JPS5843882B2 - electromagnet device - Google Patents

electromagnet device

Info

Publication number
JPS5843882B2
JPS5843882B2 JP51132902A JP13290276A JPS5843882B2 JP S5843882 B2 JPS5843882 B2 JP S5843882B2 JP 51132902 A JP51132902 A JP 51132902A JP 13290276 A JP13290276 A JP 13290276A JP S5843882 B2 JPS5843882 B2 JP S5843882B2
Authority
JP
Japan
Prior art keywords
armature
iron core
magnetic pole
tip
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51132902A
Other languages
Japanese (ja)
Other versions
JPS5357464A (en
Inventor
正次 山内
隆 棚橋
滋 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51132902A priority Critical patent/JPS5843882B2/en
Publication of JPS5357464A publication Critical patent/JPS5357464A/en
Publication of JPS5843882B2 publication Critical patent/JPS5843882B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Impact Printers (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 本発明は励磁コイル、鉄心、継鉄、接極子からなる、い
わゆる支点型電磁石装置に係り、励磁コイルの電流に応
じて接極子が比例的に動作することを可能にした新しい
磁極の形状に関する。
[Detailed Description of the Invention] The present invention relates to a so-called fulcrum type electromagnet device consisting of an excitation coil, an iron core, a yoke, and an armature, which enables the armature to operate proportionally in accordance with the current of the excitation coil. Regarding the new magnetic pole shape.

第1図は従来例の最も基本的な支点型電磁石装置で、励
磁コイルに電流を流していない状態を示す。
FIG. 1 shows the most basic conventional fulcrum type electromagnet device, with no current flowing through the excitation coil.

1は鉄心、2は励磁コイル、3は継鉄、4は接極子、5
は復帰ばね、6はスペーサである。
1 is the iron core, 2 is the excitation coil, 3 is the yoke, 4 is the armature, 5
is a return spring, and 6 is a spacer.

この電磁石装置は継電器等に多く用いられているが、そ
の動作は周知の通り励磁コイルの電流をon−offす
ることにより接極子が瞬時に開閉するものである。
This electromagnetic device is often used in electrical relays and the like, and its operation, as is well known, is to instantaneously open and close an armature by turning on and off the current in an exciting coil.

第2図にその静吸引力特性、すなわち所定の一定電流を
励磁コイルに流した状態でのストロークと吸引力の関係
を示す。
FIG. 2 shows the static attractive force characteristics, that is, the relationship between the stroke and the attractive force when a predetermined constant current is passed through the exciting coil.

この基本的な電磁石装置に対して過去にいくつかの改良
も試みられている。
Several improvements to this basic electromagnetic device have also been attempted in the past.

例えば実公昭421337号公報には基本型がスl−ロ
ーク犬なる位置、したがって動作開始位置における吸引
力が小さいとして、この欠点を補なうために第3図に示
すように鉄心1と接極子4にそれぞれ段部AとBを形成
することにより第4図に示す静特性が得られるとしてい
る。
For example, in Japanese Utility Model Publication No. 421337, the basic model is in the l-loak dog position, and therefore the suction force at the operation start position is small. It is said that the static characteristics shown in FIG. 4 can be obtained by forming stepped portions A and B in each of the electrodes.

そして動作開始位置における吸引力が大きく動作速度が
迅速であり、且つ動作完了位置近くでの吸引力も十分大
きいとしている。
The suction force at the operation start position is large and the operation speed is rapid, and the suction force near the operation completion position is also sufficiently large.

いずれにしても接極子が瞬時に開閉するものであり、改
良例ではむしろ動作の迅速化を実現するものといえる。
In any case, the armature opens and closes instantaneously, and the improved example can be said to speed up the operation.

本発明の主たる目的は、従来例が瞬時に接極子を開閉す
るものであったのに対し、励磁コイルの電流値に追従し
て連続的、可逆的に接極子が動作し、且つ実用上必要な
ストロークと力が得られる構造が簡単で安価な電磁石装
置を提供しようとするものである。
The main purpose of the present invention is to enable the armature to operate continuously and reversibly in accordance with the current value of the excitation coil, whereas the conventional example opens and closes the armature instantaneously. The purpose of the present invention is to provide an electromagnetic device with a simple structure and low cost that can provide a suitable stroke and force.

次に従来例の構造と特性では本発明の目的とする励磁コ
イルの電流に比例した接極子の動きが得られないことを
説明する。
Next, it will be explained that with the structure and characteristics of the conventional example, the movement of the armature proportional to the current of the excitation coil, which is the object of the present invention, cannot be obtained.

第5図は第1図に示した基本的な支点型電磁石装置の特
性を実測したものである。
FIG. 5 shows actual measurements of the characteristics of the basic fulcrum type electromagnet device shown in FIG.

励磁コイルは4250ターン、スペーサ6の厚みは2r
rrrnである。
The excitation coil is 4250 turns, and the thickness of spacer 6 is 2r.
It's rrrn.

したがってストロークOの点は鉄心1の端面と接極子4
との間に2rranの磁気的空隙がある。
Therefore, the point of stroke O is the end face of iron core 1 and armature 4.
There is a magnetic gap of 2rran between the two.

第5図中実線は電磁石の静吸引特性で電流値を100m
Aから160mAまで示す。
The solid line in Figure 5 shows the static attraction characteristics of the electromagnet, and the current value is 100m.
Shown from A to 160mA.

破線は復帰ばねの特性でばね定数は50 ff /rt
vnである。
The broken line is the characteristic of the return spring, and the spring constant is 50 ff/rt.
It is vn.

Poは初荷重で励磁コイルに電流を流していない時の接
極子を反吸引力方向に作用している力である。
Po is the force acting on the armature in the direction of the anti-attractive force when no current is flowing through the excitation coil at the initial load.

Poの値は例えば電磁石装置を電磁弁として用いる場合
は弁閉止状態での弁閉止圧として必要な値で応用する機
器によって異なるが、ここでは1002とした。
For example, when an electromagnet device is used as a solenoid valve, the value of Po is a value required as the valve closing pressure in the valve closed state, and varies depending on the equipment to which it is applied, but here it is set to 1002.

第5図において励磁コイルの電流を徐々に増加してゆく
と、破線で示すばねの力がPoと交わる点aの電流すな
わち140mA弱の電流で接極子は動きはじめる。
In FIG. 5, when the current in the excitation coil is gradually increased, the armature starts to move at a current at a point a where the spring force shown by the broken line intersects Po, that is, a current of a little less than 140 mA.

しかしながら電流値が140mAの実線とばね特性を示
す破線は点すで接しており、電流値が少しでも140m
Aを越えると吸引力とばねの力のつり合点を失い接極子
はストロ−70点まで瞬時に移動してしまう。
However, the solid line with a current value of 140 mA and the broken line indicating the spring characteristics are already touching, and even if the current value is 140 mA,
If the point A is exceeded, the balance point between the attractive force and the spring force is lost, and the armature instantly moves to the stroke 70 point.

グラフ上点aとbは少し離れており若干のストロークは
利用できるかに見えるが140mAの線と極めて接近し
ており不安定で実用上利用できるものではない。
Points a and b on the graph are a little apart, and it seems that some strokes can be used, but they are extremely close to the 140 mA line, making it unstable and not practical.

たとえ140mAを越えない120mAの励磁コイル電
流の場合においても、接極子4はストローク3.6調の
あたりに位置して安定しているかに見えるが、接極子4
に振動衝撃などの外力が作用すると、コイル電流は12
0mAに固定したままでも、接極子4はストローク0.
5sn付近の位置に移動してしまうような非常に不安定
な、いわゆる非安定点を有している。
Even in the case of an excitation coil current of 120 mA that does not exceed 140 mA, the armature 4 appears to be stable at around the stroke 3.6, but the armature 4
When an external force such as a vibration shock is applied to the coil, the coil current increases to 12
Even if it remains fixed at 0mA, the armature 4 has a stroke of 0.
It has a very unstable so-called unstable point where it moves to a position near 5sn.

要するに従来例の構造では静吸引力特性が略ストローク
の2乗に反比例する特性であるため励磁コイルの電流に
比例した接極子の動きを得ることは実用上困難であるこ
とがわかる。
In short, it can be seen that in the conventional structure, since the static attraction force characteristic is inversely proportional to the square of the stroke, it is practically difficult to obtain movement of the armature proportional to the current of the excitation coil.

本発明はこのような従来品C解析に加え鉄心の磁極部の
形状検討を経て、接極子が比例的動作をするのに理想的
な静吸引特性を得たことに基づく。
The present invention is based on the fact that, in addition to such conventional product C analysis, the shape of the magnetic pole portion of the iron core was examined to obtain ideal static attraction characteristics for proportional operation of the armature.

第6図は本発明の実施例で、励磁コイルに電流を流して
いない状態を示す。
FIG. 6 shows an embodiment of the present invention in which no current is flowing through the excitation coil.

1′は鉄心、2は励磁コイル、3′は継鉄でその一端は
鉄心1′に締結され他端はナイフェツジで接極子4′を
支点支持している。
1' is an iron core, 2 is an excitation coil, and 3' is a yoke, one end of which is fastened to the iron core 1', and the other end is a knife that supports the armature 4' as a fulcrum.

5′は復帰はねで接極子4′に固定されたばね掛具6′
と、継鉄3′から出た爪に止められた調節ねじIに掛I
Lされている。
5' is a spring hook 6' fixed to the armature 4' with a return spring.
and hook it onto the adjustment screw I which is secured by the claw protruding from the yoke 3'.
It is L.

8,9は鉄心1′に固定されたスi・ソバである。8 and 9 are sui-soba fixed to the iron core 1'.

この構成で重要な点は鉄心1′の磁極部と接極子4′の
先端との関係位置である。
An important point in this configuration is the relative position between the magnetic pole portion of the iron core 1' and the tip of the armature 4'.

第1図はこの部分の説明図で、接極子4′がストッパ9
に当った状態すなわち動作開始位置を示す。
Figure 1 is an explanatory diagram of this part, where the armature 4' is connected to the stopper 9.
Indicates the state in which the object is hit, that is, the operation start position.

鉄心1′の端部には接極子4′ に直角な線りにθなる
傾きをもった磁極面Aが形成されている。
At the end of the iron core 1', a magnetic pole face A having an inclination of θ is formed in a line perpendicular to the armature 4'.

接極子4′は励磁コイルの電流をしだいに増加してゆく
と支点Cを中心とした円弧運動をし先端部はRの線を動
き、磁極面Aと接極子4′の先端部Hの間の動作空隙は
しだいに短くなる。
As the current of the excitation coil is gradually increased, the armature 4' moves in an arc around the fulcrum C, and the tip moves along the line R, and the distance between the magnetic pole surface A and the tip H of the armature 4' moves in a circular arc around the fulcrum C. The operating gap becomes gradually shorter.

ここに接極子の回転半径rと磁極面Aの傾きθとは吸引
特性に大きな関係がある6、 第8図に特性を実測した一例を示す。
Here, the radius of rotation r of the armature and the inclination θ of the magnetic pole surface A have a large relationship with the attraction characteristics6. Fig. 8 shows an example of actual measurement of the characteristics.

グラフの表示は先に示した第5図と同じで実線が静吸引
特性、破線がばね特性を示す。
The graph display is the same as that shown in FIG. 5 above, with the solid line representing the static suction characteristic and the broken line representing the spring characteristic.

使用したコイル、ばねは従来例すなわち第5図と同じで
ある。
The coils and springs used are the same as in the conventional example, ie, in FIG.

第7図においてθは約8°、rは約35胴である。In FIG. 7, θ is approximately 8 degrees and r is approximately 35 degrees.

第8図から明白な通り、静吸引力特性は第2図。As is clear from Fig. 8, the static attraction force characteristics are shown in Fig. 2.

第4図、第5図の従来例に比べ、比例的制御に理想的な
全ストロークにわたって平坦で、特にストローク1wn
以上の領域で吸引力の強い特性が得られた。
Compared to the conventional examples shown in Figs. 4 and 5, it is flat over the entire stroke, which is ideal for proportional control, and especially in the stroke 1wn.
Characteristics of strong suction force were obtained in the above areas.

従来例で説明した初期荷重Poを120′?とじても、
コイル電流100mA以下で作動を開始し、ストローク
4rrrrn全域にわたって非安定点のない極めて確実
な動作が得られる。
The initial load Po explained in the conventional example is 120'? Even if it closes,
Operation starts with a coil current of 100 mA or less, and extremely reliable operation with no unstable points can be obtained over the entire stroke of 4rrrrn.

接極子4′が回動し、鉄心磁極面Aと接極子4′の先端
部Bの間の動作空隙すなわち磁気的空隙が次第に狭くな
っていくにもかかわらず、吸引力つまり接極子4′をさ
らに回動させようとする力が急激に増大することなく、
はとんど一定に維持したり、むしろわずかに減少したり
する吸引特性になし得る理由を、第7図をさらに簡略モ
デル化した第9図を用いて説明する。
Even though the armature 4' rotates and the operating gap, that is, the magnetic gap, between the core magnetic pole surface A and the tip B of the armature 4' gradually narrows, the attractive force, that is, the armature 4' Without the sudden increase in the force for further rotation,
The reason why the suction characteristic can be maintained almost constant or even slightly decreased will be explained using FIG. 9, which is a simplified model of FIG. 7.

ストローク0点つまり動作開始位置の接極子4′は実線
で描いた。
The armature 4' at the stroke 0 point, that is, the operation start position, is drawn with a solid line.

この状態で鉄心1′の磁極間Aに垂直な方向の吸引力F
oを生じるコイル電流値■1を通電した時、接極子4′
を支点C中心に回動しようとする分力はf。
In this state, the attractive force F in the direction perpendicular to the magnetic pole distance A of the iron core 1'
When the coil current value ■1 that produces o is energized, the armature 4'
The component of force that tries to rotate around the fulcrum C is f.

となる。つまりこのf。が第8図のグラフ縦軸の吸引力
である。
becomes. In other words, this f. is the attraction force on the vertical axis of the graph in FIG.

同一コイル電流■1 において接極子4′が2点鎖線で
示した位置にある場合、鉄心磁極面Aと接極子4′の先
端部Bとの空隙は短くなり、磁極面Aに垂直な方向の吸
引力はFl と、前記F。
When the armature 4' is at the position shown by the two-dot chain line at the same coil current ■1, the air gap between the core magnetic pole surface A and the tip B of the armature 4' becomes shorter, and the gap in the direction perpendicular to the magnetic pole surface A becomes shorter. The suction force is Fl and the above F.

よりも大きくなる。becomes larger than

しかし接極子4′を回動させる方向の分力f1は前記f
However, the component force f1 in the direction of rotating the armature 4' is the above f
.

とほとんど同じかあるいはやや小さくなる。almost the same or slightly smaller.

これは接極子4′が支点Cを中心に円弧運動をし、先端
部BがRの線上を移動して行くにしたがって、接極子4
′が鉄心磁極面Aに垂直な方向に近づいていくためであ
る。
This is because the armature 4' moves in an arc around the fulcrum C, and as the tip B moves on the line R, the armature 4'
' is approaching in the direction perpendicular to the core magnetic pole face A.

わかりやすくするために接極子4′を破線で示した位置
、すなわち磁極面Aに垂直になる回動位置を例に説明す
ると、磁極面Aと先端部Bとの磁気的空隙は最も小さく
なるため、磁極面Aに垂直方向の吸引力F2は最大とな
る。
To make it easier to understand, let us take as an example the position of the armature 4' indicated by the broken line, that is, the rotational position perpendicular to the magnetic pole surface A. Since the magnetic gap between the magnetic pole surface A and the tip B is the smallest, , the attractive force F2 in the direction perpendicular to the magnetic pole surface A is maximum.

しかしこの時、接極子4′を回動させる方向の分力はな
くなる。
However, at this time, the component force in the direction of rotating the armature 4' disappears.

実使用上はこの位置にいたる手前で動作範囲を規制する
ように第6図や第7図のようにストッパ8を設けている
In actual use, a stopper 8 is provided as shown in FIGS. 6 and 7 to restrict the operating range before reaching this position.

以上のように本発明の電磁石装置によれば、次の効果が
得られる。
As described above, according to the electromagnet device of the present invention, the following effects can be obtained.

すなわち、励磁コイルと、鉄心と、継鉄と、前記継鉄の
一端に支点支持された接極子と、接極子が吸引される方
向に対向して力を付勢する付勢部材からなり、前記鉄心
の吸引作用面には動作開始位置における接極子の先端部
の回転動作円弧接線に対し、前記接極子が鉄心吸引方向
に回動するとき、接極子の先端部と鉄心磁極面との空隙
がわずかずつ狭まる方向とした傾斜面を設け、前記傾斜
した鉄心磁極面と、接極子の先端部との間で主動作空隙
を形成する構成としているので、コイル電流の大きさの
割合に大きくかつ平坦な吸引力特性が得られるように作
用し、広い動作範囲で、効率のよい、コイル電流に応じ
た安定した比例的動作を得ることができる効果がある。
That is, it consists of an excitation coil, an iron core, a yoke, an armature supported on one end of the yoke, and a biasing member that biases a force in a direction in which the armature is attracted. On the attraction surface of the iron core, when the armature rotates in the core suction direction with respect to the rotational arc tangent of the tip of the armature at the operation start position, there is an air gap between the tip of the armature and the magnetic pole surface of the iron core. The structure is such that an inclined surface that narrows little by little is provided, and a main operating gap is formed between the inclined iron core magnetic pole surface and the tip of the armature, which is large and flat in proportion to the magnitude of the coil current. This has the effect of providing a stable proportional operation according to the coil current, which is efficient and has a wide operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁石装置の側面図、第2図はその特性
図、第3図は他の従来例の要部拡大図、第4図はその特
性図、第5図は説明図、第6図は本発明の実施例におけ
る電磁石装置の側面図、第7図はその要部拡大図、第8
図、第9図は説明図である。 1′・・・・・・鉄心、2′・・・・・・励磁コイル、
3′・・・・・・継鉄、4′・・・・・・接触子、A・
・・・・・磁極面。
Fig. 1 is a side view of a conventional electromagnet device, Fig. 2 is its characteristic diagram, Fig. 3 is an enlarged view of main parts of another conventional example, Fig. 4 is its characteristic diagram, Fig. 5 is an explanatory diagram, Figure 6 is a side view of the electromagnet device according to the embodiment of the present invention, Figure 7 is an enlarged view of its main parts, and Figure 8 is an enlarged view of the main parts.
9 are explanatory diagrams. 1'... Iron core, 2'... Exciting coil,
3'... Yoke, 4'... Contact, A.
...Magnetic pole surface.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁コイルと、鉄心と、継鉄と、前記継鉄の一端に
支点支持された接極子と、前記接極子が吸引される方向
に対向して力を付勢する付勢部材からなり、前記鉄心の
吸引作用面には、動作開始位置における接極子の先端部
の回転動作円弧接線に対して傾斜し、かつその傾斜方向
が前記接極子が鉄心吸引方向に回動するとき前記接極子
の先端部と鉄心磁極面との空隙がわずかずつ狭まる方向
とした傾斜面を設け、前記傾斜した鉄心磁極面と、前記
接極子の先端部との間で主動作空隙を形成する構成とし
た電磁石装置。
1 Consists of an excitation coil, an iron core, a yoke, an armature supported on a fulcrum at one end of the yoke, and an urging member that applies a force in a direction in which the armature is attracted, and The suction action surface of the iron core is inclined with respect to the rotation arc tangent of the tip of the armature at the operation start position, and the direction of the inclination is such that the tip of the armature is inclined when the armature rotates in the core suction direction. An electromagnet device having a structure in which a main operating gap is formed between the inclined iron core magnetic pole surface and the tip of the armature by providing an inclined surface in a direction in which a gap between the iron core magnetic pole surface and the iron core magnetic pole surface narrows little by little.
JP51132902A 1976-11-04 1976-11-04 electromagnet device Expired JPS5843882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51132902A JPS5843882B2 (en) 1976-11-04 1976-11-04 electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51132902A JPS5843882B2 (en) 1976-11-04 1976-11-04 electromagnet device

Publications (2)

Publication Number Publication Date
JPS5357464A JPS5357464A (en) 1978-05-24
JPS5843882B2 true JPS5843882B2 (en) 1983-09-29

Family

ID=15092204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51132902A Expired JPS5843882B2 (en) 1976-11-04 1976-11-04 electromagnet device

Country Status (1)

Country Link
JP (1) JPS5843882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254192B2 (en) * 1984-05-28 1990-11-20 Mitsuo Naito

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147658A (en) * 1986-12-11 1988-06-20 Seikosha Co Ltd Printing head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513723Y1 (en) * 1969-02-13 1970-06-11
JPS5223355B2 (en) * 1972-11-20 1977-06-23

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223355U (en) * 1975-08-09 1977-02-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513723Y1 (en) * 1969-02-13 1970-06-11
JPS5223355B2 (en) * 1972-11-20 1977-06-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254192B2 (en) * 1984-05-28 1990-11-20 Mitsuo Naito

Also Published As

Publication number Publication date
JPS5357464A (en) 1978-05-24

Similar Documents

Publication Publication Date Title
JPH0215751B2 (en)
US2289227A (en) Electromagnetic device
JPH01253139A (en) Electromagnetic relay
US4216454A (en) Plunger-type electro-magnetic actuator
JPS5843882B2 (en) electromagnet device
JPS58160684A (en) Operating device for electromagnetic valve
US2928915A (en) Arrangement in polarized relays
US5317294A (en) Electromagnetic relay
JP2505011B2 (en) Electromagnetic device of circuit breaker
US4172241A (en) Electromagnetic actuation device comprising a magnetic holding mechanism, particularly for the actuation of high-speed circuit breakers
US2869048A (en) Electromagnetic device
US3369206A (en) Electromagnetic telephone relay
JPS55148178A (en) Printing hammer
US2897447A (en) Electrical measuring instrument of the iron vane type
JPS5842604B2 (en) electromagnet device
JPS5835903Y2 (en) Current proportional solenoid valve
JPH0117797Y2 (en)
SU548902A2 (en) Magnetic Relay
JPH0641324Y2 (en) Electromagnetic device
JPS5826763B2 (en) contact spring structure
JPH0386549U (en)
JPS5844576Y2 (en) magnetic holding electromagnet
JPH0125176B2 (en)
JPH0343735B2 (en)
GB1156632A (en) Improved Electromagnetic Actuator