JPS5844780A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPS5844780A
JPS5844780A JP56142920A JP14292081A JPS5844780A JP S5844780 A JPS5844780 A JP S5844780A JP 56142920 A JP56142920 A JP 56142920A JP 14292081 A JP14292081 A JP 14292081A JP S5844780 A JPS5844780 A JP S5844780A
Authority
JP
Japan
Prior art keywords
layer
light emitting
substrate
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142920A
Other languages
Japanese (ja)
Inventor
Osamu Hasegawa
治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56142920A priority Critical patent/JPS5844780A/en
Publication of JPS5844780A publication Critical patent/JPS5844780A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Abstract

PURPOSE:To obtain a light emitting element having good directivity and light emitting output by a method wherein a hole reaching the vicinity of a light emitting region is perforated in a semiconductor substrate having a light emitting region at the inside and transparent resin projecting the surface in hemispherical shape is filled in the hole. CONSTITUTION:An N type AlxGa1-xAs layer 42, a P type AlyGa1-yAs active layer 43, and a P type Alx'Ga1-x'As layer 44 are stacked on an N type GaAs substrate 41 by liquid epitaxial growth and an Au-Zn electrode 46 is selectively formed on the layer 44 and the layer 44 around the electrode 46 is covered with an SiO2 layer 45. Next, an Au layer 47 contacting the electrode 46 is coated on the layer 45 to form predetermined thickness by grinding the exposed surface of the substrate 41 and a hole 50 reaching the layer 42 is perforated in the exposed surface of the substrate 41 by photo etching. After that, an Au-Ge layer 48 is coated on the exposed surface at the top section of the substrate to take out a lead wire 49 and epoxy-group transparent resin 51 is filled in the hole 50 while converting the layer 48 for hardening and the exposed surface 51A is formed in hemispherical shape. In this way, light is penetrated in the exposed surface 51A side.

Description

【発明の詳細な説明】 本発明は半導体発光素子に関し、特に、光通信もしくは
計測、制御等において光源として使用される発光ダイオ
ード素子の構成に関するd平薗発光MIの発光ダイオー
ドにおいては放射強度分布!(0)が で懺されるOI・は0=0(光軸方向)の放射強度であ
る0通常発光ダイオードに用いられる結晶で1屈折率が
3以上と大きなため、 I(0)=Io(2)O と近似される。この余弦法則に従う光源はランバート光
源(拡散面光源もしくは勢輝度光源ともいう)と呼ばれ
る。たとえばI (&o’)= I・/2であり、指向
特性は悪い。このため、発光光を平行ビームにする、焦
点を結ばせる(点スポットにする)など、光ファイバと
の高効率結合や、計測9制御の用途に対しては、もしく
はインジケータとしてみかけの光源サイズを大きくする
などのためには、発光ダイオード素子の発光面上に光学
レンズの配設が不可欠である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device, and particularly relates to the structure of a light emitting diode device used as a light source in optical communication, measurement, control, etc. In a light emitting diode of d Hirazono light emitting MI, radiation intensity distribution! OI・, which is represented by (0), is the radiation intensity when 0=0 (in the optical axis direction). Since it is a crystal normally used for light emitting diodes and has a large refractive index of 3 or more, I(0)=Io( 2) Approximately O. A light source that follows this cosine law is called a Lambertian light source (also called a diffuse surface light source or a luminance light source). For example, I(&o')=I·/2, and the directivity characteristics are poor. For this reason, it is useful for highly efficient coupling with optical fibers, such as making the emitted light a parallel beam or focusing it (making it into a point spot), and for measurement 9 control applications, or by using the apparent light source size as an indicator. In order to increase the size, it is essential to provide an optical lens on the light emitting surface of the light emitting diode element.

かかる光学レンズとして透明球が付加された発光ダイオ
ードの構成を第1図に示す0 同図において、11はN型ガリウム書アルミニウム・砒
素(Ga1−x Alx As 、 X==0.5〜0
.25)層、l−2はガリウム・砒素活性層、13社P
ffiガリウム・アルミニウム・砒素(Ga・11ja
s As )層、141に酸化シリコン(5ill)等
からなる絶縁皮膜、15はN141m極、16はpm電
極、17はpsmt&魚放熱電他である0 そして18は前記N型ガリウム・アルミニウム・砒素層
11表面上に例えばエポキシ系樹脂等の樹脂19によっ
て固定されたガラス岬からなる透明球である。
The structure of a light emitting diode to which a transparent sphere is added as such an optical lens is shown in FIG.
.. 25) layer, l-2 is gallium/arsenic active layer, 13 company P
ffi gallium aluminum arsenic (Ga 11ja
s As ) layer, 141 is an insulating film made of silicon oxide (5ill), etc., 15 is an N141m electrode, 16 is a pm electrode, 17 is a psmt & fish heat dissipation electrode, etc.0, and 18 is the N-type gallium-aluminum-arsenic layer. It is a transparent sphere consisting of a glass cape fixed on the surface of 11 with a resin 19 such as epoxy resin.

かかる構造において、透明球18がその中心と発光ダイ
オードの表面にほぼ垂直な発光光軸りとが一致するよう
に、且つymガリウム・アルミニウム・砒素層11の屈
折率tn6とし、樹脂19の屈折率tnsとし、NtI
lガリウム・アルミニウム・砒素/1111の狭面から
透明球18の頂点Atでの距離t’ttとし、更に発光
s20からNf11ガリウムeアルミニウム・砒素層1
1o表向までの距離t・とすゐ時に発光s20から透明
球の頂点Atでの距離AFが 1AFl=−to + を鵞 n・ となるように、該発光ダイオード上に配置固定されば、
当該発光ダイオードの出力光lは光軸りと平行すなわち
懺向にはは喬直な光として出力される0 折率n1)18とによる光学系の焦点の位置である@し
かしながら第2図に示されるように、透明球18がその
中心を発光ダイオードの界面、にほぼ垂直な発光光軸り
から偏寄して配置固着された場合等には、光軸L l並
ひに出力光1′は前記光軸りとは異った方向となる。こ
のためかかる場合には当該発光ダイオードと元ファイバ
等の光伝送路との光学的結合が良好に行なわれない。
In such a structure, the center of the transparent sphere 18 and the light emitting axis substantially perpendicular to the surface of the light emitting diode coincide with each other, and the refractive index of the gallium-aluminum-arsenic layer 11 is set to tn6, and the refractive index of the resin 19 is set to tn6. tns, NtI
The distance from the narrow surface of l gallium aluminum arsenic/1111 to the apex At of the transparent sphere 18 is t'tt, and further from the light emission s20 the Nf11 gallium e aluminum arsenic layer 1
If it is arranged and fixed on the light emitting diode so that the distance AF from the light emission s20 to the apex At of the transparent sphere is 1AFl=-to + when the distance t to the surface of 1o is t.
The output light l of the light emitting diode is parallel to the optical axis, that is, it is output as light that is perpendicular in the vertical direction. When the transparent sphere 18 is arranged and fixed with its center offset from the light emitting axis that is substantially perpendicular to the interface of the light emitting diode, the optical axis L and the output light 1' are The direction is different from the optical axis. Therefore, in such a case, optical coupling between the light emitting diode and the optical transmission line such as the original fiber cannot be achieved satisfactorily.

したがって、前記透明球18を発光ダイオード狭面の発
光光棚上に正確に配置固着する丸めに、並びに該透明球
18の保持並びに固着を行なうために1治具が用いられ
るが、微小な透明球を扱う治具の使用は作条を煩雑化し
てしまう。
Therefore, one jig is used to accurately arrange and fix the transparent bulb 18 on the light emitting shelf of the narrow surface of the light emitting diode, as well as to hold and fix the transparent bulb 18. The use of jigs that handle this will complicate the cutting process.

一方第3図に示されるように半導体発光素子31の発光
面に、 IIM半球状の透明樹脂体32を配設し、該透
明樹脂体32をレンズとして用いることが提案されてい
る。
On the other hand, as shown in FIG. 3, it has been proposed that an IIM hemispherical transparent resin body 32 be provided on the light emitting surface of a semiconductor light emitting element 31, and that the transparent resin body 32 be used as a lens.

しかしながら、このような構蔵にあっては、発光$33
mと透明樹脂体32とが一41jkシている場合には、
かかる透明樹脂体32を通して放射される光の指向性を
高めることができない。
However, in such a structure, the luminescence cost is $33
When m and the transparent resin body 32 are 141jk,
The directivity of light emitted through such a transparent resin body 32 cannot be improved.

このため、発光部を透明樹脂体32の焦点近傍に位置さ
せる必要がある。かかる透明樹脂体22の曲率半径をr
、屈折率をnIL==1.5とすると焦点距離ずは =−3・r となシ、透明樹脂体32の頂点から3rの距離33b 
K焦点が位置する。
Therefore, it is necessary to position the light emitting section near the focal point of the transparent resin body 32. The radius of curvature of the transparent resin body 22 is r
, if the refractive index is nIL==1.5, then the focal length is -3·r, and the distance 33b is 3r from the apex of the transparent resin body 32.
K focal point is located.

しかしながら、かかる透明樹脂体32は■−■族化合物
半導体材料に接しているために透明樹脂体と当該半導体
材料との屈折率の相違から、焦点距離扛前記3rの距離
fから変化してしまう。すなわち、半導体材料の屈折率
をn8とすれば、前記焦点距離fは、 1m f’ =r+−(f−r ) となる。ここでnSは、m−v族化合物半導体の場合3
.3〜3.6の値となる。したがってn、<n@である
ので、前記焦点は透明樹脂体32から更に遠い半導体発
光素子内に位置することになる0すなわち、発光部は、
透明樹脂体32からよシ遠い半導体発光素子内に位置す
ることになる0しかしながら、発光部を透明樹脂体32
から遠ざけること1半導体発光素子31の実質的な厚さ
の増加を招く0かかる半導体発光素子31の厚さの増加
は発光部から透明樹脂体32への光路長の増加すなわち
光損失の増加を来たし、結果として光出力の低下を招来
する0 本発明はこのような従来技術に代えて発光向の指向性並
びに発光出力を向上することができる半導体発光素子を
提供しようとするものである0このため、本発明によれ
ば、内部に発光領域を有する半導体基体の一方の主面に
、前記発光領域の近傍に到達する孔が配設され、透明樹
脂体が前記孔内に充填され且つ前記半導体基体の一方の
主面に略半球状に突出して配設されてなる半導体発光嵩
子が提供される0 以下本発明を実施例をもって詳細に説明する0第4図は
本発明による半導体発光素子の構造を示す。
However, since the transparent resin body 32 is in contact with the ■-■ group compound semiconductor material, the focal length changes from the distance f of 3r due to the difference in refractive index between the transparent resin body and the semiconductor material. That is, if the refractive index of the semiconductor material is n8, the focal length f is 1m f' = r+-(f-r). Here, nS is 3 in the case of m-v group compound semiconductor.
.. The value is between 3 and 3.6. Therefore, since n<n@, the focal point is located within the semiconductor light emitting element further away from the transparent resin body 32. In other words, the light emitting section is
However, the light emitting part is located inside the semiconductor light emitting element far from the transparent resin body 32.
1. This leads to a substantial increase in the thickness of the semiconductor light emitting device 31. 0. Such an increase in the thickness of the semiconductor light emitting device 31 causes an increase in the optical path length from the light emitting part to the transparent resin body 32, that is, an increase in optical loss. , resulting in a decrease in light output.The present invention aims to provide a semiconductor light emitting device that can improve the directivity of light emission and the light output, in place of such conventional techniques. According to the present invention, a hole reaching the vicinity of the light emitting region is provided on one main surface of a semiconductor substrate having a light emitting region therein, a transparent resin body is filled in the hole, and the semiconductor substrate has a light emitting region therein. The present invention will be explained in detail with reference to examples below. Figure 4 shows the structure of a semiconductor light emitting device according to the present invention. shows.

同図において、41は例えば厚さ400〔μm)を有す
るN型ガリウム・砒素(GaAa)基板、42は厚さ2
0〔μm〕程のNf!1アルミニウム・ガリウム・砒素
(AjzGat−xAs)層、43は厚さ2〜3(μm
 ) ()アルミニウム・ガリウム・砒素(hlyGm
s−yAa)活性層、44は厚さ2(、am)のアルミ
ニウム・ガリウム・砒素(Alx* Ga 1x’ A
s ) Nである。
In the figure, 41 is an N-type gallium arsenide (GaAa) substrate having a thickness of 400 [μm], and 42 is a substrate having a thickness of 2
Nf of about 0 [μm]! 1 aluminum-gallium-arsenic (AjzGat-xAs) layer, 43 has a thickness of 2 to 3 (μm
) () Aluminum, gallium, arsenic (hlyGm
s-yAa) active layer 44 is made of aluminum-gallium-arsenic (Alx*Ga 1x' A) with a thickness of 2 (, am)
s) N.

また45は厚さ5000(A)程の二酸化シリコン(5
ins)層から構成される絶縁層、46Fi金−亜鉛か
ら構成される電極層、47扛前記電極層46に接して絶
縁層45上まで延在された金電極である。電極46.4
7はP側電極を榊成し、vL極47は尚鋏半尋体発光素
子が収容嘔れる容器の基体又は該基体上に配設された電
極に接続される0また48祉前記ガリウム・砒素基板4
1の裏面(P側電極が配設される面とは反対の面)に配
設された金・ゲルマニウム(Au Ge )から構成さ
れるN側電極、49Fi該N@電極48に接続される金
線である0金線49の他端は前記容器に配設される外部
接続端子に接続される0 そして、本発明に直れば、前記Nff1ガリウム・砒素
基&41の中央部が除去されてP型アルミニウム・ガリ
ウム−砒素層42に到達する孔50が形成され、該孔5
0内を埋め且つN型ガリウム・砒素基板41の層面上に
略半球状に突出するエポキシ樹脂等の透明樹脂体51が
配設される0かかる透明樹脂体51の半球状部51Aの
半径は200〔μm〕程とされる。
45 is silicon dioxide (5000A) thick
an insulating layer made of a 46Fi gold-zinc layer, and a gold electrode extending above the insulating layer 45 in contact with the electrode layer 46. Electrode 46.4
7 is the P-side electrode, and the vL pole 47 is connected to the base of the container in which the light-emitting element is housed, or to the electrode disposed on the base. Board 4
An N-side electrode made of gold/germanium (Au Ge ) disposed on the back surface of 1 (the surface opposite to the surface on which the P-side electrode is disposed), and a gold connected to the 49Fi N@electrode 48. The other end of the gold wire 49 is connected to an external connection terminal provided in the container. According to the present invention, the central part of the Nff1 gallium/arsenic base &41 is removed and the P A hole 50 is formed that reaches the type aluminum gallium-arsenic layer 42;
A transparent resin body 51 made of epoxy resin or the like is disposed to fill the inside of the N-type gallium/arsenic substrate 41 and protrude into a substantially hemispherical shape on the layer surface of the N-type gallium/arsenic substrate 41. The radius of the hemispherical portion 51A of the transparent resin body 51 is 200 mm. It is estimated to be about [μm].

このような構造においては、ガリウム・砒素基板41に
孔50が配設され、該孔50内もレンズ部tk成する辺
間樹脂材によって充填されるため、透明樹脂体51の半
球状部51Aの頂部から活性層430発光部43Aに到
る距離ノにおいて屈折率の変化ははとんと無い0すなわ
ちN型アルi=ウム・ガリウム・砒素層42の存在によ
る屈折率の変化嬬無視し得る値である0 したがって、前記ガリウム・砒素基板の厚さを選択する
ことによシ、発光部43Aから透明樹脂体51の頂部ま
での距離jは、透明樹脂体510半球状部51Aの3倍
の値とすることができ、発光部43Aを透明樹脂体51
0半球状部51Aの焦点位置に配設することができる0 よって、当該半導体発光素子にあっては、“透明樹脂体
51から放出される光は高い指向性をもって放出され、
しかも発光部43Aから発せられる光はN!IIIアル
(ニウム・ガリウム・砒素層42を透過するのみで透明
樹脂体51に到達することができるため光の損失が少く
高い発光効率を得ることができる〇 前述の如き本発明による半導体発光素子は、一般の半導
体発光素子の製造法に従って形成することができる0 すなわち、液相エピタキシャル成長法によりてガリウム
・砒素基板41上に順次N屋アルミニウム・ガリウム・
砒素層42.Pffiアルミニウム・ガリウム・砒素活
性層43及びP屋アルミニウム・ガリウム・砒素層44
を形成する。
In such a structure, a hole 50 is provided in the gallium-arsenic substrate 41, and since the inside of the hole 50 is also filled with the resin material forming the lens portion tk, the hemispherical portion 51A of the transparent resin body 51 is In the distance from the top to the active layer 430 light emitting part 43A, the change in refractive index is negligible 0, that is, the change in refractive index due to the presence of the N-type aluminum gallium arsenic layer 42 can be ignored. 0 Therefore, by selecting the thickness of the gallium-arsenic substrate, the distance j from the light emitting part 43A to the top of the transparent resin body 51 is set to a value three times that of the hemispherical part 51A of the transparent resin body 510. The light emitting part 43A can be made of a transparent resin body 51.
Therefore, in the semiconductor light emitting device, "the light emitted from the transparent resin body 51 is emitted with high directivity,
Moreover, the light emitted from the light emitting section 43A is N! The semiconductor light-emitting device according to the present invention as described above can reach the transparent resin body 51 by only passing through the III-Al(nium-gallium-arsenic layer 42), so that there is little loss of light and high luminous efficiency can be obtained. , which can be formed according to a general semiconductor light emitting device manufacturing method. In other words, Nya aluminum, gallium, and
Arsenic layer 42. Pffi aluminum/gallium/arsenic active layer 43 and Pffi aluminum/gallium/arsenic layer 44
form.

次いで前記P型アルミニウム・ガリウム・砒素層44上
に選択的に金・亜鉛電極46を配設し、骸金・亜鉛電極
46の周囲OP型アル建ニウム・ガリウム・砒素層44
の表出部を覆って二酸化シリコン層45を被着形成する
。更に前記金・亜鉛電極46に接して前記二酸化シリコ
ン層45上に延在される金層47を形成する0金・亜鉛
層46は蒸着及びとれに続くフォト・エツチング処理に
よシ形成することができ、二酸化シリコン層45はスパ
ッタリング等によシ被着され、これに続く7オト・エツ
チング処理により選択的に除去される。更に金層47F
iメツキ処塩により形成される0本発明によれば、前記
ガリウム・砒素基@41の裏面t@岸して適当な厚さと
した後、かかる裏向に二酸化シリコン層を被着し、これ
をフォト−エツチングによシ込択的に除去して開口を設
ける0そしてかかる二酸化シリコン層をマスクとして、
例えに若干のアンモニアを含む過酸化水素水によりてガ
リウム・砒素基板41をエツチングし、N型アルミニウ
ム・ガリウム・砒素層42に達する孔を形成する。
Next, a gold/zinc electrode 46 is selectively provided on the P-type aluminum/gallium/arsenic layer 44, and the OP-type aluminum/gallium/arsenic layer 44 is formed around the metal/zinc electrode 46.
A silicon dioxide layer 45 is deposited over the exposed portion. Further, a gold-zinc layer 46 forming a gold layer 47 extending on the silicon dioxide layer 45 in contact with the gold-zinc electrode 46 may be formed by a photo-etching process following vapor deposition and removal. The silicon dioxide layer 45 is then deposited by sputtering or the like and selectively removed by a subsequent etching process. Furthermore, gold layer 47F
According to the present invention, after forming the back surface of the gallium/arsenic group 41 to an appropriate thickness, a silicon dioxide layer is deposited on the back side, and this is selectively removing the silicon dioxide layer by photo-etching to provide openings and using the silicon dioxide layer as a mask;
For example, the gallium/arsenic substrate 41 is etched using a hydrogen peroxide solution containing some ammonia to form a hole reaching the N-type aluminum/gallium/arsenic layer 42.

次いで前記ガリウム・砒素基板41の裏面の二酸化シリ
コン層を除去し、かかる裏面に金・ゲルマニウム層48
を形成して後、各半導体発光素子毎に分割する。
Next, the silicon dioxide layer on the back surface of the gallium/arsenic substrate 41 is removed, and a gold/germanium layer 48 is formed on the back surface.
After forming, it is divided into each semiconductor light emitting element.

次いで半導体発光素子の電極47を容器あるいは適当な
基体上の電極に固着して、当該半導体発光素子を容器あ
るいは適当な基体に搭載する。
Next, the electrode 47 of the semiconductor light emitting device is fixed to the electrode on the container or a suitable substrate, and the semiconductor light emitting device is mounted on the container or suitable substrate.

そして当該半導体発光素子の金・ゲルマニウム層48と
容器あるいは基体に配設された電極とをリード@49に
よって接続する。
Then, the gold/germanium layer 48 of the semiconductor light emitting device and the electrode provided on the container or the base are connected by leads @49.

しかる後、前記半導体発光素子の前゛記孔内にエポキシ
系透明樹脂51tfi布し、該樹脂51を硬化せしめる
ことによシ、レンズ付半導体発光素子が形成される。
Thereafter, a transparent epoxy resin 51tfi is applied inside the hole of the semiconductor light emitting element and the resin 51 is cured, thereby forming a semiconductor light emitting element with a lens.

なお、一般に半導体発光素子は直方体である。Note that semiconductor light emitting devices are generally rectangular parallelepipeds.

したがってガリウム・砒素基板41の麺面において接す
る透明樹脂体51の底面祉円形とはならず、ない。しか
しながら、光軸り方向における透明樹脂体510表面は
略球面状とな夛、十分なレンズ効果を有する。なお、半
導体発光素子の裏面(発光面)の形状が正方形である場
合、透明樹脂体の曲率牛径は半導体発光素子の一辺の長
さの1/2〜0,7倍の値を有する。
Therefore, the bottom surface of the transparent resin body 51 which is in contact with the noodle surface of the gallium/arsenic substrate 41 does not have a circular shape. However, the surface of the transparent resin body 510 in the optical axis direction has a substantially spherical shape and has a sufficient lens effect. Note that when the back surface (light emitting surface) of the semiconductor light emitting element has a square shape, the diameter of the curvature of the transparent resin body has a value of 1/2 to 0.7 times the length of one side of the semiconductor light emitting element.

成を示す断面図、第負図は本発明による半導体発光素子
の構成を示す断WJ図である。
The negative figure is a sectional WJ diagram showing the structure of the semiconductor light emitting device according to the present invention.

図において、 41 ガリウム・砒素基板。In the figure, 41 Gallium/arsenic substrate.

42・・・Nuアルミニウム・ガリウム・砒素層。42...Nu aluminum/gallium/arsenic layer.

43・・・P型アルミニウム・ガリウム・砒素活性層。43...P-type aluminum/gallium/arsenic active layer.

44 ・Paアルミニウム・ガリウム・砒素層。44 ・Pa aluminum gallium arsenic layer.

43・・・発光領域。43... Light emitting area.

50 孔。50 holes.

埠4図Pier 4

Claims (1)

【特許請求の範囲】[Claims] 内部に発光領域を有する半導体基体の一方の主面に、前
記発光領域の近傍に到達する孔が配設され、透明樹脂体
が前記孔内に充填され且つ前記半導体基体の一方の主面
に略半球状に突出して配設されてなることt特徴とする
半導体発光素子0
A hole reaching the vicinity of the light emitting region is provided on one main surface of a semiconductor substrate having a light emitting region therein, a transparent resin body is filled in the hole, and a hole is provided on one main surface of the semiconductor substrate, and a hole reaching the vicinity of the light emitting region is provided. A semiconductor light emitting device 0 characterized in that it is arranged in a hemispherically protruding manner.
JP56142920A 1981-09-10 1981-09-10 Semiconductor light emitting element Pending JPS5844780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142920A JPS5844780A (en) 1981-09-10 1981-09-10 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142920A JPS5844780A (en) 1981-09-10 1981-09-10 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPS5844780A true JPS5844780A (en) 1983-03-15

Family

ID=15326696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142920A Pending JPS5844780A (en) 1981-09-10 1981-09-10 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS5844780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500560A (en) * 1984-04-26 1986-03-27 テクステイルマ アクチエンゲゼルシヤフト A method for producing a patterned warp knitted fabric and a warp knitting machine for carrying out this method
EP1030359A3 (en) * 1999-02-19 2002-08-21 Micronas GmbH Layered structure and method of making it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500560A (en) * 1984-04-26 1986-03-27 テクステイルマ アクチエンゲゼルシヤフト A method for producing a patterned warp knitted fabric and a warp knitting machine for carrying out this method
JPS6360142B2 (en) * 1984-04-26 1988-11-22
EP1030359A3 (en) * 1999-02-19 2002-08-21 Micronas GmbH Layered structure and method of making it

Similar Documents

Publication Publication Date Title
US6878971B2 (en) Light-emitting apparatus
US6369506B1 (en) Light emitting apparatus and method for mounting light emitting device
US11508889B2 (en) Light emitting device including light emitting unit arranged in a tube
GB2043340A (en) Light emitting diode and method of making the same
JPH02191389A (en) Semiconductor laser device
US20180309030A1 (en) Light-emitting diode and method of producing a light-emitting diode
JP6574768B2 (en) LED dome with internal high index pillar
JP4239564B2 (en) Light emitting diode and LED light
JP2003179255A (en) Method of selectively providing quantum well in flip chip light emitting diode for improving light extraction
JPS5844780A (en) Semiconductor light emitting element
JPS5833885A (en) Laser diode
JPH06291365A (en) Semiconductor light emitting device and its manufacturing method, optical detecting device, optical information processing device, and optical fiber module
JPH05129711A (en) Package type semiconductor laser device
JPH0645656A (en) Light emitting device and optical fiber type photoelectric sensor with it
JP4356138B2 (en) Point light source LED device
JP4815708B2 (en) Display device using light emitting diode
JPS62174980A (en) Light emitting device for optical fiber communication
US20140361307A1 (en) Light emitting chip
JP2519504Y2 (en) Light emitting diode
JPS59121985A (en) Reflector type semiconductor light-emitting element
US7005683B2 (en) Resin-packaged led light source
JPS61280686A (en) Semiconductor light emission element and manufacture of the same
JPS6352491A (en) Package component and photoelectric device using it
JPS6042880A (en) Light emitting element
JPS61184889A (en) Semiconductor light emitting device