JPS5843902B2 - Method for measuring resistivity of semiconductor silicon single crystal - Google Patents

Method for measuring resistivity of semiconductor silicon single crystal

Info

Publication number
JPS5843902B2
JPS5843902B2 JP12296977A JP12296977A JPS5843902B2 JP S5843902 B2 JPS5843902 B2 JP S5843902B2 JP 12296977 A JP12296977 A JP 12296977A JP 12296977 A JP12296977 A JP 12296977A JP S5843902 B2 JPS5843902 B2 JP S5843902B2
Authority
JP
Japan
Prior art keywords
resistivity
silicon single
single crystal
vapor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12296977A
Other languages
Japanese (ja)
Other versions
JPS5456763A (en
Inventor
俊彦 鮎沢
実 横沢
直之 狩野
蓮一 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
NEC Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd, Nippon Electric Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP12296977A priority Critical patent/JPS5843902B2/en
Publication of JPS5456763A publication Critical patent/JPS5456763A/en
Publication of JPS5843902B2 publication Critical patent/JPS5843902B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は半導体シリコン単結晶の抵抗率を測定する3法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to three methods for measuring the resistivity of semiconductor silicon single crystals.

一般に半導体シリコン単結晶の特性である抵抗率は四探
針測定法や拡がり抵抗測定法等によって測定され評価さ
れている。
Generally, resistivity, which is a characteristic of semiconductor silicon single crystals, is measured and evaluated by a four-probe measurement method, a spreading resistance measurement method, or the like.

か\る拡がり抵抗測定法によって半導体シリコン単結晶
の抵抗率を測定しようとする場合は、測定するシリコン
単結晶の測定面をケミカルメカニカル研磨するか、化学
研磨して平滑な表面にしてから測定するのが一般的であ
る。
When attempting to measure the resistivity of a semiconductor silicon single crystal using such a spreading resistance measurement method, the measurement surface of the silicon single crystal to be measured should be chemically mechanically polished or chemically polished to make it a smooth surface before measurement. is common.

しかしながら、研磨直後のシリコン単結晶の抵抗率を測
定すると一定した値が得られない。
However, when measuring the resistivity of a silicon single crystal immediately after polishing, a constant value cannot be obtained.

また、シリコン単結晶の抵抗率は相当長時間に亘って変
化するので、シリコン単結晶の安定した抵抗率を測定す
るには、シリコン単結晶の測定面処理後15〜20時間
の開被測定シリコン単結晶を放置した後でなければ測定
出来ないという問題点がある。
In addition, since the resistivity of a silicon single crystal changes over a considerable period of time, in order to measure the stable resistivity of a silicon single crystal, it is necessary to open the silicon for 15 to 20 hours after processing the measurement surface of the silicon single crystal. There is a problem in that measurements can only be made after the single crystal has been left alone.

特にエピタキシャルウェーハにおいては、前記の如き抵
抗率の経時変化が著しく安定した抵抗率の測定が困難で
ある。
Particularly in epitaxial wafers, it is difficult to measure resistivity in a highly stable manner due to the above-mentioned change in resistivity over time.

本発明者等は前記抵抗率の経時変化について研究したと
ころ、エピタキシャルウェーハの場合には気相成長層の
抵抗率および気相成長層の厚さおよび雰囲気によって、
気相成長直後からの抵控率の経時変化の速さや、変化の
割合は異なるが、同一特性を有するエピタキシャルウェ
ーハの気相成長層の抵抗率は最終的には安定したある一
定の値に収斂することを知見した。
The present inventors studied the change in resistivity over time and found that in the case of epitaxial wafers, depending on the resistivity of the vapor growth layer, the thickness of the vapor growth layer, and the atmosphere,
Although the speed and rate of change in resistivity over time immediately after vapor phase growth differs, the resistivity of the vapor phase grown layer of epitaxial wafers with the same characteristics eventually converges to a certain stable value. I found out that.

上記の一例としてS t H4気相戒長法により、直径
5四抵抗率5ΩαのP形シリコン基板上にリンをドープ
したN形シリコン単結晶層を気相成長じたN −PB形
(P形基板)エピタキシャルウェーハを長時間室内に放
置した場合の抵抗率の経時変化を四探針測定法で測定し
た結果を第1図に示した。
As an example of the above, an N-PB type (P-type Figure 1 shows the results of measuring the change in resistivity over time using the four-probe measurement method when the epitaxial wafer (substrate) was left indoors for a long time.

第1図に示したA曲線は気相成長層の抵抗率(ρ)10
.9Ωの、気相成長層の厚さくt)7.0μm、気相成
長層のシート抵抗(Rs)16000Ωのエピタキシャ
ルウェハについてのものであり、8曲線は気相成長層の
抵抗率(ρ)4.3Ω虜、気相成長層の厚さくt) 5
.3μ虱気相戒長層のシート抵抗(Rs)8100Ωの
エピタキシャルウェーハについてのものであり、C曲線
は気相成長層の抵抗率(p)0.96Ωα、気相成長層
の厚さくt)7.2μm、気相成長層のシート抵抗(R
s)1340Ωのエピタキシャルウェーハについてのも
のであり、9曲線は気相成長層の抵抗率(ρ)0.46
Ωα、気相成長層の厚さくt) 7.0μm、気相成長
層のシート抵抗(Rs) 657Ωのエピタキシャルウ
ェーハについてのものである。
Curve A shown in Figure 1 shows the resistivity (ρ) of the vapor-phase grown layer: 10
.. The curve 8 is for an epitaxial wafer with a vapor growth layer thickness (t) of 7.0 μm and a vapor growth layer sheet resistance (Rs) of 16000Ω. .3Ω, thickness of vapor growth layer t) 5
.. The curve C is for an epitaxial wafer with a sheet resistance (Rs) of 8100 Ω for a vapor-phase growth layer of 3μ, and a resistivity (p) of the vapor-phase growth layer (p) of 0.96Ωα, and a thickness of the vapor-phase growth layer (t) 7. .2 μm, sheet resistance (R
s) For an epitaxial wafer of 1340 Ω, the 9th curve has a resistivity (ρ) of the vapor grown layer of 0.46.
Ωα, the thickness (t) of the vapor-phase grown layer is 7.0 μm, and the sheet resistance (Rs) of the vapor-phase grown layer is 657Ω.

第2図には気相成長層の抵抗率(ρ)をパラメーターに
した時の気相成長層の厚さく1)に対する気相成長層の
シート抵抗(Rs)の経時変化率%を示し、A曲線は気
相成長層の抵抗率(ρ)13Ω侃、8曲線は気相成長層
の抵抗率(ρ)5Ω礪、C曲線は気相成長層の抵抗率(
J))1Ω備、9曲線は気相成長層の抵抗率(ρ)0.
5Ωのの各エピタキシャルウェーハについてのものであ
る。
Figure 2 shows the rate of change over time in the sheet resistance (Rs) of the vapor grown layer with respect to the thickness 1) of the vapor grown layer when the resistivity (ρ) of the vapor grown layer is used as a parameter, and A Curve 8 shows the resistivity of the vapor grown layer (ρ) 13Ω, curve 8 shows the resistivity of the vapor grown layer (ρ) 5Ω, and curve C shows the resistivity of the vapor grown layer (ρ) 5Ω.
J)) 1Ω, and the 9th curve is the resistivity (ρ) of the vapor growth layer of 0.
5Ω for each epitaxial wafer.

第5図には、気相成長層の厚さく1)をパラメーターに
した時の気相成長層の抵抗率(ρ)に対する気相成長層
のシート抵抗(Rs)の経時変化率%を示し、A曲線は
気相成長層の厚さくt)3μm、 8曲線は気相成長層
の厚さくt)5μms C曲線は気相成長層の厚さくt
)7μm、 9曲線は気相成長層の厚さく1)10μm
、 E曲線は気相成長層の厚さくt)15μmの各エピ
タキシャルウェーハについてのものである。
FIG. 5 shows the rate of change over time in the sheet resistance (Rs) of the vapor grown layer with respect to the resistivity (ρ) of the vapor grown layer when the thickness 1) of the vapor grown layer is used as a parameter. Curve A is the thickness of the vapor growth layer t) 3 μm, Curve 8 is the thickness of the vapor growth layer t) 5 μms Curve C is the thickness of the vapor growth layer t)
) 7 μm, 9 curve is the thickness of the vapor growth layer 1) 10 μm
, E curves are for each epitaxial wafer with a vapor growth layer thickness t) of 15 μm.

以上、N形シリコン単結晶の一例としてN+PB形エピ
タキシャルウェーハにおける抵抗率の経時変化について
説明したが、P形シリコン単結晶の一例であるP −N
B形(N形基板)エピタキシャルウェーハの場合も、そ
の抵抗率が経時変化する。
Above, we have explained the change in resistivity over time in an N+PB type epitaxial wafer as an example of an N type silicon single crystal.
In the case of B-type (N-type substrate) epitaxial wafers, the resistivity also changes over time.

か5るP −NB形エビクキシャルウエーハにおける抵
抗率の経時変化は、N −PB形エピタキシャルウェー
ハにおける抵抗率の経時変化が気相成長直後の抵抗率よ
り上昇するのに対し、気相成長直後の抵抗率より低下す
る方向に変化し、しかも、N −PB形の同じ抵抗率
の場合に比べその変化率は小さいという特性を有してい
る。
The change in resistivity over time in the P-NB type epitaxial wafer is higher than that in the N-PB type epitaxial wafer, whereas the change in resistivity over time in the P-NB type epitaxial wafer is higher than that immediately after vapor phase growth. It has a characteristic that the resistivity changes in a direction lower than that of the resistivity of the N-PB type, and the rate of change is smaller than that of the N-PB type with the same resistivity.

しかしながらP −NB形エピタキシャルウェーハにお
ける抵抗率の経時変化もN −PB形エピタキシャル
ウェーハの場合と同様に同一特性を有するエピタキシャ
ルウェーハの抵抗率も最終的には安定したある一定の値
に収斂する(図示省略)。
However, just as in the case of N-PB epitaxial wafers, the resistivity of P-NB type epitaxial wafers changes over time, and the resistivity of epitaxial wafers with the same characteristics eventually converges to a certain stable value (as shown in the figure). omission).

上記のような抵抗率の経時変化を有するエピタキシャル
ウェーハの抵抗率を測定する場合には、各種エピタキシ
ャルウェーハの特性、放置する雰囲気による経時変化の
過程を良く掌握した上で長時間の間装置した後でなけれ
ば抵抗率の測定が容易に行なえず、また測定精度等も問
題となっていた。
When measuring the resistivity of epitaxial wafers whose resistivity changes over time as described above, it is important to have a good understanding of the characteristics of each type of epitaxial wafer and the process of change over time due to the atmosphere in which it is left, and then measure the Otherwise, the resistivity could not be easily measured, and measurement accuracy also became a problem.

本発明は上記問題点を解消し、短時間にしかも再現性良
く被測定シリコン単結晶の特性に対応した直に抵抗率を
安定化させる(以下、これをAgeingという)べく
種々実験研究を行った結果、被測定シリコン単結晶の測
定面を酸化性水溶液または酸化性雰囲気で処理すること
により、抵抗率を短時間で安定化出来ることを知見した
ことによってなされたものである。
The present invention solves the above problems, and conducted various experimental studies to directly stabilize the resistivity (hereinafter referred to as aging) in a short time and with good reproducibility in accordance with the characteristics of the silicon single crystal to be measured. This was based on the discovery that the resistivity could be stabilized in a short time by treating the measurement surface of the silicon single crystal to be measured with an oxidizing aqueous solution or an oxidizing atmosphere.

本発明は、ケミカルメカニカル研磨、エツチング処理さ
れたシリコン単結晶あるいは気相成長した直後のエピタ
キシャルウェーハまたは経時変化途中の前記単結晶を酸
化性水溶液中または酸化性水溶液で短時間(約1時間以
内)処理することにより、被測定面の抵抗率を安定化さ
せるAgeing処理を行なった後に、拡がり抵抗法ま
たは四探針測定法で抵抗率を測定しようとするものであ
る。
In the present invention, a silicon single crystal that has been subjected to chemical mechanical polishing or etching, or an epitaxial wafer that has just been vapor-phase grown, or the single crystal that is undergoing aging, is heated in an oxidizing aqueous solution or in an oxidizing aqueous solution for a short time (within about 1 hour). After performing an aging process to stabilize the resistivity of the surface to be measured, the resistivity is measured by the spreading resistance method or the four-probe measurement method.

本発明に使用する酸化性水溶液には、なるべく高純度の
品質が得られ易いH2O(脱イオン水)。
The oxidizing aqueous solution used in the present invention is H2O (deionized water), which can easily obtain high purity quality.

HNO3,H2O2,H2SO4+H20,Na2Cr
20□等の水溶液が使用可能である。
HNO3, H2O2, H2SO4+H20, Na2Cr
An aqueous solution such as 20□ can be used.

特には容易に高純度な品質が得られるH2O(脱イオン
水)が有利であり、作業性、廃液の処理(公害対策)等
の面でも有利である。
In particular, H2O (deionized water) is advantageous because it can easily obtain high-purity quality, and it is also advantageous in terms of workability, waste liquid treatment (pollution control), etc.

酸化性水溶液中でシリコン単結晶を処理するに際して、
H2O,HNO3,H2O2゜H2SO4+H20水溶
液を使用した場合は煮沸処理をし、Na2 Cr2 o
7水溶液を使用した場合は、常温(20〜25℃)処理
となる。
When processing silicon single crystals in an oxidizing aqueous solution,
H2O, HNO3, H2O2゜When using H2SO4+H20 aqueous solution, boil it and remove Na2Cr2o
7 When an aqueous solution is used, the treatment is performed at room temperature (20 to 25°C).

また、本発明に使用する酸化性雰囲気はなるべく高純度
の品質が得られ易いHNO3,H2O2等の水溶液を加
熱沸騰させた時に出てくる蒸気およびオゾンが使用可能
である。
Further, as the oxidizing atmosphere used in the present invention, the steam and ozone released when an aqueous solution of HNO3, H2O2, etc. is heated to boiling can be used, since it is easy to obtain as high a purity as possible.

次いで本発明の一実施態様を用いて本発明の詳細な説明
する。
Next, the present invention will be explained in detail using one embodiment of the present invention.

実施例 1 直径501n11LのP形シリコン基板上に、N形の各
種抵抗率および厚さの気相成長層をS iH4気相戊長
法で、それぞれ同一条件で各2枚つつのN+P形エピク
キシャルウエーハを製作し、それぞれの各1枚のエピタ
キシャルウェーハを室内に長時間(5〜40日間)放置
して経時変化が終了した時のシート抵抗と、他の各1枚
のエピタキシャルウェーハを5〜10分間H20(脱イ
オン水)で煮沸処理(Ageing処理)を行なった直
後のシト抵抗とを四探針測定法で測定した結果を第1表
に示した。
Example 1 On a P-type silicon substrate with a diameter of 501n11L, N-type vapor-phase growth layers of various resistivities and thicknesses were formed using the SiH4 vapor-phase elongation method, and two N+P-type epitaxial layers were formed under the same conditions. The sheet resistance of each epitaxial wafer was left indoors for a long time (5 to 40 days) and the sheet resistance when the aging process was completed, and that of each other epitaxial wafer was calculated from 5 to 40 days. Table 1 shows the results of measuring the cytoresistance using the four-probe measurement method immediately after boiling (aging) with H20 (deionized water) for 10 minutes.

第1表に示した如くエピタキシャルウェーハを室内に長
時間放置した時のシート抵抗とAgeing処理後のエ
ピタキシャルウェーハのシート抵抗とは測定誤差範囲内
で一致した。
As shown in Table 1, the sheet resistance when the epitaxial wafer was left indoors for a long time and the sheet resistance of the epitaxial wafer after the aging process matched within the measurement error range.

Ageing処理した各1枚のエピタキシャルウェーハ
を数10日間室内に放置してもシート抵抗の経時変化は
第2表に示す如くほとんど変化しないことが確認された
It was confirmed that even if each aging-treated epitaxial wafer was left indoors for several tens of days, there was almost no change in sheet resistance over time as shown in Table 2.

本実施例の如くH2O(脱イオン水)によるAgein
g処理は、エピタキシャルウェーハのシート抵抗の低い
ものは、約1分間以上の煮沸処理ではゾ安定した変化率
を示したが、シート抵抗が高くなると5分〜10分間の
煮沸処理で変化率の最大を示し、5分〜10分間の前後
では幾分変化率が低くなる傾向が見られた。
Agein using H2O (deionized water) as in this example.
In g treatment, epitaxial wafers with low sheet resistance showed a very stable rate of change when boiled for about 1 minute or more, but when the sheet resistance was high, the rate of change reached its maximum after boiling for 5 to 10 minutes. , and there was a tendency for the rate of change to become somewhat lower around 5 to 10 minutes.

実施例 2 直径50間のP形シリコン基板上に、N形の各種抵抗率
および厚さの気相成長層をSiH4気相成長法で、それ
ぞれ同一条件で各2枚づつのN+−PB形エピタキシャ
ルウェーハを製作シ、ツレぞれの各1枚のエピタキシャ
ルウェーハを室内に数10日間放置して経時変化が終了
した時のシート抵抗と、他の各1枚のエピタキシャルウ
ェーハ**を濃1i50%のHF溶液中に約5分間浸漬
して抵抗率を回復させた後(本処理によって抵抗率にほ
ぼ気相成長直後の値に回復する)、温度約23℃濃度1
0%のNa2Cr2O7水溶液中で約5分間処理した後
のシート抵抗とを四探針測定法で測定した結果を第3表
に示した。
Example 2 On a P-type silicon substrate with a diameter of 50 mm, two N+-PB type epitaxial layers were grown using the SiH4 vapor phase growth method with various resistivities and thicknesses under the same conditions. The sheet resistance of each epitaxial wafer after fabrication and cracking was left indoors for several 10 days and the aging change was completed, and the sheet resistance of each other epitaxial wafer** was calculated using a concentration of 1i50%. After recovering the resistivity by immersing it in the HF solution for about 5 minutes (this treatment restores the resistivity to almost the value immediately after vapor phase growth), the temperature was about 23°C and the concentration was 1.
Table 3 shows the sheet resistance measured by the four-probe measurement method after being treated in a 0% Na2Cr2O7 aqueous solution for about 5 minutes.

第3表に示した如くエピタキシャルウェーハを室内に長
時間放置した時のシート抵抗とN a 2 Cr 20
7水溶液によるAgeing処理後のエピタキシャルウ
ェーハのシト抵抗とは測定誤差範囲内で一致した。
As shown in Table 3, the sheet resistance and N a 2 Cr 20 when the epitaxial wafer is left indoors for a long time
7. The sheet resistance of the epitaxial wafer after the aging process using an aqueous solution was consistent within the measurement error range.

また、実施例1と同様に本実施例でAgeing処理し
た各1枚のエピタキシャルウェーハを数10日間室内に
放置してもシート抵抗の経時変化は第4表に示す如くほ
とんど変化しないことが確認された。
Furthermore, as in Example 1, it was confirmed that even if each epitaxial wafer subjected to the aging process in this example was left indoors for several tens of days, the sheet resistance changed over time almost unchanged as shown in Table 4. Ta.

本実施例の如きNa2Cr2O7水溶液によるAge
ing処理は、Na2Cr2O7の濃度、Na2Cr2
O7の水溶液の温度、処理時間等の条件によって多少シ
ート抵抗の変化率に差が見られるのでNa 2 Cr
207の濃度を5〜30%、Na2Cr2O7の水溶液
の温度を20〜25℃、処理時間を約60分以内の各範
囲内で処理するのが好ましい。
Age using Na2Cr2O7 aqueous solution as in this example
In the ing treatment, the concentration of Na2Cr2O7, Na2Cr2
Since there are some differences in the rate of change in sheet resistance depending on conditions such as the temperature of the O7 aqueous solution and treatment time, Na 2 Cr
Preferably, the concentration of 207 is 5 to 30%, the temperature of the Na2Cr2O7 aqueous solution is 20 to 25 DEG C., and the treatment time is within about 60 minutes.

実施例 3 酸化性雰囲気における処理効果を調べるためにクリーン
ベンチ内に水銀灯を設置し、該クリーンベンチ内に実施
例1と同じ試料を置いたところ、水溶液の場合に比べて
約3倍の時間を要したがAgeing効果は認められた
Example 3 In order to investigate the treatment effect in an oxidizing atmosphere, a mercury lamp was installed in a clean bench, and the same sample as in Example 1 was placed in the clean bench. However, the aging effect was observed.

また、デシケーク内に温過酸化水素または温硝酸と実施
例1と同じ試料を入れた実験においても上記実施例と同
様のAgeing効果が認められた。
Furthermore, in an experiment in which warm hydrogen peroxide or warm nitric acid and the same sample as in Example 1 were placed in a desicake, the same aging effect as in the above example was observed.

上記各実施例ではN形シリコン単結晶の抵抗率をAge
ing処理した後測定することについて説明したが、P
形シリコン単結晶の抵抗率の測定についても同様の結果
が得られることを確認した。
In each of the above embodiments, the resistivity of the N-type silicon single crystal is
Although we have explained that the measurement is performed after the P ing process,
It was confirmed that similar results were obtained when measuring the resistivity of silicon single crystals.

以上、詳述したとおり、Ageing処理を施したシリ
コン単結晶について測定したシート抵抗は、気相成長直
後、ケミカルメカニカル研磨直後に測定した真の抵抗率
とは異なるが、被測定シリコン単結晶の仕様に従ったあ
る一定の値に安定化することが出来るので適切なる補正
を行なうことにより充分実用化に供するものである。
As detailed above, the sheet resistance measured for a silicon single crystal subjected to aging treatment is different from the true resistivity measured immediately after vapor phase growth or chemical mechanical polishing, but it is different from the true resistivity measured immediately after chemical mechanical polishing. Since it can be stabilized to a certain value according to , it can be put to practical use by making appropriate corrections.

本発明法によれば短時間のAgeing処理により被測
定シリコン単結晶に安定した表面状態を形成出来るので
、高純度シリコン単結晶の抵抗率を短時間にしかも再現
性良く容易に測定出来るという効果がある。
According to the method of the present invention, a stable surface state can be formed on the silicon single crystal to be measured through a short-time aging process, so the resistivity of a high-purity silicon single crystal can be easily measured in a short time with good reproducibility. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種N−PB形エピタキシャルウェーハの気相
成長層の抵抗率の経時変化をシート抵抗の変化率で示し
たグラフで、第2図は各種N+PB形エビクキシャルウ
エーハの気相成長層の抵抗率をパラメーターにした時の
気相成長厚さに対するシート抵抗の経時変化率を示した
グラフで、第3図は各種N−PB形エビクキシャルウエ
ーハの気相成長層の厚さをパラメーターにした時の気5
相成長層の抵抗率に対するシート抵抗の経時変化率を示
したグラフである。
Figure 1 is a graph showing the change over time in the resistivity of the vapor-grown layer of various N-PB type epitaxial wafers in terms of the rate of change in sheet resistance, and Figure 2 is a graph showing the vapor-grown layer of various N+PB type epitaxial wafers. This is a graph showing the rate of change in sheet resistance over time with respect to the vapor growth thickness when the resistivity of various types of N-PB type eviaxial wafers is used as a parameter. 5.
It is a graph showing the rate of change in sheet resistance over time with respect to the resistivity of a phase growth layer.

Claims (1)

【特許請求の範囲】 1 高純変シリコン単結晶の抵抗率を測定するに際し、
測定するシリコン単結晶の表面を不活性化した後、該シ
リコン単結晶の抵抗率を測定することを特徴とする半導
体シリコン単結晶の抵抗率測定力法。 2 測定するシリコン単結晶の表面を酸化性水溶液又は
酸化性雰囲気中で不活性化処理する特許請求の範囲第1
項記載の半導体シリコン単結晶の抵抗率測定力法。 3 測定するシリコン単結晶の表面をH2O(脱イオン
水)、H2O2,H2SO4+H20の各水溶液で煮沸
するか又はNa2Cr2O7の水溶液で処理する特許請
求の範囲第1項記載の半導体シリコン単結晶の抵抗率測
定力法。 4 測定するシリコン単結晶の表面をHNO3゜H2O
2の各蒸気雰囲気中かオゾン(03)雰囲気中で処理す
る特許請求の範囲第1項記載の半導体シリコン単結晶の
抵抗率測定力法。
[Claims] 1. When measuring the resistivity of a high-purity modified silicon single crystal,
A force method for measuring the resistivity of a semiconductor silicon single crystal, characterized in that the resistivity of the silicon single crystal to be measured is measured after the surface of the silicon single crystal to be measured is inactivated. 2 Claim 1 in which the surface of the silicon single crystal to be measured is inactivated in an oxidizing aqueous solution or an oxidizing atmosphere
Force method for measuring resistivity of semiconductor silicon single crystals as described in Section 1. 3. Resistivity measurement of a semiconductor silicon single crystal according to claim 1, in which the surface of the silicon single crystal to be measured is boiled with an aqueous solution of H2O (deionized water), H2O2, H2SO4 + H20, or treated with an aqueous solution of Na2Cr2O7. force law. 4. Cover the surface of the silicon single crystal to be measured with HNO3°H2O.
2. A method for measuring the resistivity of a semiconductor silicon single crystal according to claim 1, wherein the method is carried out in an ozone (03) atmosphere or in an ozone (03) atmosphere.
JP12296977A 1977-10-15 1977-10-15 Method for measuring resistivity of semiconductor silicon single crystal Expired JPS5843902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12296977A JPS5843902B2 (en) 1977-10-15 1977-10-15 Method for measuring resistivity of semiconductor silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12296977A JPS5843902B2 (en) 1977-10-15 1977-10-15 Method for measuring resistivity of semiconductor silicon single crystal

Publications (2)

Publication Number Publication Date
JPS5456763A JPS5456763A (en) 1979-05-08
JPS5843902B2 true JPS5843902B2 (en) 1983-09-29

Family

ID=14849074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12296977A Expired JPS5843902B2 (en) 1977-10-15 1977-10-15 Method for measuring resistivity of semiconductor silicon single crystal

Country Status (1)

Country Link
JP (1) JPS5843902B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953263B2 (en) * 1993-07-16 1999-09-27 信越半導体株式会社 Method for measuring resistivity of n-type silicon epitaxial layer
CN101806837B (en) * 2010-04-14 2012-06-20 高佳太阳能股份有限公司 Method for carrying out testing and grading on resistivity of semiconductor heavily-doped silicon slice

Also Published As

Publication number Publication date
JPS5456763A (en) 1979-05-08

Similar Documents

Publication Publication Date Title
JP7172747B2 (en) Method for measuring resistivity of silicon single crystal
US2948642A (en) Surface treatment of silicon devices
DE1913718C2 (en) Method for manufacturing a semiconductor component
Dumin et al. Autodoping of silicon films grown epitaxially on sapphire
JPS5843902B2 (en) Method for measuring resistivity of semiconductor silicon single crystal
Handelman et al. Epitaxial growth of silicon by vacuum sublimation
US4507334A (en) Surface preparation for determining diffusion length by the surface photovoltage method
JPH0766195A (en) Deposition of oxide on surface of silicon wafer
JPS61182216A (en) Bonding method of semiconductor device
JPS598056B2 (en) Phosphorus diffusion method for semiconductors
US2844460A (en) Method of purifying germanium
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JPS647338B2 (en)
JPS59162200A (en) Cleaning of surface of silicon substrate
JPS62139335A (en) Surface cleaning process
JPH03109778A (en) Semiconductor device and manufacture thereof
JPS5947738A (en) Measurement of diffusion layer
JPH084085B2 (en) Method for electrolytic etching of semiconductor
JPS56124233A (en) Method for formation of platinum silicic layer
JPS6210018B2 (en)
JPS60147123A (en) Manufacture of semiconductor device
JPH07230975A (en) Method of cleaning semiconductor substrate
Rollin et al. The Current Noise Spectrum of Copper-doped Germanium at 20° K
JPS62272521A (en) Manufacture of semiconductor device
JP2003017424A (en) Method of manufacturing diffusion wafer