JPS5844401B2 - Naizousurukousoobunsansitenaru Jiyugoutaimaku Narabini Sonoseizouhouhou - Google Patents

Naizousurukousoobunsansitenaru Jiyugoutaimaku Narabini Sonoseizouhouhou

Info

Publication number
JPS5844401B2
JPS5844401B2 JP49049647A JP4964774A JPS5844401B2 JP S5844401 B2 JPS5844401 B2 JP S5844401B2 JP 49049647 A JP49049647 A JP 49049647A JP 4964774 A JP4964774 A JP 4964774A JP S5844401 B2 JPS5844401 B2 JP S5844401B2
Authority
JP
Japan
Prior art keywords
enzyme
polymer
enzymes
solution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49049647A
Other languages
Japanese (ja)
Other versions
JPS5014580A (en
Inventor
ビンセント オンデラ エミル
リチヤード クリンコウスキー ピーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dorr Oliver Inc
Original Assignee
Dorr Oliver Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dorr Oliver Inc filed Critical Dorr Oliver Inc
Publication of JPS5014580A publication Critical patent/JPS5014580A/ja
Publication of JPS5844401B2 publication Critical patent/JPS5844401B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • B01D69/144Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers" containing embedded or bound biomolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 本発明&堝界ろ過膜中の酵素を不動化する方法ならびに
内蔵した酵素を有する膜の新規な態様に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention & relates to a method of immobilizing enzymes in a filtration membrane and novel embodiments of membranes with built-in enzymes.

化学的工程技術の見地から、酵素はそれを理想的な触媒
にすると思われる多くの性質を持っている。
From a chemical engineering standpoint, enzymes have a number of properties that make them ideal catalysts.

酵素は全く緩和なpHおよび温度の条件下で充分作用し
、しかも速い反応率を誘起することもしばしばあり、個
々の触媒はそれが誘起する反応の型式において極めて特
異である。
Enzymes work well under conditions of quite mild pH and temperature, yet often induce fast reaction rates, and individual catalysts are highly specific in the type of reaction they induce.

生体細胞を維持するのに必要な化学反応はほとんど例外
なしに酵素の接触仲介に依存しており、そのため非常に
多種類の反応がこれら触媒によって制御されている。
The chemical reactions necessary to maintain living cells almost invariably rely on enzymatic contact mediation, and therefore a wide variety of reactions are regulated by these catalysts.

しかしながら酵素は初期経費が高く、安定性に欠け、反
応生成物から分離するのに困難であることから酵素に対
する巨大と思われる商業上の可能性はまだ実現していな
い。
However, the potentially huge commercial potential for enzymes has not yet been realized due to their high initial cost, lack of stability, and difficulty in separating them from reaction products.

例えば所望の反応の完結後に酵素を廃棄処分することは
一般に不経済であるため、これに代って酵素から反応生
成物を分離し、次いでこの酵素を原料供給物に循環する
ことが試みられて来た。
For example, since it is generally uneconomical to dispose of enzymes after completion of the desired reaction, attempts have been made to instead separate the reaction products from the enzymes and then recycle the enzymes into the feedstock. It's here.

ところでこの後記した型式の系においては、所要のポン
プ速度に対して酵素がぜん所感受性であり、このような
条件下で酵素が変性する傾向があることが判った。
However, it has been found that in systems of the type described hereinafter, the enzymes are generally sensitive to the required pumping speed and that the enzymes tend to denature under such conditions.

この問題に対して提案された他の解決法は、人工的なマ
トリックスに付着させることにより酵素を不動化するこ
とである。
Another proposed solution to this problem is to immobilize the enzyme by attaching it to an artificial matrix.

実際、最近ではビーズ、マイクロカプセル、シート、膜
、ろ紙および微細管を含めて種々の異った形態の天然重
合体、合成重合体および無機材料例えばガラス、金属お
よび金属塩に酵素を付着させている。
Indeed, enzymes have recently been attached to natural polymers, synthetic polymers, and inorganic materials such as glass, metals, and metal salts in a variety of different forms, including beads, microcapsules, sheets, membranes, filter papers, and microtubules. There is.

酵素を不動化させるために数種の技術が利用されて来て
いる。
Several techniques have been used to immobilize enzymes.

吸着法では、反対の電荷の引力により酵素を保持する。In adsorption methods, enzymes are retained by the attraction of opposite charges.

例えば正の電荷を持つ酵素を負に帯電したマトリックス
に結合させる。
For example, a positively charged enzyme is bound to a negatively charged matrix.

またゲルラテックスも酵素を捕捉する。Gel latex also captures enzymes.

基体および目的生成物がこのラテックスの内側または外
側を循環できるように前記のゲルラテックスの孔は充分
大きくなげればならない。
The pores of the gel latex must be sufficiently large so that the substrate and the desired product can circulate inside or outside the latex.

第三の方法としては酵素とマトリックスとの間に直接化
学結合が存在する共有化学結合の生成を含む。
A third method involves the creation of covalent chemical bonds where there is a direct chemical bond between the enzyme and the matrix.

一般に酵素が重合体に付着している場合には、ある形の
共有結合が付着の機構になっている。
Generally, when enzymes are attached to polymers, some form of covalent bonding is the mechanism of attachment.

この付着の様式は、酵素の化学的性質が必然的に変化し
てこれが酵素の反応性にしばしば逆効果を持つ欠点があ
る。
This mode of attachment has the disadvantage that the chemical properties of the enzyme are necessarily changed, which often has an adverse effect on the reactivity of the enzyme.

従って酵素の反応性に悪影響を与えることなく酵素を不
動化する方法に対して実際必要性が存在している。
Therefore, there is a real need for a method of immobilizing enzymes without adversely affecting their reactivity.

本発明の目的は酵素を限界ろ過膜中で不動化する新規な
方法を提供することにある。
It is an object of the present invention to provide a new method for immobilizing enzymes in ultrafiltration membranes.

本発明の他の目的は限界ろ過膜中の酵素の不動化を同伴
(すなわち内蔵またはエントレインメント)により達成
する方法を提供することにある。
Another object of the present invention is to provide a method for achieving immobilization of enzymes in ultrafiltration membranes by entrainment.

本発明のさらに別な目的は内部に酵素を内蔵した新規な
超ろ過膜を提供することにある。
Still another object of the present invention is to provide a novel ultrafiltration membrane containing an enzyme inside.

本発明の他の目的ならびに利点は以下の記載から明白と
なろう。
Other objects and advantages of the invention will become apparent from the description below.

一般的にいえば本発明は、分散した酵素添加物を含有す
る重合体の溶液から膜を析出させることにより、機械的
に内蔵させた酵素の効果的な量を含有する重合体質の限
界ろ過膜を製造する方法に関する。
Generally speaking, the present invention provides a polymeric ultrafiltration membrane containing an effective amount of a mechanically incorporated enzyme by precipitating the membrane from a solution of a polymer containing a dispersed enzyme additive. Relating to a method of manufacturing.

この方法により生成した酵素含有限界ろ過膜は分子的分
離を行う能力があり、また主として超ろ過液に対して、
特殊な化学反応を行う生物学的に活性で内蔵された酵素
と共に選択的に作用する能力がある。
The enzyme-containing ultrafiltration membrane produced by this method has the ability to perform molecular separations and primarily for ultrafiltrate.
It has the ability to work selectively with biologically active, built-in enzymes that perform specific chemical reactions.

この酵素は本質的に触媒であるので、これは反応中破環
されることはなく長期間にわたって活性(安定性)を保
持する。
Since this enzyme is catalytic in nature, it is not ring-broken during the reaction and retains its activity (stability) for a long period of time.

さらに詳しくいえば、1971年10月26日にミカx
ル(A、 S 、 Michaels )氏に与えられ
た米国特許第3615024号明細書に記載された種類
の重合体質で異方性徴多孔質の膜は、この特許に記載さ
れた方法に従い、析出に先立ってこの重合体溶液に酵素
を添加することにより製造される。
More specifically, on October 26, 1971, Mika x
Polymeric, anisotropically porous membranes of the type described in U.S. Pat. No. 3,615,024 to Michaels A. It is produced by adding an enzyme to a polymer solution.

前記特許明細書に記載されているように、有機溶剤に溶
解した重合体の溶液を生成させ、次いでこれを薄いフィ
ルムに流展する。
As described in the above patent specification, a solution of the polymer in an organic solvent is produced which is then cast into a thin film.

このフィルムの一方の側を、この有機溶剤に対して高度
の混和性があるが前記の重合体に対して十分な混和性を
持たない希釈剤と優先的に接触させて前記重合体膜の急
速な析出を行わせる。
One side of the film is preferentially contacted with a diluent that is highly miscible with the organic solvent but not sufficiently miscible with the polymer to rapidly form the polymer film. to perform the precipitation.

実質的に全部の溶剤が希釈剤で置き換えられるまで、こ
の希釈剤を前記の膜と接触状態で保持する。
The diluent is maintained in contact with the membrane until substantially all of the solvent has been replaced by the diluent.

通常約0.002インチよりも大きく約0.050イン
チよりも小さい厚みを持つこともある前記方法によって
製造された膜は、このフィルムの隣接した一表面が、平
均孔直径がミリミクロン範囲例えば1〜1oooミリ1 ミクロンまたは皮層の厚さの約−〜 であ10
100 る微多孔質重合体の約0.1〜5.0ミクロンの厚さの
障害層を構成する非常に薄く比較的ち密な皮層であるこ
とが特徴である。
Membranes produced by the method, which typically have a thickness of greater than about 0.002 inches and sometimes less than about 0.050 inches, have average pore diameters in the millimicron range, e.g. ~1ooo millimeter 1 micron or about the thickness of the cortical layer - ~10
It is characterized by a very thin and relatively compact skin layer that constitutes a barrier layer of about 0.1 to 5.0 microns thick of microporous polymer.

このフィルム構造体の残部は流体に対して流体力学的抵
抗を殆んど示さない粗い多孔質の重合体の一体となった
支持層から構成される。
The remainder of the film structure is comprised of an integral support layer of coarsely porous polymer that offers little hydrodynamic resistance to fluids.

本発明の教示によれば、酵素を微細に分割した形態でし
かも効果的な量で重合体溶液に導入し、次いで混合する
ことにより前記重合体溶液中に充分に分散させる。
According to the teachings of the present invention, the enzyme is introduced into the polymer solution in finely divided form and in an effective amount and then thoroughly dispersed in the polymer solution by mixing.

この酵素含有重合体溶液を前述したように流展してフィ
ルムの形状とする。
This enzyme-containing polymer solution is spread to form a film as described above.

1〜3%の界面活性剤(例えばトライトン×100のよ
うなポリエトキシエタノール)を添加することができる
普通は水である希釈剤と接触させた場合、重合体は析出
して前述したように異方性の膜を生成するが、この場合
この膜はその内部特にその孔道に沿って酵素を内蔵して
いる。
When brought into contact with a diluent, usually water, to which 1-3% of a surfactant (e.g. polyethoxyethanol such as Triton x 100) can be added, the polymer precipitates out and becomes different as described above. It produces a tropic membrane that contains enzymes within it, especially along its pore channels.

本発明を実施するのに好適な重合体−溶剤系を示すと次
表の通りである。
The following table shows suitable polymer-solvent systems for practicing the present invention.

前記の重合体−溶剤系は決して全部について記載したも
のではないが、他の重合体−溶剤系について文献は豊富
であり、これは当業者にとって主として選択の問題であ
る。
Although the above polymer-solvent systems are by no means exhaustive, the literature is abundant on other polymer-solvent systems, and this is largely a matter of choice for the person skilled in the art.

一般に流展溶液中の重合体固形分は重合体−溶剤混合物
の約5〜40%の範囲内にある。
Generally, the polymer solids content in the flow solution is in the range of about 5-40% of the polymer-solvent mixture.

限界ろ過膜中に内蔵させるのに好適な酵素には、でん粉
糖化のためのグルコアミラーゼ、ぶど5糖を果糖に変換
するグルコース・インメラーゼ、しよ糖を転化糖に変換
するためのインベルターゼおよび尿素をアンモニアに変
換するためのウレアーゼがある。
Enzymes suitable for inclusion in ultrafiltration membranes include glucoamylase for starch saccharification, glucose imerase for converting glucose pentose to fructose, invertase for converting sucrose to invert sugar, and urea. There is urease to convert it into ammonia.

水が作用するすべての系において普通使用されろ水の他
に、メタノール、ガソリン、フーゼル油等の有機溶剤が
ある特殊な場合における希釈剤としての用途がある。
In addition to filtrate, which is commonly used in all systems in which water acts, there is a use as a diluent in special cases where organic solvents such as methanol, gasoline, fusel oil, etc. are present.

しかしながらこのような希釈剤の使用が示されている場
合には、酵素との相容性を最初に決定する必要がある。
However, if the use of such diluents is indicated, compatibility with the enzyme must first be determined.

フィルムの流展および酵素含有膜の析出は比較的温和な
温度、通常約0℃から約90℃までの範囲の温度で行わ
れる。
Film casting and enzyme-containing membrane deposition are carried out at relatively mild temperatures, usually in the range of about 0°C to about 90°C.

本発明の利点をさらに詳細に説明するため以下に実施例
を掲げる。
Examples are provided below to further explain the advantages of the present invention.

例1 アクリロニトリル−塩化ビニル(比率4060)共重合
体(ダイネル)の15Fを85m1I’)ジメチルホル
ムアミド(DMF)と混和して澄明な溶液とすることに
より重合体溶液を製造する。
Example 1 A polymer solution is prepared by mixing 15F of acrylonitrile-vinyl chloride (ratio 4060) copolymer (Dynel) with 85mlI') dimethylformamide (DMF) to give a clear solution.

一方ウレアーゼ酵素は0.1μの微小粒子寸法を持つ粉
末状として得られる。
On the other hand, the urease enzyme is obtained as a powder with a microparticle size of 0.1 micron.

次にこの微細に分割された酵素の1.0?を前記溶液に
加え、容器をローラー上で5分間かきまぜると均質な分
散液が得られる。
Next, 1.0 of this finely divided enzyme? is added to the solution and the container is agitated on a roller for 5 minutes to obtain a homogeneous dispersion.

この酵素含有混合物を多孔質紙支持体上にうすいフィル
ムにして適用し、次いでこの紙で支持されたフィルムと
を25℃において20分間水浴中に浸漬して異方性の膜
を析出させる。
The enzyme-containing mixture is applied in a thin film onto a porous paper support and the paper-supported film is then immersed in a water bath for 20 minutes at 25° C. to deposit an anisotropic film.

こうして得られた膜は0.005インチの厚さを持ち、
外観上は酵素を含まない異方性の膜と区別が付かない。
The membrane thus obtained had a thickness of 0.005 inch;
Visually, it is indistinguishable from anisotropic membranes that do not contain enzymes.

この点で膜の24平方インチ当り0.12151のウレ
アーゼが結び付いていると計算される。
At this point it is calculated that 0.12151 urease is bound per 24 square inches of membrane.

次にこの膜を3インチ直径の円板に切断し、アミコン#
401バッチ・セル中に取付け、これを通して蒸留水を
流し残留している恐れのある溶剤および遊離酵素を溶離
する。
This membrane was then cut into 3 inch diameter disks and Amicon #
401 batch cell through which distilled water is run to elute any remaining solvent and free enzyme.

この不動化した酵素の活性は尿素の加水分解により試験
する。
The activity of this immobilized enzyme is tested by hydrolysis of urea.

尿素(H2NCONH2)は5〜50GFD (ガロ
ン/平方フィー17日)の速度で膜を通過させる。
Urea (H2NCONH2) is passed through the membrane at a rate of 5-50 GFD (gallons per square foot 17 days).

生起する接触反応により尿素はCO2およびNH3に変
換される。
The catalytic reaction that occurs converts urea into CO2 and NH3.

透過した溶液中のアンモニアの量によりこの酵素の有機
性を測定し、このアンモニア分析の結果を供給物質につ
いてのネスラー試薬反応の結果と比較する。
The organicity of the enzyme is determined by the amount of ammonia in the permeated solution, and the results of this ammonia analysis are compared to the results of the Nessler reagent reaction on the feed material.

この分析はバラシュ・アンド−oン(Bausch &
Lomb )社のスペクトル型「20」比色計を用い
て比色的に行なう。
This analysis was performed by Bausch &
It is carried out colorimetrically using a spectral type "20" colorimeter from Lomb.

適正流速で得られた変換値は流れに対して反比例し、例
えば5GFDの流速で49%となり、21GFDの流速
で32%になる。
The conversion value obtained at an appropriate flow rate is inversely proportional to the flow, and is, for example, 49% at a flow rate of 5 GFD and 32% at a flow rate of 21 GFD.

さらに高い流速では変換は直線的となり、限定的な要因
は孔通路と接触している酵素濃度および接触時間である
ことを示している。
At even higher flow rates, the conversion becomes linear, indicating that the limiting factors are the enzyme concentration and contact time in contact with the pore passages.

低い流速では変換は予想値よりも高くなる。At low flow rates the conversion is higher than expected.

これは拡散という新らたな機構に起因している。This is due to a new mechanism called diffusion.

例2 例1に記載したようにして製造した酵素不動化された超
ろ過膜を40”Pで3力月間貯蔵する。
Example 2 An enzyme-immobilized ultrafiltration membrane prepared as described in Example 1 is stored at 40"P for 3 months.

この時点で酵素の活性を尿素加水分解により決定する。At this point the activity of the enzyme is determined by urea hydrolysis.

この時点で酵素活性に何等減少が見られない。実際には
活性が多少増大した。
No decrease in enzyme activity is observed at this point. There was actually a slight increase in activity.

これは重合体の安定化または結晶化によることが明白で
あり、これは膜の皮層または分子的な特異性に影響を与
えることなく膜の輸送性を増大することが知られている
This is apparently due to polymer stabilization or crystallization, which is known to increase the transport properties of the membrane without affecting the membrane layer or molecular specificity.

酵素を限界ろ過膜中に内蔵させることは先行技術の酵素
の不動化では得られないある種の利点がある。
Incorporating enzymes into ultrafiltration membranes has certain advantages over prior art immobilization of enzymes.

すなわち、従来のように酵素をカプセルに封入した場合
にはカプセル剤を通して拡散することが酵素による変換
において動的な制限因子となっている。
That is, when enzymes are conventionally encapsulated in capsules, diffusion through the capsule becomes a dynamic limiting factor in enzymatic conversion.

本発明においては酵素は孔通路に沿って位置し、この通
路を通しで透過物が容易に流れるため極めて高い反応速
度を得ることが可能である。
In the present invention, the enzyme is located along the pore channels through which the permeate flows easily, making it possible to obtain very high reaction rates.

また本発明では酵素は液体一固体分離器中で不動化され
るので透過液としか反応しない。
Furthermore, in the present invention, the enzyme is immobilized in the liquid-solid separator, so that it reacts only with the permeate.

本発明の膜は大きい孔容積を持ち、異方性でありまた輸
送機構の性質により、非常に小容量の透過液が短時間高
濃度の酵素と接触する。
The membranes of the invention have large pore volumes, are anisotropic, and the nature of the transport mechanism allows very small volumes of permeate to contact high concentrations of enzyme for short periods of time.

反応した生成物が一定の割合で反応成分と置き換えられ
る乱流路の連続性と関連して、この系の動力学は先行技
術におけるカプセルに封入された酵素系で可能なものよ
りはかるに最適になっている。
In conjunction with the continuity of the turbulent flow path in which the reacted products are replaced by the reactants in a constant proportion, the dynamics of this system are much more optimal than is possible with encapsulated enzyme systems in the prior art. It has become.

以上本発明を好適な態様に関して説明したが、当業者に
とって容易に理解できるように本発明の精神および範囲
を逸脱することなく種々の変形を行うことが可能である
ことを理解すべきである。
Although the present invention has been described in terms of preferred embodiments, it should be understood that various modifications can be made without departing from the spirit and scope of the invention, as will be readily apparent to those skilled in the art.

このような変形および変更は特許請求の範囲に記載した
本発明の範囲に包含される。
Such modifications and changes are included within the scope of the invention as defined in the claims.

なお本発明を要約して示すと次の通りである。The present invention can be summarized as follows.

(1)異方性徴多孔質重合体の膜に少なくとも一種の内
蔵された酵素を分散させてなる、異方性徴多孔質重合体
の膜。
(1) A membrane of an anisotropic porous polymer comprising at least one type of incorporated enzyme dispersed in the anisotropic porous polymer membrane.

(2) アクリロニトリル−塩化ビニル共重合体から
構成される前記第(1)項の膜。
(2) The membrane according to item (1) above, which is composed of an acrylonitrile-vinyl chloride copolymer.

(3)有機溶剤に溶解した重合体の溶液を生成させ、こ
の溶液に効果的な量の微細に分割した酵素物質を混合し
て上記溶液中に前記酵素の均質な分散液を作り、この溶
液を流展してフィルムを形成させ、このフィルムの一方
の側を前記の有機溶剤とは高度な混和性を有するが前記
の重合体とは充分な相容性のない希釈剤と優先的に接触
させて前記重合体の急速な析出を行わせ、次いで実質的
に全部の前記溶剤が前記希釈剤で置換され膜内部に内蔵
した酵素を持つ重合体膜が析出するまで前記の希釈剤を
フィルムと接触状態で保持することからなる、内部に少
なくとも一種の内蔵された酵素を分散させた異方性徴多
孔質重合体の膜の製法。
(3) forming a solution of the polymer dissolved in an organic solvent and mixing with this solution an effective amount of finely divided enzyme material to form a homogeneous dispersion of said enzyme in said solution; to form a film, one side of which is preferentially contacted with a diluent that is highly miscible with the organic solvent but not sufficiently compatible with the polymer. The diluent is then added to the film until substantially all of the solvent is replaced by the diluent and a polymer film with enzymes incorporated within the film is deposited. A method for producing an anisotropic porous polymeric membrane having at least one incorporated enzyme dispersed therein, the membrane being maintained in contact.

(4)前記の希釈剤が約1〜3%の表面活性剤を含有す
る水である、前記第(3)項の方法。
(4) The method of paragraph (3) above, wherein said diluent is water containing about 1-3% surfactant.

(5)前記の膜がアクリロニトリル−塩化ビニル共重合
体から構成され、前記溶剤がジメチルホルムアミドであ
る、前記第4)項に記載の方法。
(5) The method according to item 4), wherein the membrane is composed of an acrylonitrile-vinyl chloride copolymer, and the solvent is dimethylformamide.

(6)有機溶剤に溶解した重合体の溶液を生成させ、こ
の重合体溶液を流展して薄いフィルムを形成させ、次い
でこのフィルムの一方の側を前記の溶剤とは混和できる
が前記の重合体とは比較的相容性の乏しい希釈剤と優先
的に接触させて前記重合体を急速に析出させて膜構造物
とする工程を包含する、酵素に対するマトリックスとし
ての異方性徴多孔質重合体の膜を製造するに当り、析出
工程に造立って前記の重合体溶液中に酵素を分散させ、
前記の析出と同時に前記酵素を前記膜中に機械的に内蔵
させることからなる改良方法。
(6) forming a solution of the polymer dissolved in an organic solvent, spreading the polymer solution to form a thin film, and then applying the polymer, which is miscible with the solvent but not anisotropically porous polymers as a matrix for enzymes, where coalescence involves preferential contact with relatively incompatible diluents to rapidly precipitate said polymers into membrane structures; In producing the membrane, the enzyme is dispersed in the polymer solution prepared in the precipitation step,
An improved method comprising mechanically incorporating the enzyme into the membrane simultaneously with the precipitation.

(7)前記重合体がアクリロニトリル−塩化ビニル共重
合体である前記第(6)項の方法において、酵素を微細
に分割された固体状で添加し次いで混合することにより
酵素を前記重合体溶液中に分散させる方法。
(7) In the method of item (6) above, wherein the polymer is an acrylonitrile-vinyl chloride copolymer, the enzyme is added to the polymer solution by adding the enzyme in a finely divided solid state and then mixing. How to disperse.

(8)前記の重合体がアクリロニトリル−塩化ビニル共
重合体であり、前記溶剤がジメチルホルムアミドであり
、前記の希釈剤が水である前記第(6)項の方法におい
て、酵素を微細に分割された固体の形態で重合体溶液と
混合して均質な分散液を生成させる方法。
(8) In the method of item (6) above, wherein the polymer is an acrylonitrile-vinyl chloride copolymer, the solvent is dimethylformamide, and the diluent is water, the enzyme is finely divided. A method in which the solid form is mixed with a polymer solution to produce a homogeneous dispersion.

Claims (1)

【特許請求の範囲】 1 異方性で微多孔質重合体の膜に少なくとも一種の内
蔵された酵素を分散させてなる、異方性徴多孔質重合体
の膜。 2 有機溶剤に溶解した重合体の溶液を生成させ、この
溶液に効果的な量の微細に分割した酵素物質を混合して
上記溶液中に前記酵素の均質な分散液を作り、この溶液
を流展してフィルムを形成させ、このフィルムの一方の
側を前記の有機溶剤とは高度な混和性を有するが前記の
重合体とは充分な相容性のない希釈剤と優先的に接触さ
せて前記重合体の急速な析出を行わせ、次いで実質的に
全部の前記溶剤が前記希釈剤で置換され膜内部に内蔵し
た酵素を持つ重合体膜が析出するまで前記の希釈剤をフ
ィルムと接触状態で保持することからなる、内部に少な
(とも一種の内蔵された酵素を分散させた異方性徴多孔
質重合体の膜の製法。
[Scope of Claims] 1. An anisotropic, microporous polymer membrane comprising at least one type of incorporated enzyme dispersed in the anisotropic, microporous polymer membrane. 2. Producing a solution of the polymer dissolved in an organic solvent, mixing with this solution an effective amount of finely divided enzyme material to form a homogeneous dispersion of said enzyme in said solution, and flowing this solution. spreading to form a film, one side of which is preferentially contacted with a diluent that is highly miscible with the organic solvent but not sufficiently compatible with the polymer. Rapid precipitation of the polymer is effected and the diluent is then kept in contact with the film until substantially all of the solvent is replaced by the diluent and a polymer film with enzymes incorporated within the film is deposited. A method of manufacturing an anisotropic porous polymer membrane with a small amount of internally dispersed enzymes.
JP49049647A 1973-05-07 1974-05-02 Naizousurukousoobunsansitenaru Jiyugoutaimaku Narabini Sonoseizouhouhou Expired JPS5844401B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US35817073A 1973-05-07 1973-05-07

Publications (2)

Publication Number Publication Date
JPS5014580A JPS5014580A (en) 1975-02-15
JPS5844401B2 true JPS5844401B2 (en) 1983-10-03

Family

ID=23408567

Family Applications (2)

Application Number Title Priority Date Filing Date
JP49049647A Expired JPS5844401B2 (en) 1973-05-07 1974-05-02 Naizousurukousoobunsansitenaru Jiyugoutaimaku Narabini Sonoseizouhouhou
JP57173069A Granted JPS58187190A (en) 1973-05-07 1982-10-01 Enzymatic reaction separating method and chamber

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP57173069A Granted JPS58187190A (en) 1973-05-07 1982-10-01 Enzymatic reaction separating method and chamber

Country Status (4)

Country Link
JP (2) JPS5844401B2 (en)
DE (1) DE2421650A1 (en)
FR (1) FR2228785B3 (en)
GB (1) GB1474594A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548392A (en) 1978-02-17 1980-04-07 Toyo Jozo Co Ltd Novel immobilizing material combined with biologically active substance, its preparation, device comprising it, method, and preparation of support
IT1207172B (en) * 1979-02-15 1989-05-17 Anic Spa PROCESS FOR THE PREPARATION OF GLOBAL MICROPOROUS BODIES ONE OR MORE ACTIVE AGENTS.
JPH0646947B2 (en) * 1984-12-17 1994-06-22 祥一 清水 Biochemical reaction method
JPS63207395A (en) * 1987-02-20 1988-08-26 Natl Food Res Inst Production of inverted sugar from molasses
JPH02150281A (en) * 1988-11-30 1990-06-08 Central Glass Co Ltd Enzyme-containing membrane and production thereof
FR2667874B1 (en) * 1990-10-16 1992-12-31 Rhone Alpes Futur Fondation BIO-CATALYSIS REACTOR, AND CORRESPONDING TREATMENT METHOD, PARTICULARLY APPLICABLE TO MALOLACTIC WINE TRANSFORMATION.
WO2018230330A1 (en) 2017-06-15 2018-12-20 株式会社カネカ Porous membrane for water treatment use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615024A (en) * 1968-08-26 1971-10-26 Amicon Corp High flow membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615024A (en) * 1968-08-26 1971-10-26 Amicon Corp High flow membrane

Also Published As

Publication number Publication date
FR2228785A1 (en) 1974-12-06
FR2228785B3 (en) 1977-03-11
JPS58187190A (en) 1983-11-01
GB1474594A (en) 1977-05-25
DE2421650A1 (en) 1974-11-21
JPS5014580A (en) 1975-02-15
JPS6253151B2 (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US5292801A (en) Doped sol-gel glasses for obtaining chemical interactions
Mosbach Enzymes bound to artificial matrixes
CN100363482C (en) Method for immobilizing lipase using microstructure in hydrophilic/ hydrophobic composite membrane
US6004786A (en) Inorganic carrier containing bound silane coupling agent having carboxylic-ester group for immobilizing lipase
IT8322155A1 (en) Process for immobilizing biological materials and composed of biological materials adsorbed in vermiculite
Ulbricht et al. Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
DE2539657A1 (en) BIOLOGICALLY ACTIVE MEMBRANE MATERIAL, ENZYME COLUMN WITH THE MEMBRANE MATERIAL AND USE OF THE MEMBRANE MATERIAL
EP0152898A2 (en) Process for encapsulation and encapsulated active material system(
US3972776A (en) Preparation of protein membranes containing microbial cells
JPS5978687A (en) Immobilization of catalyst on granular carbon
SE452161B (en) PROCEDURE FOR THE PREPARATION OF POROSA CELLULOSAPERLOR AND ITS USE
JPS5844401B2 (en) Naizousurukousoobunsansitenaru Jiyugoutaimaku Narabini Sonoseizouhouhou
Godjevargova et al. Preparation of an ultrafiltration membrane from the copolymer of acrylonitrile–glycidylmethacrylate utilized for immobilization of glucose oxidase
AU647982B2 (en) Process for preparing optically active cyanohydrins with enzymes
CN1851462B (en) Method for preparing network-like macroporous structure cellolose adsorption and transfer membrane
JPS59205981A (en) Microorganism immobilizing method and immobilized microorganism-containing agar fiber
Gille et al. Symmetric enzyme distribution in asymmetric UF polysulfone membranes
JPH0661255B2 (en) Enzyme reaction device
JPH0334971B2 (en)
Kim Development of enzyme immobilization technique
Shchori et al. Semipermeable composite microcapsules
SU681837A1 (en) Method of immobilizing protein molecules
JPH09143191A (en) Decomposed starch and its production
JPH01119309A (en) Anisotropic permeable reaction type porous separation membrane
JPS61181388A (en) Biological method and matrix used therein