JPS5844316B2 - air cooling device - Google Patents

air cooling device

Info

Publication number
JPS5844316B2
JPS5844316B2 JP54061162A JP6116279A JPS5844316B2 JP S5844316 B2 JPS5844316 B2 JP S5844316B2 JP 54061162 A JP54061162 A JP 54061162A JP 6116279 A JP6116279 A JP 6116279A JP S5844316 B2 JPS5844316 B2 JP S5844316B2
Authority
JP
Japan
Prior art keywords
air
circulating water
temperature
cooling
air cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54061162A
Other languages
Japanese (ja)
Other versions
JPS55155186A (en
Inventor
利明 貞舛
尚 田中
攻 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54061162A priority Critical patent/JPS5844316B2/en
Priority to DE19803017488 priority patent/DE3017488A1/en
Priority to CH377580A priority patent/CH646775A5/en
Publication of JPS55155186A publication Critical patent/JPS55155186A/en
Publication of JPS5844316B2 publication Critical patent/JPS5844316B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/04Direct-contact trickle coolers, e.g. cooling towers with cross-current only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

【発明の詳細な説明】 本発明は、高温乾燥空気を冷却する空気冷却装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air cooling device for cooling high temperature dry air.

一般に、鉄鋼プラント等の設備において、各種電気機器
を収納する広い電気室へ電気機器冷却用として清浄冷却
空気を送り込む場合、外気をエアーフィルタにて除塵・
ろ過した後送風機で暖気室内へ送り込む方法がとられて
いる。
Generally, in equipment such as steel plants, when clean cooling air is sent to a large electrical room that houses various electrical equipment to cool the electrical equipment, the outside air is filtered through an air filter to remove dust and
After filtering, the air is sent into a warm room using a blower.

ところが、このような鉄鋼プラント等の各種プラントは
、近年高温乾燥状態の外気を有する中近東地域にも数多
く建設されているが、この地域に訃いては外気をそのま
捷電気室内に取り入れたのでは、電気室内に収納された
電気機器の周囲温度条件最高40℃を維持することが不
可能であり、そのため外気を所定温度筐で冷す手段とし
て、前記エアー・フィルタと送風機の間に顕熱交換機能
を有する水冷型の多管式熱交換器を配設し、この熱交換
器で高温乾燥外気を冷却し、その冷却された空気を電気
室内に供給する方法がとられているオた、中近東地域に
限らず、特殊化学プラントおよびボイラの排気再利用等
高温乾燥空気を冷却したい場合にも、必要に応じ前述と
同様の冷却方法が用いられている。
However, in recent years, many steel plants and other plants have been built in the Middle East, where outside air is hot and dry, but in this region it is difficult to directly take outside air into the electrical room. However, it is impossible to maintain a maximum ambient temperature of 40°C for electrical equipment housed in an electrical room, and therefore, as a means of cooling the outside air at a predetermined temperature, sensible heat is installed between the air filter and the blower. A method is adopted in which a water-cooled multi-tube heat exchanger with an exchange function is installed, the high temperature dry outside air is cooled by this heat exchanger, and the cooled air is supplied to the electrical room. Cooling methods similar to those described above are used as needed not only in the Middle East, but also in cases where it is desired to cool high-temperature dry air, such as when reusing exhaust gas from special chemical plants and boilers.

しかるに、このような従来の高温乾燥空気冷却法におい
ては、水対空気の間接冷却方式のため、冷却効果が極め
て悪く、冷却装置の大形化・重量増大並びに設置スペー
スの増大を招くとともに、水冷型の多管式熱交換器等の
熱交換器を用いるため、多量の一過式または循環式冷却
水を要し、さらに熱交換器冷却管の洗浄作業といった煩
しい保守作業も必要となる等の種々の不都合がある。
However, in such conventional high-temperature dry air cooling methods, the cooling effect is extremely poor due to the indirect cooling method of water to air, resulting in an increase in the size and weight of the cooling device and an increase in the installation space. Since heat exchangers such as multi-tube type heat exchangers are used, a large amount of passing or circulating cooling water is required, and troublesome maintenance work such as cleaning the heat exchanger cooling tubes is also required. There are various disadvantages.

本発明はこのような点に鑑み、被冷却体たる高温乾燥空
気の特性を有効にいかし、水の蒸発作用を利用し、上述
の如き不都合がなく冷却効率の高い高温乾燥空気冷却装
置を提供することを目的とする。
In view of these points, the present invention provides a high-temperature dry air cooling device that does not have the above-mentioned disadvantages and has high cooling efficiency by effectively utilizing the characteristics of high-temperature dry air as an object to be cooled and by utilizing the evaporation effect of water. The purpose is to

以下、添付図面を参照して本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の空気冷却装置の一実施例を示す縦断面
図であり、空気冷却装置のケーシング1内は隔壁2によ
って上下に2分割され、その上部室3によって循環水冷
却部が構成され、下部室4によって空気冷却部が構成さ
れている。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the air cooling device of the present invention. The inside of the casing 1 of the air cooling device is divided into upper and lower halves by a partition wall 2, and the upper chamber 3 constitutes a circulating water cooling section. The lower chamber 4 constitutes an air cooling section.

循環水冷却部を構成する上部室3内IF−は循環水と空
気とを直接接触・冷却させるための充てん材5が配設さ
れており、その充てん材5の上方にはその充てん材5に
循環水を散水するための散水装置6が設けられている。
A filling material 5 is disposed in the upper chamber 3 IF- constituting the circulating water cooling section for direct contact and cooling of the circulating water and air. A water sprinkling device 6 for sprinkling circulating water is provided.

昔た、上記上部室3の一側壁には循環水冷却用の第1の
空気を取り入れるための第1の空気取入ロアが形成され
、さらに上部室3の他側土壁部には空気吐出口8が形成
され、その空気吐出口8部には上記第1の空気を屋外に
排出する送風機9が設けられている。
In the past, a first air intake lower was formed on one side wall of the upper chamber 3 to take in the first air for cooling the circulating water, and an air outlet was formed on the other earthen wall of the upper chamber 3. An outlet 8 is formed, and a blower 9 is provided at the air outlet 8 for discharging the first air outdoors.

一方、前記隔壁2には循環水冷却部を構成する上部室3
内に設けられた充てん材5の下方位置に、底部に多数の
散水口を有する受水槽10が設けられており、空気冷却
部を構成する下部室4内の上記受水槽10の下方には、
上記受水槽10から落下する循環水と第2の空気とを直
接接触・熱交換させるための充てん材11が配設されて
いる。
On the other hand, an upper chamber 3 constituting a circulating water cooling section is provided in the partition wall 2.
A water receiving tank 10 having a large number of water sprinkling ports at the bottom is provided below the filler 5 provided therein, and below the water receiving tank 10 in the lower chamber 4 constituting the air cooling section,
A filler 11 is provided for direct contact and heat exchange between the circulating water falling from the water receiving tank 10 and the second air.

また、前記上部室3の第1の空気取入ロアの下方部には
、上記下部室4内に被冷却体である第2の空気を取り入
れるための第2の空気取入口12が形成され、上記下部
室4の他側壁部には電気室等に開口する空気吐出口13
が設けられ、上記空気吐出口13より下部室内側には冷
却された空気を電気室等の内部に押込むための送風機1
4および循環水の電気室内への水滴飛散を防止するエリ
ミネータ15が配設されている。
Further, a second air intake port 12 is formed in the lower part of the first air intake lower part of the upper chamber 3 to take in second air, which is a body to be cooled, into the lower chamber 4. On the other side wall of the lower chamber 4 is an air discharge port 13 that opens into an electrical room, etc.
A blower 1 is provided below the air outlet 13 on the indoor side for pushing cooled air into the electrical room or the like.
4 and an eliminator 15 that prevents water droplets of circulating water from scattering into the electrical room.

なお、この場合循環水冷却部にかける充てん材5部では
循環水が蒸発し易いように構成され、空気冷却部にふ−
ける充てん材11部では空気と循環水との接触面積が犬
となるように構成されている。
In this case, the 5 parts of filler applied to the circulating water cooling section is constructed so that the circulating water can easily evaporate, and the filling material applied to the circulating water cooling section is designed so that the circulating water can easily evaporate.
The 11 parts of the filling material are configured so that the contact area between the air and the circulating water is approximately the same.

さらに、上記空気冷却部を構成する下部室4の下方には
、循環水を貯える貯水槽16が設けられ、この貯水槽1
6には、ストレーナ17および循環水ポンプ18を介し
て上記貯水槽16内の循環水を循環水冷却部の散水装置
61で循環送水させる循環水配管19、および上記貯水
槽16に循環水を補給する補給水装置20が接続されて
いる。
Furthermore, a water storage tank 16 for storing circulating water is provided below the lower chamber 4 constituting the air cooling section.
6 includes a circulating water pipe 19 that circulates the circulating water in the water storage tank 16 through a strainer 17 and a circulating water pump 18 with a water sprinkler 61 of the circulating water cooling unit, and supplies circulating water to the water storage tank 16. A make-up water device 20 is connected thereto.

しかして、1ず循環水ポンプ18によって貯水槽16か
ら汲み上げられた循環水配管19を汗して循環水冷却部
を構成する上部室3の散水装置6斗で送られ、その散水
装置6から充とん材5に散水され、第1の空気取入口1
から上部室3内に取り入れられた循環水冷却用の第1の
空気と上記充てん材5部で直接接触・熱交換せしめられ
冷却される。
First, the circulating water piping 19 pumped up from the water tank 16 by the circulating water pump 18 is sent to the water sprinkling device 6 in the upper chamber 3 constituting the circulating water cooling section, and is then charged from the water sprinkling device 6. Water is sprinkled on the wood 5 and the first air intake port 1
The first air for cooling the circulating water introduced into the upper chamber 3 from above is brought into direct contact and heat exchanged with the above-mentioned 5 parts of the filler material, thereby being cooled.

この場合、充てん材部に散水される循環水温がかなり高
く、第1の空気が非常に乾燥している場合には、直接接
触により循環水が得る顕熱量よりむしろ循環水の一部蒸
発により循環水が失う潜熱量の方が多くなるため、上記
循環水温は低下し、充てん材5の下方に設けられた受水
槽10へ落下回収される。
In this case, if the temperature of the circulating water sprinkled on the filling material part is quite high and the first air is very dry, the circulating water will be circulated by evaporation of a portion of the circulating water rather than by the amount of sensible heat that the circulating water gains from direct contact. Since the amount of latent heat lost by the water increases, the temperature of the circulating water decreases, and the water falls to the water receiving tank 10 provided below the filler 5 and is collected.

一方、上記光てん材5部に循環水冷却用として供給され
た第1の空気は加熱され送風°機9によって屋外に放出
される。
On the other hand, the first air supplied to the optical fiber member 5 for cooling the circulating water is heated and discharged outdoors by the blower 9.

筐た、前記受水槽10に回収された循環水はその底部に
設けられた多数の散水口から空気冷却部を構成する下部
室4内の充てん材11に散水され、そこで送風機14で
吸込1れた被冷却体たる第2の空気と直接接触・熱交換
し、その空気を冷却した後貯水槽16に回収される。
The circulating water collected in the water receiving tank 10 is sprayed from a large number of water sprinkling ports provided at the bottom of the housing onto the filling material 11 in the lower chamber 4 that constitutes the air cooling section, where it is sucked in by the blower 14. It directly contacts and exchanges heat with the second air, which is the object to be cooled, and after cooling the air, it is collected in the water storage tank 16.

ところで、この空気冷却部における循環水と第2の空気
との熱交換の場合は、前記循環水冷却部における熱交換
現象とは逆で、被冷却体である第2の空気の乾球温度よ
り受水槽10から散水される循環水温の方が低く、循環
水が空気と直接接触する際、循環水が蒸発作用により失
う潜熱量より、空気との直接接触により得る顕熱量の方
が多くなり、第2の空気が冷され、逆に循環水水温の方
が上昇することとなる。
By the way, in the case of heat exchange between the circulating water and the second air in this air cooling section, the heat exchange phenomenon in the circulating water cooling section is opposite, and the dry bulb temperature of the second air, which is the body to be cooled, is higher than the dry bulb temperature of the second air. The temperature of the circulating water sprinkled from the water receiving tank 10 is lower, and when the circulating water comes into direct contact with the air, the amount of sensible heat gained through direct contact with the air is greater than the amount of latent heat that the circulating water loses due to evaporation. The second air is cooled, and the temperature of the circulating water increases.

一方、前記光てん材11部で冷却された第2の空気は、
エリミネータ15で空気中に飛散する水滴を除去された
後、空気吐出口13を経て送風機14によって電気室内
に押込み送風され電気機器の冷却に供される。
On the other hand, the second air cooled by the 11 parts of the optical insulation material is
After water droplets scattered in the air are removed by the eliminator 15, air is forced into the electrical room by the blower 14 through the air outlet 13 and is used to cool the electrical equipment.

ところで、前述のように各々の充てん材5.11部で循
環水と空気が直接接触する際に、空気中の塵埃は循環水
によって除塵され循環水とともに貯水槽16に回収され
るが、循環水を散水装置6に導び〈循環水配管19には
ストレーナ17が設けられているので、上記貯水槽16
に回収された塵埃が散水装置6に送られるようなことは
ない。
By the way, as mentioned above, when the circulating water and air come into direct contact in each of the fillers 5 and 11, dust in the air is removed by the circulating water and collected in the water storage tank 16 together with the circulating water. The circulating water piping 19 is equipped with a strainer 17, so that the water in the water storage tank 16 is
The dust collected during this period will not be sent to the water sprinkler 6.

捷た、本装置の長時間連続運転にともない失われる循環
水不足分は、補給水装置20によって連続的に或は断続
的に貯水槽16に補給される。
The shortage of circulating water that is lost due to long-term continuous operation of this device is continuously or intermittently replenished into the water storage tank 16 by the makeup water device 20.

第2図は、循環水並びに空気の状態変化すなわち冷却作
用を説明するための湿り空気線図であって、い筐循環水
冷却部がない場合、点Aで示される状態の空気(仮に乾
球温度43℃、相対湿度四ql、)を、空気冷却部にお
いて循環水と熱交換させると、冷却され安定状態となっ
た空気は外部からの熱の受は渡しがみかけ上なくなるの
で、点Aのエンタルピ(20,4Kcal/&f)一定
線上の点B(仮に乾球温度35℃、相対湿度54係)と
なる。
Figure 2 is a psychrometric diagram for explaining the state changes of circulating water and air, that is, the cooling effect. When a temperature of 43℃ and a relative humidity of 4 ql) is exchanged with circulating water in the air cooling section, the cooled and stable air apparently receives no heat from the outside and transfers it. Point B is on the constant enthalpy (20.4 Kcal/&f) line (temporarily dry bulb temperature is 35°C and relative humidity is 54%).

一方、安定状態に致ると循環水と空気との得失熱量差が
なくなるので、循環水温も点Aのエンタルピ一定線と飽
和曲線との交点C(水温26.8℃)の近傍となる。
On the other hand, when a stable state is reached, the difference in heat gain and loss between the circulating water and the air disappears, so the circulating water temperature also becomes near the intersection C (water temperature 26.8° C.) between the constant enthalpy line at point A and the saturation curve.

つ昔す、始動時に循環水温が点Cの水温より高い場合に
は循環水が得る顕熱量より水の蒸発により失う潜熱量の
方が多くなり、循環水温は低下し、!た逆に始動時に循
環水温がC点の水温より低い場合には、循環水が得る顕
熱量の方が失なう潜熱量より多くなり、循環水温は上昇
傾向を示し、いずれの場合もエンタルピ一定線上の点C
fC近づくよう動作し、点C近傍に循環水温が安定する
Once upon a time, if the circulating water temperature is higher than the water temperature at point C at startup, the amount of latent heat lost due to water evaporation will be greater than the amount of sensible heat gained by the circulating water, and the circulating water temperature will drop. On the other hand, if the circulating water temperature is lower than the water temperature at point C at startup, the amount of sensible heat gained by the circulating water is greater than the amount of latent heat lost, and the circulating water temperature shows an upward trend, and in both cases, the enthalpy remains constant. point C on the line
It operates to approach fC, and the circulating water temperature stabilizes near point C.

ところが、上記実施例に示すように循環水冷却部を有す
るものにち・いては、その循環水冷却部で循環水を強制
的に冷却し、空気冷却部へ送水する循環水温が点Cより
低い点E(例えば水温22.8℃)となるようにすれば
、この時循環水の蒸発量は点Cにおける運転状態より減
少し、冷却された空気は直線AE上の点D(例えば乾球
温度35℃、相対湿度46係)となり、冷却空気の相対
湿度を循環水冷却部がないものより低くおさえることが
できる。
However, as shown in the above embodiment, in the case of a device having a circulating water cooling section, the circulating water is forcibly cooled in the circulating water cooling section, and the temperature of the circulating water sent to the air cooling section is lower than point C. If the temperature is set to point E (e.g., water temperature 22.8°C), the amount of evaporation of the circulating water will be reduced compared to the operating state at point C, and the cooled air will reach point D on straight line AE (e.g., dry bulb temperature). 35° C., relative humidity 46), and the relative humidity of the cooling air can be kept lower than that without a circulating water cooling section.

このように本発明においては、高温乾燥した同一状態に
ある空気を一方では循環水冷却用とし、他方では被冷却
体として用い水の蒸発作用を有効に利用して高温乾燥空
気を効果的に冷却することができる。
In this way, in the present invention, high-temperature dry air in the same state is used on the one hand for circulating water for cooling, and on the other hand as an object to be cooled, and the evaporation effect of water is effectively used to effectively cool the high-temperature dry air. can do.

上記装置には、外気温の変動に対する冷却能力制御機構
を併設することもできる。
The above device may also be provided with a cooling capacity control mechanism for fluctuations in outside temperature.

すなわち、第3図は冷却能力制御機構を設けた実施例を
示す図であり、空気吐出口13の近傍部には冷却された
第2の空気の吐出側温度を検出する温度検出器21が設
けられている。
That is, FIG. 3 is a diagram showing an embodiment in which a cooling capacity control mechanism is provided, and a temperature detector 21 is provided near the air discharge port 13 to detect the temperature on the discharge side of the cooled second air. It is being

そして、上記温度検出器21からの出力信号は流量制御
装置22に印加され、その流量制御装置22からの出力
信号によって循環水ポンプ18の駆動モータ23の回転
数を制御し、前記循環水冷却部の散水装置への通水量を
変え、冷却装置の冷却能力を調整するようにしである。
The output signal from the temperature detector 21 is applied to the flow rate control device 22, and the rotation speed of the drive motor 23 of the circulating water pump 18 is controlled by the output signal from the flow rate control device 22, and the rotation speed of the drive motor 23 of the circulating water pump 18 is controlled. The cooling capacity of the cooling system can be adjusted by changing the amount of water flowing to the sprinkler system.

しかして、い1外気温度が低下するとそれに応じて第2
の空気の吐出側温度も低下する。
Therefore, when the first outside temperature decreases, the second
The temperature on the discharge side of the air also decreases.

そこで、上記第2の空気の吐出側温度は温度検出器21
によって検出されてi−リ、その空気温度が所定温度以
下になると流量制御装置22が作動し、循環水ポンプ1
8の回転数が減じられ、それにともない散水装置6への
通水量が減少される。
Therefore, the temperature on the discharge side of the second air is determined by the temperature detector 21.
When the air temperature is detected by i-li and becomes below a predetermined temperature, the flow rate control device 22 is activated and the circulating water pump 1 is activated.
8 is reduced, and the amount of water flowing to the water sprinkler 6 is accordingly reduced.

したがって、空気冷却部に散水される循環水の温度が高
くなり冷却能力が低下せしめられる。
Therefore, the temperature of the circulating water sprinkled on the air cooling section becomes high, and the cooling capacity is reduced.

一方、逆に測定温度が高くなると、循環水ポンプの回転
数が増加され、通水量が増加せしめられ、これによって
冷却能力が高められる。
On the other hand, when the measured temperature becomes high, the rotational speed of the circulating water pump is increased to increase the amount of water flowing, thereby increasing the cooling capacity.

このようにして循環水ポンプの速度制御すなわち散水装
置への通水量制御を行なうことによって、電気室等への
吐出空気温度を所望温度近傍に安定させることができる
By controlling the speed of the circulating water pump, that is, controlling the amount of water flowing to the water sprinkler in this manner, the temperature of the air discharged into the electrical room etc. can be stabilized near a desired temperature.

なお、上記実施例においては循環水ポンプの回転数を制
御して冷却能力を制御するものを示したが、第4図に示
すように温度検出器21からの出力信号によって循環水
流量調整弁24を調節し、散水装置6への通水量制御を
行なうこともできる。
In the above embodiment, the cooling capacity is controlled by controlling the rotation speed of the circulating water pump, but as shown in FIG. It is also possible to control the amount of water flowing to the water sprinkler 6 by adjusting the amount of water.

また、第5図は循環水冷却部を流通する第1の空気の流
量を制御することによって装置の冷却能力を制御するよ
うにしたものであって、循環水冷却部に設けられた充て
ん材5の前面側(空気の取入口側)に駆動モータ25に
よって開閉される電動ダンパー26が設けられてお6、
温度検出器21の検出温度に応じて風量制御器27を介
して上記駆動モータ25を制御し、電動ダンパー26の
開度を調節するようにしである。
FIG. 5 shows a system in which the cooling capacity of the device is controlled by controlling the flow rate of the first air flowing through the circulating water cooling section, and the filling material 5 provided in the circulating water cooling section is An electric damper 26 that is opened and closed by a drive motor 25 is provided on the front side (air intake side) of the
The drive motor 25 is controlled via the air volume controller 27 in accordance with the temperature detected by the temperature detector 21, and the opening degree of the electric damper 26 is adjusted.

しかして、温度検出器21の測定温度が要求設定温度よ
り低くなると、風量制御器27i/il:よって駆動モ
ータ25vCt動ダンパー26の開度を減じるような指
示が与えられ、上記電動ダンパーが閉方向に制御される
When the temperature measured by the temperature detector 21 becomes lower than the required set temperature, an instruction is given to reduce the opening degree of the drive motor 25vCt dynamic damper 26, and the electric damper is moved in the closing direction. controlled by.

このようにして電動ダンパー26が閉方向に制御される
と、第6図に示す風量曲線に沿って循環水冷却部の通過
風量が減少する。
When the electric damper 26 is controlled in the closing direction in this manner, the amount of air passing through the circulating water cooling section decreases along the air amount curve shown in FIG.

したがって、循環水の温度低下が少なくなり、それによ
って空気冷却部における冷却能力りが低下しく第6図)
、吐出空気の温度が上昇する。
Therefore, the temperature drop of the circulating water is reduced, which reduces the cooling capacity of the air cooling section (Figure 6).
, the temperature of the discharged air increases.

逆に吐出空気の温度が高く測定温度が要求設定温度を越
えると、その出力信号によって電動ダンパー26の開度
が増加し、これに伴ない循環水冷却部を通る通風流量が
増し、循環水の気化が促進される。
Conversely, when the temperature of the discharged air is high and the measured temperature exceeds the required set temperature, the output signal increases the opening degree of the electric damper 26, and the flow rate of air passing through the circulating water cooling section increases accordingly. Vaporization is promoted.

したがって、空気冷却部に供給される循環水の温度が低
下し、空気の冷却能力が高められて吐出空気の温度が所
定温度1で低下せしめられる。
Therefore, the temperature of the circulating water supplied to the air cooling section is lowered, the cooling capacity of the air is increased, and the temperature of the discharged air is lowered to the predetermined temperature 1.

このようにして、外気温度等の変化に対しても常に吐出
空気の温度が設定温度近傍に調節される。
In this way, the temperature of the discharged air is always adjusted to be close to the set temperature even when the outside air temperature changes.

なお、循環水冷却部を通過する第1の空気の流量を制御
する手段としては、第1の空気を大気中に放出するため
の送風機90回転数を制御するようにしてもよい。
Note that the means for controlling the flow rate of the first air passing through the circulating water cooling section may include controlling the number of rotations of the blower 90 for discharging the first air into the atmosphere.

また、上記各実施例においては、循環水冷却部を空気冷
却部の上方に配置したものを示したが、空気冷却部を逆
に循環水冷却部の上方に設置してもよい。
Further, in each of the above embodiments, the circulating water cooling section is arranged above the air cooling section, but the air cooling section may be arranged above the circulating water cooling section.

さらに、両冷却部はその両方或いはいずれか一方を並列
または縦列に複数に分割してもよく、循環水冷却部、空
気冷却部の両者或はいずれか一方の充てん材を省き、散
水水滴と空気とを介在物なく直接接触させてもよい。
Furthermore, both or one of the cooling parts may be divided into multiple parts in parallel or in series, and the filler of both or one of the circulating water cooling part and the air cooling part can be omitted, and the water droplets and the air can be divided into two or more parts. They may be brought into direct contact without any intervening material.

以上説明したように0本発明の空気冷却装置においては
、従来の間接冷却方式と異なり直接接触冷却方式で空気
を冷却するようにしたので、冷却効率を飛躍的に向上さ
せることができ、必要冷却水量も少なくなり水資源の節
約を行なうことができる。
As explained above, in the air cooling device of the present invention, unlike the conventional indirect cooling method, the air is cooled by a direct contact cooling method, so the cooling efficiency can be dramatically improved, and the required cooling The amount of water is also reduced and water resources can be saved.

また、従来のように多管式熱交換器を使用しないので、
空気冷却装置の構造を簡単なものとしかつ小型化軽量化
を画ることかでき、設置スペースの縮少並びに循環水循
環系の諸設備の保守の簡略化をも画ることかできる。
Also, since it does not use a shell-and-tube heat exchanger as in the past,
It is possible to simplify the structure of the air cooling device, make it smaller and lighter, and also reduce the installation space and simplify the maintenance of various equipment in the circulating water circulation system.

さらに、循環水冷却部を有するので、空気冷却部への散
水温度が低下せしめられ、被冷却体たる空気の出口側相
対湿度をも極力低ぐチ・さえることができ、しかも冷却
能力制御機能を設けた場合には外気変動の如何にかかわ
らず、常に空気出口温度を最適使用域に安定させること
ができ、それに伴ない電気室等の内部に収納した電気機
器の運転環境・信頼性の向上を果すことができる等の効
果を奏する。
Furthermore, since it has a circulating water cooling section, the temperature of water sprayed to the air cooling section can be lowered, and the relative humidity on the outlet side of the air to be cooled can be kept as low as possible. If installed, the air outlet temperature can always be stabilized within the optimum usage range regardless of outside air fluctuations, and this will improve the operating environment and reliability of electrical equipment stored inside electrical rooms, etc. It is possible to achieve the following effects.

しかも、本発明においては被冷却体である高温乾燥空気
特性を有効に生かし水の蒸発作用を利用するものである
から、冷却系全体の運転動力を削減することもでき、ま
た直接接触冷却方式であるため空気中の塵埃は循環水に
よって捕獲され、特別のろ過装置を設ける必要もない等
の効果を奏する。
Moreover, since the present invention effectively takes advantage of the characteristics of the high-temperature dry air that is the object to be cooled and utilizes the evaporation effect of water, the operating power of the entire cooling system can be reduced, and the direct contact cooling method Therefore, the dust in the air is captured by the circulating water, and there is no need to provide a special filtration device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気冷却装置の一実施例を示す縦断面
図、第2図は本発明の動作説明図、第3図および第4図
はそれぞれ循環水量制御装置からなる冷却能力制御装置
を有する空気冷却装置を示す縦断面図、第5図は循環水
冷却部を流通する第1の空気流量を制御する装置からな
る冷却能力制御機構を具備した空気冷却装置を示す縦断
面図、第6図はダンパ開度と冷却能力卦よび風量との関
係線図である。 1・・・ケーシング、3・・・上部室、4・・・下部室
、5゜11・・・充てん材、6・・・散水装置、10受
水槽、16・・・貯水槽、18・・・循環水ポンプ、2
1・・・温度検出器、24・・・循環水流量調整弁、2
6・・・電動ダン)S。
FIG. 1 is a longitudinal sectional view showing an embodiment of the air cooling device of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, and FIGS. 3 and 4 are cooling capacity control devices each consisting of a circulating water amount control device. FIG. 5 is a vertical sectional view showing an air cooling device having a cooling capacity control mechanism consisting of a device for controlling a first air flow rate flowing through a circulating water cooling section. FIG. 6 is a diagram showing the relationship between the damper opening degree, the cooling capacity, and the air volume. DESCRIPTION OF SYMBOLS 1... Casing, 3... Upper chamber, 4... Lower chamber, 5゜11... Filling material, 6... Watering device, 10 Water tank, 16... Water tank, 18...・Circulating water pump, 2
1... Temperature detector, 24... Circulating water flow rate adjustment valve, 2
6...Electric Dan)S.

Claims (1)

【特許請求の範囲】 1 循環水と第1の空気との直接接触・熱交換によって
上記循環水を冷却する循環水冷却部と、上記循環水冷却
部において冷却された循環水と第2の空気とを直接接触
・熱交換させ上記第2の空気を冷却する空気冷却部とを
互いに上下に配設し、上記空気冷却部から流出した循環
水を再び上記循環水冷却部に供給するようにしたことを
特徴とする、空気冷却装置。 2 循環水冷却部を空気冷却部の上方に配設したことを
特徴とする特許請求の範囲第1項記載の空気冷却装置。 3 空気冷却部を循環水冷却部の上方に配設したことを
特徴とする特許請求の範囲第1項記載の空気冷却装置。 4 循環水と第1の空気との直接接触・熱交換によって
上記循環水を冷却する循環水冷却部と、上記循環水冷却
部において冷却された循環水と第2の空気とを直゛接接
触・熱交換させ上記第2の空気を冷却する空気冷却部と
を互いに上下に配置し、上記空気冷却部から流出した循
環水を再び上記循環水冷却部に供給するようにするとと
もに、上記空気冷却部において冷却された吐出空気の温
度を検出する温度検出器と、その温度検出器によって検
出された温度によって作動される循環水流量制御装置と
を設けたことを特徴とする、空気冷却装置。 5 温度検出器によって検出された温度によって循環水
ポンプの回転数を制御し、その循環水流量を制御するよ
うにしたことを特徴とする特許請求の範囲第4項記載の
空気冷却装置。 6 温度検出器によって検出された温度によって循環水
量制御弁を制御するようにしたことを特徴とする特許請
求の範囲第4項記載の空気冷却装置。 T 循環水と第1の空気との直接接触・熱交換によって
上記循環水を冷却する循環水冷却部と、上記循環水冷却
部において冷却された循環水と第2の空気とを直接接触
・熱交換させ上記第2の空気を冷却する空気冷却部とを
互いに上下に配設し、上記空気冷却部から流出した循環
水を再び上記循環水冷却部に供給するようにするととも
に、上記空気冷却部にち・いて冷却された吐出空気の温
度を検出する温度検出器と、その温度検出器によって検
出された温度によって作動され、前記循環水冷却部を流
通する第1の空気流量を制御する風量制御装置とを設け
たことを特徴とする、空気冷却装置。 8 温度検出器によって検出された温度によって、第1
の空気の流通路に設けられた送風機の回転速度を制御す
るようにしたことを特徴とする特許請求の範囲第7項記
載の空気冷却装置。 9 第1の空気の流通路に、温度検出器によって検出さ
れた温度によって制御される電動ダンパ装置を設けたこ
とを特徴とする特許請求の範囲第7項記載の空気冷却装
置。
[Claims] 1. A circulating water cooling section that cools the circulating water through direct contact and heat exchange between the circulating water and the first air, and the circulating water and the second air cooled in the circulating water cooling section. and an air cooling unit that cools the second air by direct contact and heat exchange with the second air, and are arranged above and below each other, and the circulating water flowing out from the air cooling unit is again supplied to the circulating water cooling unit. An air cooling device characterized by: 2. The air cooling device according to claim 1, wherein the circulating water cooling section is disposed above the air cooling section. 3. The air cooling device according to claim 1, wherein the air cooling section is disposed above the circulating water cooling section. 4. A circulating water cooling section that cools the circulating water through direct contact and heat exchange between the circulating water and the first air, and a direct contact between the circulating water cooled in the circulating water cooling section and the second air. - Air cooling units that exchange heat and cool the second air are arranged above and below each other, and the circulating water flowing out from the air cooling unit is supplied again to the circulating water cooling unit, and the air cooling unit 1. An air cooling device comprising: a temperature detector for detecting the temperature of discharge air cooled in the cooling section; and a circulating water flow rate control device operated by the temperature detected by the temperature detector. 5. The air cooling device according to claim 4, wherein the rotation speed of the circulating water pump is controlled based on the temperature detected by the temperature detector, and the flow rate of the circulating water is controlled. 6. The air cooling device according to claim 4, wherein the circulating water amount control valve is controlled based on the temperature detected by a temperature detector. T A circulating water cooling unit that cools the circulating water through direct contact and heat exchange between the circulating water and the first air, and a circulating water cooling unit that cools the circulating water by direct contact and heat exchange between the circulating water and the second air that have been cooled in the circulating water cooling unit. and an air cooling unit for exchanging and cooling the second air are disposed above and below each other, and the circulating water flowing out from the air cooling unit is again supplied to the circulating water cooling unit, and the air cooling unit a temperature detector that detects the temperature of the discharged air that has been cooled immediately; and an air volume control that is operated based on the temperature detected by the temperature detector and controls the flow rate of the first air flowing through the circulating water cooling section. An air cooling device characterized by being provided with a device. 8 Depending on the temperature detected by the temperature detector, the first
8. The air cooling device according to claim 7, wherein the rotational speed of a blower provided in the air flow path is controlled. 9. The air cooling device according to claim 7, wherein the first air flow path is provided with an electric damper device that is controlled by the temperature detected by a temperature detector.
JP54061162A 1979-05-18 1979-05-18 air cooling device Expired JPS5844316B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54061162A JPS5844316B2 (en) 1979-05-18 1979-05-18 air cooling device
DE19803017488 DE3017488A1 (en) 1979-05-18 1980-05-07 AIR COOLER
CH377580A CH646775A5 (en) 1979-05-18 1980-05-14 Air cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54061162A JPS5844316B2 (en) 1979-05-18 1979-05-18 air cooling device

Publications (2)

Publication Number Publication Date
JPS55155186A JPS55155186A (en) 1980-12-03
JPS5844316B2 true JPS5844316B2 (en) 1983-10-03

Family

ID=13163160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54061162A Expired JPS5844316B2 (en) 1979-05-18 1979-05-18 air cooling device

Country Status (3)

Country Link
JP (1) JPS5844316B2 (en)
CH (1) CH646775A5 (en)
DE (1) DE3017488A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476065A (en) * 1983-04-20 1984-10-09 Niagara Blower Co. Increased capacity wet surface air cooling system
FI102320B1 (en) * 1995-10-26 1998-11-13 Abb Installaatiot Oy Method and arrangement for heat transfer
JP4033677B2 (en) * 2002-01-09 2008-01-16 忠弘 大見 Air cooling method
US7137623B2 (en) * 2004-09-17 2006-11-21 Spx Cooling Technologies, Inc. Heating tower apparatus and method with isolation of outlet and inlet air
RU2484402C1 (en) * 2011-09-26 2013-06-10 Учреждение Российской академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН Device for heat utilisation of condensation of water vapour and cleaning of waste gases of power plant
CN112066751B (en) * 2020-09-11 2021-06-01 广州览讯科技开发有限公司 Centrifugal blast air crossing current open cooling tower
CN113879032B (en) * 2021-09-14 2022-06-24 深圳市国匠数控科技有限公司 Built-in intelligent temperature control equipment of gravure electronic engraving machine equipment

Also Published As

Publication number Publication date
CH646775A5 (en) 1984-12-14
DE3017488A1 (en) 1980-12-04
JPS55155186A (en) 1980-12-03

Similar Documents

Publication Publication Date Title
US4478767A (en) Air cooling device
US5181387A (en) Air conditioning apparatus
US4903503A (en) Air conditioning apparatus
US4987748A (en) Air conditioning apparatus
US10260818B2 (en) Cooling system and method of cooling an interior space
US10982874B2 (en) Heat pipe air-conditioning apparatus using bypass passage
US11162739B2 (en) Air-conditioning apparatus using heat pipe
CN107228424A (en) A kind of condenser cooling wind evaporation moistening and lowering temperature synergy air conditioner
JPS5844316B2 (en) air cooling device
JP3942820B2 (en) Humidification method for air conditioning
JPH11294832A (en) Air conditioner
US4094167A (en) Heat pump assembly
JP2005207712A (en) Air conditioner
JP2002277061A (en) Hot air heater
JP3077785B2 (en) Cool storage of agricultural products
JPH0762547B2 (en) Humidifier for air conditioner
EP0263166A1 (en) Air conditioning apparatus
KR100688351B1 (en) Device for heat exchanger be used evaporation latent heat of water
CN221055131U (en) Humidity adjusting device for air conditioning unit
CN217785356U (en) Sentry box air conditioner
CN214249847U (en) Air conditioning unit and air conditioning system
CN218120081U (en) Fresh air handling unit
JPS5855633A (en) Air conditioner
RU1800236C (en) Air-conditioning solar power plant
CN114440432A (en) Integral fresh air dehumidification all-in-one machine adopting pulsating heat pipes for heat recovery