよ
うに制御すると、放電は消弧時間(Ta)の間に停止し
、1弧が発生してもこの間に停止してしまうので連続的
なスパッタが可能である。゛ この場合は構成は第1図の制御回路20が一定の直流電
圧に交流を重畳して第6図(II)のようなターゲット
電圧をつくるものである。この場合ターゲット電流(I
T)は第6図(b)のような出ととなムこれらの実施例
は、スパッタ電極構造として、同軸スバ、り電極によっ
て説明したが、他の多種の平板゛iミグネトロンスパッ
タ電極などの電界と磁界の直交するスパッタ電極に全て
適用できる。
As shown in Figure 6-), if the target voltage (Vl.) ft is controlled to be below the temporary arc-extinguishing voltage (Va), regardless of the occurrence of one arc, the discharge will occur during the arc-extinguishing time (Ta). Even if the sputtering stops and one arc occurs, the sputtering stops during this period, so continuous sputtering is possible. In this case, the control circuit 20 shown in FIG. 1 superimposes an alternating current on a constant direct current voltage to create a target voltage as shown in FIG. 6 (II). In this case, the target current (I
T) has the appearance as shown in FIG. 6(b). Although these embodiments have been explained using a coaxial sputter electrode as the sputter electrode structure, various other types of flat plate mignetron sputter electrodes, etc. It can be applied to all sputter electrodes where the electric and magnetic fields are perpendicular to each other.

また消弧手段として&主、前記実施例の組合せも可能で
あり、スパッタ材質、内部ガスなどによって最適のもの
を効果的に使用すればよい。
Further, as the arc extinguishing means, a combination of the above-mentioned embodiments is also possible, and the most suitable one may be used effectively depending on the sputtering material, internal gas, etc.

このよ゛うにスパッタ装置に消弧手段を適用すれば、長
時間安定に高速なスパνりが可能となるので生朧性のよ
いスパッタ装置を造ることができる。
By applying an arc-extinguishing means to the sputtering apparatus in this manner, it becomes possible to perform high-speed sputtering stably for a long period of time, thereby making it possible to manufacture a sputtering apparatus with good haze resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例のスパッタ装置の構成−であ
り、第2図は第1図の消弧手段2oの部分を示す回路図
である。第3図−)および(ロ)はターゲット電流−<
IT)およびターゲット電圧(VT)の時間関係を示し
、実−41,45は第一の実施例を点線42.46は第
二の実施例の関係を示す。第4rlA(a)および伽)
は第三の実施例におけるターゲット電流(IT)および
コ′イル電流(IM)の時間関係を示し、第5図((転
)および(b)は第四の実施例におけるターゲット電流
(IT)およびコイルを流(IM)時間関係を示し、第
6図(11)および(blは第五の実施例におけるター
ゲット電流(IT)とターゲット電圧(VT)の時間関
係を示す。 図においてl・・・棒状ターゲット、2・・・基板、3
・・・真空室、4・・・排気方向の矢印1.5・・・ガ
ス導入系lO・・・スパッタ電源、11・・・コイル、
12・・・励磁電源、13・・・絶縁石、14・・・チ
ロ−クコイル、20・・・制御回路、21・・・三極管
、22・・・フィラメントトランス、24・・・電流検
出器、25・・・信号変換部26・・・駆動部、30・
・・コイル電源制御の接続、41゜42・・・ターゲッ
ト電流(IT)、45.46・・・ターゲット電圧(V
T) である。 V−1怒 1=を 茶 2 z 1 ¥3 H 第 J[ v、4  B 茎ITA
FIG. 1 shows the configuration of a sputtering apparatus according to an embodiment of the present invention, and FIG. 2 is a circuit diagram showing the arc extinguishing means 2o in FIG. 1. Figure 3-) and (b) are target currents -<
IT) and the target voltage (VT), with dotted lines 41 and 45 representing the first example, and dotted lines 42 and 46 representing the relationship between the second example. 4th rlA(a) and ga)
5 shows the time relationship between the target current (IT) and the coil current (IM) in the third embodiment, and FIG. Figure 6 (11) and (bl) show the time relationship between the target current (IT) and target voltage (VT) in the fifth embodiment. In the figure, l... Rod-shaped target, 2... Substrate, 3
...Vacuum chamber, 4...Arrow in the exhaust direction 1.5...Gas introduction system lO...Sputtering power source, 11...Coil,
12... Excitation power supply, 13... Insulating stone, 14... Chirok coil, 20... Control circuit, 21... Triode, 22... Filament transformer, 24... Current detector, 25... Signal converter 26... Drive unit, 30...
...Coil power supply control connection, 41°42...Target current (IT), 45.46...Target voltage (V
T). V-1 anger 1 = brown 2 z 1 ¥3 H No. J[ v, 4 B stem ITA

Claims (1)

【特許請求の範囲】[Claims] スパッタを行うためのターゲットおよび該スパッタによ
り被膜を形成する基板を収容する真空室と、核ターゲッ
トに電圧を供給するスパッタ電源とを有スるスパッタ装
置において、ターゲット電流を検出する手段と、該検出
電流信号によりターゲ、ト電圧を真空室内空間に発生す
る1弧を消弧させる電圧以下に制御する手段と、消弧後
スパッタ状態のターゲット電圧に回復させる制御手段と
を備えたことを特徴とする高速スバ、り装置。
A means for detecting a target current in a sputtering apparatus having a vacuum chamber accommodating a target for performing sputtering and a substrate on which a film is to be formed by the sputtering, and a sputtering power source for supplying voltage to a nuclear target; The present invention is characterized by comprising means for controlling the target voltage to a voltage below which one arc generated in the vacuum chamber is extinguished by a current signal, and a control means for restoring the target voltage to the sputtering state after the arc is extinguished. High-speed suba,ri device.
JP17948381A 1981-11-09 1981-11-09 High speed sputtering device Pending JPS5845379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17948381A JPS5845379A (en) 1981-11-09 1981-11-09 High speed sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17948381A JPS5845379A (en) 1981-11-09 1981-11-09 High speed sputtering device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1074275A Division JPS5186081A (en) 1975-01-24 1975-01-24 KOSOKUSUPATSUTASOCHI

Publications (1)

Publication Number Publication Date
JPS5845379A true JPS5845379A (en) 1983-03-16

Family

ID=16066620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17948381A Pending JPS5845379A (en) 1981-11-09 1981-11-09 High speed sputtering device

Country Status (1)

Country Link
JP (1) JPS5845379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175556A (en) * 1987-12-28 1989-07-12 Nippon Air Brake Co Ltd Pneumatic pressure type booster device
EP1720195A1 (en) * 2005-05-06 2006-11-08 HÜTTINGER Elektronik GmbH + Co. KG Arc suppression system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175556A (en) * 1987-12-28 1989-07-12 Nippon Air Brake Co Ltd Pneumatic pressure type booster device
JP2603842B2 (en) * 1987-12-28 1997-04-23 株式会社ナブコ Pneumatic booster
EP1720195A1 (en) * 2005-05-06 2006-11-08 HÜTTINGER Elektronik GmbH + Co. KG Arc suppression system
JP2006313752A (en) * 2005-05-06 2006-11-16 Huettinger Elektronik Gmbh & Co Kg Arc suppressing equipment
US8033246B2 (en) 2005-05-06 2011-10-11 Huettinger Elektronik Gmbh + Co. Kg Arc suppression

Similar Documents

Publication Publication Date Title
JP5241043B2 (en) Method and apparatus for sputtering deposition using direct current
JP4694833B2 (en) System and method for controlling a sputter deposition process
Zlatanovic Sensors in diffusion plasma processing
US5241152A (en) Circuit for detecting and diverting an electrical arc in a glow discharge apparatus
US4124474A (en) Method and apparatus for controlling the deposition of films by reactive sputtering
US6162332A (en) Method and apparatus for preventing arcing in sputter chamber
US6190512B1 (en) Soft plasma ignition in plasma processing chambers
US4963238A (en) Method for removal of electrical shorts in a sputtering system
US20010047933A1 (en) DC plasma power supply for a sputter deposition
JP2010010214A (en) Method for manufacturing semiconductor device, semiconductor manufacturing apparatus and storage medium
US20170330738A1 (en) Ion beam materials processing system with grid short clearing system for gridded ion beam source
JPS5845379A (en) High speed sputtering device
Carter et al. Parameter optimization in pulsed DC reactive sputter deposition of aluminum oxide
JPH0734239A (en) Sputtering device
JPH09170077A (en) Vacuum treatment chamber, magnetron apparatus for vacuum chamber and vacuum sputtering method
JP2836072B2 (en) Sputtering equipment
JPH08311645A (en) Ito film forming device
JP2584058B2 (en) Transparent conductive film forming apparatus and transparent conductive film forming method
JPH0230384B2 (en) SUPATSUTAHOHOOYOBISOCHI
JP3887494B2 (en) Thin film forming apparatus and thin film forming method
JP2002030433A (en) System and method for thin film deposition
JP2809981B2 (en) Transparent conductive film and method for forming transparent conductive film
Jarnyk et al. Control of an unstable electron cyclotron resonance plasma
JPH11229138A (en) Sputtering device
Čada et al. Comparative Study of Total Power Density at a Substrate in Pulsed DC Magnetron and Hollow‐Cathode Plasma Jet Sputtering Systems