JPS5844263A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPS5844263A
JPS5844263A JP56141351A JP14135181A JPS5844263A JP S5844263 A JPS5844263 A JP S5844263A JP 56141351 A JP56141351 A JP 56141351A JP 14135181 A JP14135181 A JP 14135181A JP S5844263 A JPS5844263 A JP S5844263A
Authority
JP
Japan
Prior art keywords
needle
coil
valve
fuel injection
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56141351A
Other languages
Japanese (ja)
Inventor
Hideaki Nanba
秀彰 難波
Katsuhiro Oba
大羽 勝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP56141351A priority Critical patent/JPS5844263A/en
Publication of JPS5844263A publication Critical patent/JPS5844263A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0696Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by the use of movable windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To reduce time-lag in closing of a fuel injection valve by adding a driving signal to a coil part united in one body with a needle and driving the needle which electromagnetically operates fuel injection. CONSTITUTION:A coil part 16, wound round by a wire 8, is united in one body with a needle 3, which is directly moved by an action of the coil part. Since magnets of a permanent magnet 14 are led to concentrate in a cylindrical space formed between a ball piece 10 and a plate 15 and then the coil 16 is inserted in the gap, driving force is generated on the coil part 16 when a driving pulse is impressed on the wire 8 wound around said coil 16. Accordingly, a total of repulsive force of a spring 6 and driving force generated by electric current flowing through the wire 8 works on the coil part 16, and this injection valve may be closed with less time-lag as compared with a valve in the past which is closed only by repulsive force of a spring.

Description

【発明の詳細な説明】 噴射弁に闘するものである。[Detailed description of the invention] It fights against the injection valve.

従来の電磁弁の機構概略断面図を第zllに示す。A schematic sectional view of the mechanism of a conventional solenoid valve is shown in No. zll.

ソレノイドコイル怠にシーパルスが加えられるとコアl
が上方に吸引され、ニードル3は、コア1と一体になっ
ている為、ニードル3は、7ランジ4がスペーサ器に当
たるまで97)する。駆動パルスがなくなるとスプリン
グ60反発力で、ニードル3は元に戻される。ニード#
3のり7F量が一定の為、噴射量は、ニードルが上方に
97)している時間、即ちソレノイドコイル2への通電
時間により規定される。
When a sea pulse is applied to the solenoid coil, the core l
is sucked upward, and since the needle 3 is integrated with the core 1, the needle 3 moves 97) until the 7-lunge 4 hits the spacer device. When the driving pulse disappears, the needle 3 is returned to its original position by the repulsive force of the spring 60. Need#
Since the amount of glue 7F is constant, the injection amount is determined by the time the needle is in the upward position 97), that is, the time the solenoid coil 2 is energized.

このような構成のものにおいては、コアを速く動かす為
にリターンスプリングのばねの力を弱くすれば復帰に時
間が掛かり、復帰時間を早める為にリターンスプリング
のばねの力を強くすれば起動時間が長く゛なる。従って
、燃料噴射弁として使用する際噴射時間が小さい領域と
か、噴射間部が接近してくる高回転時とかで下記に詳述
するような問題があった。
In such a configuration, if the force of the return spring is weakened in order to move the core faster, it will take longer to return, and if the force of the return spring is strengthened to speed up the return time, the startup time will be reduced. It will be long. Therefore, when used as a fuel injection valve, there are problems as described in detail below, such as when the injection time is short or at high rotation speeds where the injection interval approaches each other.

第2゛図に駆動パルス、ニードルリフト、噴射量の関係
を示す。−回のストロークで噴出される燃料は、次式で
与えられる。
Figure 2 shows the relationship between drive pulse, needle lift, and injection amount. The fuel ejected in - strokes is given by the following equation.

噴出量 q=qo+qm+q。Spout amount q = qo + qm + q.

= Q o % T o + Q (ti−To) −
)QcTaQ O<< Q≠Q。
= Q o % T o + Q (ti-To) -
)QcTaQ O<< Q≠Q.

、”、 +lF&Q (t i −(T o−T c)
 )また最小噴射時間twin  =To−1−T!l
oであるから 最小噴射量 qmin=Q(twin −(To−To
)):Q(T(1+T110) となる。
,”, +lF&Q (t i −(T o−T c)
) Also, the minimum injection time twin =To-1-T! l
o, so the minimum injection amount qmin=Q(twin −(To−To
)):Q(T(1+T110)).

故に最小噴射量qmimは、T o +T B oの関
数となる。
Therefore, the minimum injection amount qmim is a function of T o +T B o.

ここで ・ tl:通電時間、tra−・t:休止時間。here · tl: energization time, tra-.t: rest time.

!o:開弁遅れ時間、To:閉弁遅れ時間、 tx6:
開弁時二−ドルパウンを時間、’I’!IC:閉弁時エ
ード ドルバラン鷺時聞e’io”開弁遅れ時動的噴射量。
! o: Valve opening delay time, To: Valve closing delay time, tx6:
When the valve opens, it's time for two dollars, 'I'! IC: Dynamic injection amount when valve opening is delayed.

qc:閉弁遅れ時動的噴射量eq”開弁時動的噴射量*
 Qo :開弁遅れ時静的噴射量*Qc”閉弁遅れ時静
的噴射量、q:開弁時静的噴射量である。
qc: Dynamic injection amount at valve closing delay eq” Dynamic injection amount at valve opening *
Qo: Static injection amount when valve opening is delayed *Qc” Static injection amount when valve closing is delayed, q: Static injection amount when valve opening is delayed.

即ち最小噴射量をより小さくするには、閉弁遅れ時間T
cを縮めるか、開弁時ニードルバウンド時間TICを縮
めればよい。ところが従来の噴射弁は、スプリング6の
反発力でニードル3を戻す方法のため、閉弁遅れ時間を
縮めることはできない。また開弁時7ランク番がスペー
サ5に衝突することによりストジー夕が規定されるので
、そのときに起こるパウンドを制御することもできない
That is, in order to make the minimum injection amount smaller, the valve closing delay time T
Either shorten c or shorten the needle bounce time TIC when opening the valve. However, in the conventional injection valve, the needle 3 is returned using the repulsive force of the spring 6, so it is not possible to shorten the valve closing delay time. Further, since the stoichiometry is defined by the collision of the 7th rank with the spacer 5 when the valve is opened, it is also impossible to control the pounding that occurs at that time.

即ち最小噴射量は、機械的特性で一意に決まってしまっ
て外部的に最小噴射量を制御するとか、より効率的に最
小噴射量を決めることは困難であった。
That is, the minimum injection amount is uniquely determined by mechanical characteristics, and it is difficult to control the minimum injection amount externally or to determine the minimum injection amount more efficiently.

本発明は、噴射弁のニードル3と一体になったコイル部
16に駆動信号を加えることによってニードル3の挙動
を行なわせる噴射弁で、コイル部16のワイヤ8に流す
電流に方向性がある。即ち、ニードル3を上方に引き上
げるために流す電流の向きと逆の方向に電流を流してや
れば、ニードル3゛を下方に引き下げる駆動力が発生し
閉弁遅れ時間!Oを縮めることができる。□ また永久磁石をコイル部16の周囲に取り付ける構造に
したことによりワイヤ8が高磁界中におかれることにな
る。このことにより開弁時パウンドの減衰時間が著しく
短縮し上記の閉弁遅れ時間Toの減少と相まって最小噴
射量がより少なくできることを目的とする。
The present invention is an injection valve that causes the needle 3 to behave by applying a drive signal to a coil portion 16 integrated with the needle 3 of the injection valve, and the current flowing through the wire 8 of the coil portion 16 has directionality. That is, if a current is made to flow in the opposite direction to the direction of the current that is passed to pull the needle 3 upward, a driving force is generated that pulls the needle 3 downward, resulting in a valve closing delay time! O can be shortened. □ Also, by adopting a structure in which the permanent magnet is attached around the coil portion 16, the wire 8 is placed in a high magnetic field. As a result, the damping time of the pound at valve opening is significantly shortened, and in combination with the reduction in the valve closing delay time To, the minimum injection amount can be further reduced.

また駆動回路17を燃料経路につき出す構造としたこと
により、燃料流が駆動回−を冷却し駆動電流を大きくと
ることができることを目的とする。
Another object of the present invention is that by configuring the drive circuit 17 to protrude into the fuel path, the fuel flow cools the drive circuit and a large drive current can be obtained.

これは、この噴射弁を駆動するためのコンピュータ側の
負荷を軽減しシステム全体としてコストダウンにつなが
る。
This reduces the load on the computer for driving this injection valve, leading to cost reductions for the entire system.

以下図面により本発明の実施例を詳述する。本発明によ
る噴射弁□の構造概略断面図を第3wJに示す。コイル
部16社は、ワイヤ8が巻いてあり、そのワイヤは絶縁
体でできているステー13を経由して、駆動回路lフに
接続されて、駆動回路′lフは、コネクタ9と接続して
いる。またコイル部16は、ニードル3と一体になって
おりコイル部6挙−が直接ニードルを動かす構造である
。燃料噴出溝、1−ら燃料噴出口12を経て噴射ロフに
至る燃粁蟇−路−i−駆動回路17は突き出ている。即
ち流出する°燃料は駆動回路17を冷却しながら噴射□
口5到達する構造となっている。永久磁石14の磁−を
ポールピース10とプレート15との間にできた円筒状
の空間に集中するよう□に導きその空隙゛の中にコイル
部16を入れた構造になっているため、コイ゛ル部16
に巻かれた8に駆動パルスが印になる。
Embodiments of the present invention will be described in detail below with reference to the drawings. A schematic cross-sectional view of the structure of the injection valve □ according to the present invention is shown in 3rd wJ. The coil part 16 has a wire 8 wound thereon, and the wire is connected to the drive circuit lf via the stay 13 made of an insulator, and the drive circuit 'lf is connected to the connector 9. ing. Further, the coil section 16 is integrated with the needle 3, and the coil section 16 has a structure that directly moves the needle. A driving circuit 17 extending from the fuel injection groove 1 through the fuel injection port 12 to the injection lobe protrudes. That is, the outflowing fuel is injected while cooling the drive circuit 17.
It has a structure that reaches the mouth 5. The magnetism of the permanent magnet 14 is guided to the □ so that it is concentrated in the cylindrical space created between the pole piece 10 and the plate 15, and the coil part 16 is inserted into the space. Wall part 16
The drive pulse becomes a mark on the 8 wound around.

噴射信号τlが駆動制御回路の入力端子ムに入力される
と、駆動制御回路は、噴射信号v′lに相当する時間だ
け、トランジスタQl、Q4を01するように駆動パル
スを発生させる。その結果電流工lが流れ、コイル部1
6が上方に吸引される。
When the injection signal τl is input to the input terminal M of the drive control circuit, the drive control circuit generates a drive pulse to turn the transistors Ql and Q4 to 01 for a time corresponding to the injection signal v'l. As a result, current flow l flows, and coil part 1
6 is sucked upward.

ニードル3は、コイル部16と一体になっている為、ニ
ードル3は、7ランジ4がスペーサ5に当たるまでリフ
トする。
Since the needle 3 is integrated with the coil portion 16, the needle 3 is lifted until the seven flange 4 hits the spacer 5.

閉弁時には、トランジスタQ、X、Q4をOF?させ、
駆動電、流工lをなくす様にする。その際それを妨げよ
うとする逆起電力が生じ、工lと同じ方向に電流が流れ
るが、まだトランジスタQ2゜Q3はONしていないか
ら、その電流はコイルLで消費される。τ2は、それに
要する時間である。
When the valve is closed, are transistors Q, X, and Q4 turned off? let me,
Eliminate drive current and labor. At that time, a back electromotive force is generated that tries to prevent this, and a current flows in the same direction as the coil L, but since the transistors Q2 and Q3 are not turned on yet, the current is consumed in the coil L. τ2 is the time required for this.

その後トランジスタQ、!、Q3をONさせてやると開
弁時とは逆の電流xmが流れる。τ3は、速い閉弁時間
を得るために要する時間である。
After that, transistor Q! , when Q3 is turned ON, a current xm opposite to that when the valve is opened flows. τ3 is the time required to obtain a fast valve closing time.

よってコイル部16には、スプリング6の反発力とワイ
ヤ8に流れる電流によって生ずる駆動力との加算された
力が働き、従来のスプリングの反発力だけで閉弁する噴
射弁よりも少ない遅れ時間で閉弁する。即ち従来の噴射
弁に比較して最小噴射量がより少ない噴射弁を成す。そ
してニードル3のリフト量が一定である為、噴射量は、
ニードルが上方にリフトしている時間、即ちワイヤ8へ
の開弁通電時間により規制される。
Therefore, the combined force of the repulsive force of the spring 6 and the driving force generated by the current flowing through the wire 8 acts on the coil portion 16, and the injection valve closes with a shorter delay time than the conventional injection valve that closes only with the repulsive force of the spring. Close the valve. In other words, the injection valve has a smaller minimum injection amount than conventional injection valves. Since the lift amount of needle 3 is constant, the injection amount is
It is regulated by the time during which the needle is lifted upward, that is, the time during which the wire 8 is energized to open the valve.

噴射弁駆動回路の等価回路を第5図の(&)に示す。An equivalent circuit of the injection valve drive circuit is shown in (&) in FIG.

今ワイヤ8に開弁する方向に駆動パルスが印加された時
、等価回路は、第S図の伽)となる、。この場合、rO
は電源の内部インピーダンスで無視できる程小さいから
第6図の伽)は(0)と考えてもよい。。
Now, when a driving pulse is applied to the wire 8 in the direction of opening the valve, the equivalent circuit will be as shown in Figure S. In this case, rO
Since is the internal impedance of the power supply and is so small that it can be ignored, it can be considered that (k) in Fig. 6 is (0). .

即ち、1つの閉ループ回路が形成されたことになるO この回路は、第3図のプレー)15とポールピース10
の空隙に位置するため磁界中に存在することになる。
In other words, one closed loop circuit is formed. This circuit consists of the player 15 and the pole piece 10 shown in
Because it is located in the air gap, it exists in a magnetic field.

令弟aWJの(0)のコイル部が矢印Pの方向にずれた
とすると、レンツの法則により回路内に、=−狸t なる起電力が生じる。この起電力によって生じる電荷に
は、f=・ (*×8)なるローレンッカが生じる。そ
してその方向は、第5図の(0)の矢印qの方向である
。即ちコイルLが動こう七するのを妨げようとする力が
コイル乙には働く。このことは、ニードル3のバウンド
を妨げようとするカが生じることを意味し、本発明なる
噴射弁は従来品に比らぺて開弁時ニードルパウンド時間
’rmaが短いことになる。即ち、最小噴射量もより小
さくなる。
If the coil section (0) of the younger brother aWJ is shifted in the direction of the arrow P, an electromotive force of =-raccoon t is generated in the circuit according to Lenz's law. The electric charge generated by this electromotive force generates a low curve of f=.(*×8). The direction is the direction of arrow q in (0) of FIG. That is, a force acts on coil B that attempts to prevent coil L from moving. This means that a force is generated that tries to prevent the needle 3 from bouncing, and the injection valve of the present invention has a shorter needle pounding time 'rma when the valve is opened compared to conventional products. That is, the minimum injection amount also becomes smaller.

第6図は本発明によるs2の実施例による高磁束密度型
噴射弁の構造概略同士ある。本噴射弁はプレー)1sと
ポールピース10の溶状を第6図の様にすることによっ
て高磁束−一を得られる様にしたものであり応答速度の
一層の向上が可能となる。
FIG. 6 shows a schematic structure of a high magnetic flux density type injection valve according to the s2 embodiment of the present invention. This injection valve is designed to obtain a high magnetic flux by making the plate 1s and the pole piece 10 melted as shown in FIG. 6, thereby making it possible to further improve the response speed.

以上述べたように、 (1)噴射弁のニードルと一体になったコイル部に電流
を流すと電流の流れる向きによってニードルの受ける力
の向きが変わる特性を利用して閉弁時に、開弁時とは逆
の電流を流すことによって閉弁遅れ時間を短縮できると
いう効果がある。
As mentioned above, (1) When a current is passed through the coil part integrated with the needle of the injection valve, the direction of the force received by the needle changes depending on the direction of the current flow. There is an effect that the valve closing delay time can be shortened by flowing a current opposite to the current.

最小噴射量は、閉弁連れ時間が頌〈なればなる程小さく
なるから、本発明の噴射弁に上記の駆動方式を用いるこ
とにより、少ない最小噴射量が得られ、よりきめの細か
いエンジン制御が可能となる。
The minimum injection amount becomes smaller as the valve closing time increases, so by using the above drive method for the injector of the present invention, a smaller minimum injection amount can be obtained and more fine-grained engine control can be achieved. It becomes possible.

(2)噴射弁のニードルと一体になったコイル部のワイ
ヤを磁界中におき、それに駆動信号を印加することによ
り、バウンドを妨げる力が働き、開弁時ニードルバウン
ド時間を短くすることができるという効果があり最小噴
射量は、開弁時ニードルパウンド時間が短(なればなる
程小さくなるから本構造の噴射弁は、従来品に比らべて
より少ない最小噴射量が得られるという優れた効果を有
する。
(2) By placing the wire of the coil part that is integrated with the injection valve needle in a magnetic field and applying a drive signal to it, a force that prevents bouncing is applied and the needle bouncing time when the valve is opened can be shortened. The injection valve with this structure has the advantage of being able to obtain a smaller minimum injection amount compared to conventional products because the needle pound time when opening the valve is shorter (the shorter the needle pound time is, the smaller it becomes). have an effect.

(5)噴射弁を動かす為の駆動回路を燃料経路につき出
す構造としたことにより、燃料流が駆動回路を冷却し駆
動電流を太き(とることが可能となる。
(5) By adopting a structure in which the drive circuit for moving the injection valve is exposed to the fuel path, the fuel flow cools the drive circuit, making it possible to increase the drive current.

これに°より従来ではコンピュータ側に複雑な制御回路
を必要としたがより簡単な回路ですむことになりシステ
ム全体としてコスシダウンが可能という効果を有する。
As a result, although conventionally a complicated control circuit was required on the computer side, a simpler circuit is required, and the cost of the entire system can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来品の断面図、第2図は駆動パルスと電磁弁
との関係図、第3図は本1発明実施例の断面図、第4図
は駆動回路と制御信号関係図、第5図は駆動部の等価回
路図、第6図は本発明筒2の実施例の断面図である。 1・・・コア、2・・・ソレノイドコイル、3・・・ニ
ードル。 4・・・7ランジ、5・・・スペーサ、6−・・スプリ
ング。 7・・・噴射口、8・・・ワイヤ、9−・・フネクタ、
10−・・ポールピース、11・・・燃料噴出溝、1g
−・・燃料噴出口、13・・・ステー、14−・・永久
磁石、15・・・プレーシ、16・・・コイル部、17
・・・駆動回路。 代理人弁理士   岡 部  i 第2図 第4図 第5図 Cλ) (b) (C) ↑ 爪6図
Figure 1 is a sectional view of a conventional product, Figure 2 is a diagram of the relationship between the drive pulse and the solenoid valve, Figure 3 is a sectional view of the embodiment of the present invention, Figure 4 is a diagram of the relationship between the drive circuit and control signals, and Figure 4 is a diagram of the relationship between the drive circuit and control signals. FIG. 5 is an equivalent circuit diagram of the driving section, and FIG. 6 is a sectional view of an embodiment of the cylinder 2 of the present invention. 1...Core, 2...Solenoid coil, 3...Needle. 4...7 lunge, 5...spacer, 6-...spring. 7... Injection port, 8... Wire, 9-... Funecta,
10--Pole piece, 11--Fuel injection groove, 1g
-...Fuel injection port, 13...Stay, 14-...Permanent magnet, 15...Placey, 16...Coil part, 17
...Drive circuit. Representative Patent Attorney Okabe I Figure 2 Figure 4 Figure 5 Cλ) (b) (C) ↑ Nail Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)電磁石によりノズルニードルを制御する電磁弁に
おいて、ニードルと、ニードルに連結した7で7ランジ
状に拡大している磁性体と、該磁性体の7ランジ状の上
部に接していて該コイル部を同軸状に包み込むように配
置された永久磁石と、該永久磁石に接してそれと同様な
中空円柱形状のプレートと、該コイル部の白傷に同軸上
に配置されたスプリングと、7ランジを受けとめるスペ
ーサと、該永久磁石の一部を切り欠いた部分に該コイル
部を駆動するための駆動回、路とを有し、該コイル部に
駆動電流を流しニードルを制御し燃料噴射を電磁的に操
作することを特徴とする燃料噴射弁。
(1) In a solenoid valve that controls a nozzle needle using an electromagnet, the needle, a magnetic body connected to the needle and expanding into a 7-flange shape, and a coil that is in contact with the upper part of the 7-flange shape of the magnetic body. A permanent magnet arranged so as to coaxially envelop the coil section, a hollow cylindrical plate similar to that in contact with the permanent magnet, a spring arranged coaxially on the white flaw of the coil section, and a seven flange. It has a spacer for receiving the permanent magnet, and a drive circuit and path for driving the coil section in a cutout part of the permanent magnet, and a drive current is passed through the coil section to control the needle and fuel injection is performed electromagnetically. A fuel injection valve characterized by being operated to.
(2)該コイル部を駆動するための駆動回路を噴射すべ
き燃料の供給経路上に配置構成したことを特徴とする特
許請求の範囲1記載の燃料噴射弁。
(2) The fuel injection valve according to claim 1, characterized in that a drive circuit for driving the coil portion is arranged on a supply path of fuel to be injected.
JP56141351A 1981-09-07 1981-09-07 Fuel injection valve Pending JPS5844263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141351A JPS5844263A (en) 1981-09-07 1981-09-07 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141351A JPS5844263A (en) 1981-09-07 1981-09-07 Fuel injection valve

Publications (1)

Publication Number Publication Date
JPS5844263A true JPS5844263A (en) 1983-03-15

Family

ID=15289945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141351A Pending JPS5844263A (en) 1981-09-07 1981-09-07 Fuel injection valve

Country Status (1)

Country Link
JP (1) JPS5844263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081584A1 (en) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Fuel injection device
WO2010081582A1 (en) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Fuel injection device
ITBO20110569A1 (en) * 2011-10-05 2013-04-06 Magneti Marelli Spa ELECTROMAGNETIC FUEL INJECTOR WITH MOBILE COIL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081584A1 (en) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Fuel injection device
WO2010081582A1 (en) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Fuel injection device
JP2012515289A (en) * 2009-01-13 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for injecting fuel
JP2012515291A (en) * 2009-01-13 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for injecting fuel
ITBO20110569A1 (en) * 2011-10-05 2013-04-06 Magneti Marelli Spa ELECTROMAGNETIC FUEL INJECTOR WITH MOBILE COIL

Similar Documents

Publication Publication Date Title
JP3107855B2 (en) Magnetic device
US4546339A (en) Pole structure for a polarized electromagnet
US6892971B2 (en) Fuel injection valve
JPS61248402A (en) Electromagnetic controller for switching element
JPH0656140B2 (en) Electromagnetic fuel injection valve
GB1196418A (en) Improvements relating to Electro-Magnetic Devices
WO1990007636A1 (en) Electromagnetic valve actuator
US6046900A (en) Solenoid driver circuit for use with digital magnetic latching valves
JPS61261655A (en) Electromagnetic type fuel injection valve
JPS61247006A (en) Electromagnetic controller for switching element
JPS5844263A (en) Fuel injection valve
US5982605A (en) Solenoid driver circuit for use with digital magnetic latching solenoids
US6655328B2 (en) Method for controlling an electromagnetic valve drive by changing the current direction when supplying the electromagnets with current
US4722482A (en) Electro-magnetic injection valve having enhanced valve-opening forces
JPH08326620A (en) Electromagnetic fuel injection valve for internal combustion engine
US7111595B2 (en) Electromechanical valve control actuator for internal combustion engines
JPS5918845B2 (en) How to drive an electromagnet
JPS6488524A (en) Electromagnetic actuator for driving shutter
JPS63201366A (en) Electromagnetically-operated fuel injection device
JP3175241B2 (en) Electromagnetic drive valve for intake and exhaust of engine
US4516184A (en) Circuit device for driving electromagnetically movable unit at high speed with single power source
JPS62276242A (en) Method of controlling injection valve
JPS6380038A (en) Solenoid valve drive circuit
JPH0220823B2 (en)
JP3216223B2 (en) Electromagnetically driven valves for internal combustion engines