JPS5843793B2 - Shiheitouno Jikikenshiyutsu Cairo - Google Patents

Shiheitouno Jikikenshiyutsu Cairo

Info

Publication number
JPS5843793B2
JPS5843793B2 JP50150402A JP15040275A JPS5843793B2 JP S5843793 B2 JPS5843793 B2 JP S5843793B2 JP 50150402 A JP50150402 A JP 50150402A JP 15040275 A JP15040275 A JP 15040275A JP S5843793 B2 JPS5843793 B2 JP S5843793B2
Authority
JP
Japan
Prior art keywords
circuit
output
magnetoresistive elements
constant current
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50150402A
Other languages
Japanese (ja)
Other versions
JPS5273793A (en
Inventor
哲雄 清水
賢 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50150402A priority Critical patent/JPS5843793B2/en
Publication of JPS5273793A publication Critical patent/JPS5273793A/en
Publication of JPS5843793B2 publication Critical patent/JPS5843793B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は紙弊等の磁気検出回路に関するものであり、特
に紙弊等に含有される強磁性体成分を検出する磁気セン
サにおいて、各種ノイズ成分を除去し、S/Nを向上さ
せるための新規な回路装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic detection circuit for paper scraps, etc., and in particular, in a magnetic sensor for detecting ferromagnetic components contained in paper scraps, etc., various noise components are removed and S/ The present invention provides a novel circuit device for improving N.

従来の磁気センサ回路は、第1図に示されているように
(永久磁石または直流電磁石により形成される)、一様
なバイアス磁界中に磁気抵抗素子1.2を接近して配置
し、定電圧電源3に直列に接続されており、強磁性体成
分を含有した紙弊等による磁束分布の変動を磁気抵抗素
子1,2の中間よりコンデンサを介して検出、増幅する
ことにより磁気信号としている。
A conventional magnetic sensor circuit, as shown in FIG. It is connected in series to the voltage power source 3, and detects and amplifies fluctuations in magnetic flux distribution due to paper damage containing a ferromagnetic component through a capacitor between the magnetoresistive elements 1 and 2, thereby generating a magnetic signal. .

このような方式による磁気センサ回路の出力eは、磁気
抵抗素子のそれぞれの抵抗値をR,、R2とすれば、 で示される。
The output e of the magnetic sensor circuit using such a system is expressed as follows, where the resistance values of the magnetoresistive elements are R, , R2.

検出出力は、磁束分布の変動による磁気抵抗素子1,2
の抵抗弁の変動として出力する。
The detection output is generated by magnetoresistive elements 1 and 2 due to variations in magnetic flux distribution.
Output as resistance valve fluctuation.

それぞれの抵抗値がR□+△R1、R2+△R2に変化
したとすれば、出力変動△eは、 で示される。
If the respective resistance values change to R□+△R1 and R2+△R2, the output fluctuation △e is expressed as follows.

なお、電圧Eの変動はないものとする。Note that it is assumed that there is no variation in voltage E.

基本的には、磁気抵抗素子1,2は特性の揃ったもので
あるから R1÷R2 である。
Basically, since the magnetoresistive elements 1 and 2 have the same characteristics, R1÷R2.

また、各種のノイズ、たとえば、温度的ノイズ、ハムノ
イズ、磁気ノイズ、ピエゾノイズ等に関しては、両磁気
抵抗素子は空間的に極めて近接して配置されているので
、両者の受ける温度的、磁気的、また機械的原因による
変動分は等しいと考えることができ、 △R1=△R2 である。
In addition, regarding various types of noise, such as thermal noise, hum noise, magnetic noise, piezo noise, etc., since both magnetoresistive elements are placed spatially very close to each other, the temperature, magnetic, and The variation due to mechanical causes can be considered to be equal, and △R1=△R2.

したがって、ノイズ成分に関しては(2)式%式% 信号成分に関しては、両磁気抵抗素子は走査方向に対し
て直角に並列配置されているので、両者の受ける磁束変
動は異なり、△R1\△R2であるから、(2)式が出
力を示す式となる。
Therefore, regarding the noise component, the formula (2) is %.As for the signal component, since both magnetoresistive elements are arranged in parallel at right angles to the scanning direction, the magnetic flux fluctuations received by the two are different, and △R1\△R2 Therefore, equation (2) is the equation that indicates the output.

以上の説明で明らかなように、ノイズ成分に関して△e
=Oとなる点がこのセンサ回路の長所とされてきた。
As is clear from the above explanation, regarding the noise component △e
=O has been considered an advantage of this sensor circuit.

しかし、これは磁気抵抗素子の抵抗値R1とR2が等し
いということが条件となっている。
However, this is conditional on the fact that the resistance values R1 and R2 of the magnetoresistive elements are equal.

抵抗値Rt 、 R2に差があれば、いかに△R1f−
△R2であっても(2)式から明らかなようにノイズが
出力される。
If there is a difference between the resistance values Rt and R2, how will △R1f-
Even with ΔR2, noise is output as is clear from equation (2).

実際には磁気抵抗素子の抵抗値のばらつきは、第2図に
示されているように、範囲が大きく、か゛つ抵抗値の温
度係数も大きい。
In reality, as shown in FIG. 2, the variation in the resistance value of the magnetoresistive element is wide, and the temperature coefficient of the resistance value is also large.

したがって、センサにR1とR2が等しくなる素子を選
別してマウントすることは非常に難しく、かつできたと
しても広い使用温度範囲に渡ってR1=R2を保証する
ことは不可能に近い0このように、現実にはR1−R2
という条件を満たすことができないため、第1図の回路
においても側らかのノイズが出力されることになる。
Therefore, it is very difficult to select and mount elements in which R1 and R2 are equal to each other on the sensor, and even if it were possible, it would be nearly impossible to guarantee R1 = R2 over a wide operating temperature range. In reality, R1-R2
Since this condition cannot be satisfied, noise from the side will be output even in the circuit shown in FIG.

本発明は、以上に説明した従来方式の欠点を改良し、ノ
イズに影響されない検出出力を得るためのものである。
The present invention is intended to improve the drawbacks of the conventional method described above and to obtain a detection output that is not affected by noise.

抵抗値にばらつきが存在する場合にもノイズに影響され
ない出力を得るための回路としては定電流バイアス方式
による第3図の回路が考えられる。
As a circuit for obtaining an output unaffected by noise even when there are variations in resistance values, the circuit shown in FIG. 3 using a constant current bias method can be considered.

この回路において、磁気抵抗素子1,2は抵抗r1+
r2 r r31 r4(r3”’r4)およびトラン
ジスタQ1.Q2よりなる2つの定電流回路により常に
一定電流■でバイアスされている。
In this circuit, the magnetoresistive elements 1 and 2 are resistors r1+
It is always biased with a constant current ■ by two constant current circuits consisting of r2 r r31 r4 (r3'''r4) and transistors Q1 and Q2.

この回路においてセンサ出力は e=IR1−IR2 であるから、出力変動は、 △e = I△R1−I△R2=I (△R1−△R2
)となって、素子自体の抵抗値R1,R2は全く関係し
なくなり、△Rt=△R2となるノイズ成分に関しては
出力△eは常に零となる。
In this circuit, the sensor output is e=IR1-IR2, so the output fluctuation is △e = I△R1-I△R2=I (△R1-△R2
), the resistance values R1 and R2 of the elements themselves are completely irrelevant, and the output Δe is always zero for the noise component where ΔRt=ΔR2.

しかし、この回路においてもノイズが出力されないため
には両磁気抵抗素子のバイアス電流が全く等しいことが
条件である。
However, in order for this circuit to not output noise, it is necessary that the bias currents of both magnetoresistive elements be completely equal.

すなわち、全く特性の等しい定電流回路が2回路必要で
ある。
That is, two constant current circuits with exactly the same characteristics are required.

実際には、それぞれの定電流回路に使用される素子には
ばらつきが存在するから、これを補正するための伺らか
の調整が必要であり、しかも、この調整は広い温度範囲
に渡って有効でなければならない。
In reality, there are variations in the elements used in each constant current circuit, so some adjustment is necessary to compensate for this, and this adjustment is effective over a wide temperature range. Must.

本発明は、以上に説明した第3図の回路の難点を解消す
るものであり、第4図に本発明の一実施例である回路を
示す。
The present invention solves the drawbacks of the circuit shown in FIG. 3 described above, and FIG. 4 shows a circuit that is an embodiment of the present invention.

この回路において、磁気抵抗素子1,2は直列に接続さ
れ、抵抗rl+r2t「3およびトランジスタQ、より
なる定電流回路により常に一定電流■でバイアスされる
In this circuit, magnetoresistive elements 1 and 2 are connected in series and are always biased with a constant current (2) by a constant current circuit consisting of resistors rl+r2t'3 and transistor Q.

尚永久磁石又は直流電磁石の一様なバイアス磁界中に紙
幣の走査方向に対して直角に近接して並列配置されるこ
とは従来例と同じである。
It should be noted that, as in the conventional example, the permanent magnets or DC electromagnets are arranged in parallel in a uniform bias magnetic field at right angles to the scanning direction of the banknote.

磁気抵抗素子1゜2の合成出力は、ボルテージフォロワ
5、抵抗6J7よりなる1/2分圧回路を介して差動増
幅器4へ、磁気抵抗素子2の出力はコンデンサを介して
差動増幅器4へそれぞれ入力される。
The combined output of the magnetoresistive element 1゜2 is sent to the differential amplifier 4 via a 1/2 voltage divider circuit consisting of a voltage follower 5 and a resistor 6J7, and the output of the magnetoresistive element 2 is sent to the differential amplifier 4 via a capacitor. Each is input.

ボルテージフォロワ5の入力インピーダンスは極めて高
いため定電流回路による電流■は全て磁気抵抗素子1゜
2に流れる。
Since the input impedance of the voltage follower 5 is extremely high, all of the current (2) from the constant current circuit flows through the magnetoresistive element 1.2.

したがって、ボルテージフォロワ5への入力電圧は、 I (R1+ R2) となり、抵抗6,7による1/2分圧回路の出力は、 上I (R1+ R2) となる。Therefore, the input voltage to the voltage follower 5 is I (R1+R2) The output of the 1/2 voltage divider circuit with resistors 6 and 7 is Upper I (R1+R2) becomes.

一方、磁気抵抗素子2の出力はR2 であるから、差動増幅器4への入力は、 1 e =−:t (R1+R2)−I R2=T I (
Rt −R2)(3)となる。
On the other hand, since the output of the magnetoresistive element 2 is R2, the input to the differential amplifier 4 is 1 e = -: t (R1 + R2) - I R2 = T I (
Rt - R2) (3).

検出出力はこの変動分であるから、1(4) △e :2 I (△R1−△R2) となる0両磁気抵抗素子は直列に接続されているから、
バイアス電流は常に等しく、△R1=△R2となるノイ
ズ成分に関しては(4)式は常に△e = 0を満足す
る。
Since the detection output is this variation, 1 (4) △e : 2 I (△R1 - △R2). Since both magnetic resistance elements are connected in series,
The bias currents are always equal, and equation (4) always satisfies Δe=0 regarding the noise component where ΔR1=ΔR2.

第5図は本発明の別の構成例である。FIG. 5 shows another configuration example of the present invention.

磁気抵抗素子1,2はやはり直列に接続され、定電流回
路により常に一定電流■でバソアスされる。
The magnetoresistive elements 1 and 2 are also connected in series, and are always bussed with a constant current (2) by a constant current circuit.

定電流回路には接合型のFETQ3を使用しているため
、第4図の回路のように定電圧源3を必要とせず、簡便
に定電流を得ることができる。
Since the junction type FET Q3 is used in the constant current circuit, the constant voltage source 3 unlike the circuit shown in FIG. 4 is not required, and a constant current can be easily obtained.

磁気抵抗素子1,2の合成出力は、コンデンサを介して
差動増幅器4へ、磁気抵抗素子2の出力は利得が2の増
幅器8を介して差動増幅器4へそれぞれ入力される。
The combined output of the magnetoresistive elements 1 and 2 is input to the differential amplifier 4 via a capacitor, and the output of the magnetoresistive element 2 is input to the differential amplifier 4 via the amplifier 8 having a gain of 2.

増幅器8には演算増幅器を使用すれば、入力インピーダ
ンスは極めて高くとれるから、定電流回路による電流■
は全て磁気抵抗素子1,2に流れる。
If an operational amplifier is used for the amplifier 8, the input impedance can be extremely high, so the current due to the constant current circuit can be reduced.
All flows to the magnetoresistive elements 1 and 2.

したがって、磁気抵抗素子1,2の合成出力は I (R1+ R2) となる。Therefore, the combined output of magnetoresistive elements 1 and 2 is I (R1+R2) becomes.

また、磁気抵抗素子2の出力はIR2であるから利得が
2倍の増幅器8の出力は、IR2 である。
Furthermore, since the output of the magnetoresistive element 2 is IR2, the output of the amplifier 8 with double the gain is IR2.

これから、差動増幅器への入力は、e=I(Rt+R2
) 2IR2=I(RI R2) (5)とな
り、検出出力はこの変動分であるから△e=I(△R1
−△R2) 、(6)となる。
From now on, the input to the differential amplifier is e=I(Rt+R2
) 2IR2=I(RI R2) (5), and the detection output is this variation, so △e=I(△R1
-ΔR2), (6).

増幅器8には演算増幅器を使用すれば利得が2の正確な
増幅器を得ることは容易である。
If an operational amplifier is used as the amplifier 8, it is easy to obtain an accurate amplifier with a gain of 2.

両磁気抵抗素子は直列に接続されているからバイアス電
流は常に等しく、△R1=△R2となるノイズ成分に関
しては(6)式は常に△e=Oを満足する。
Since both magnetoresistive elements are connected in series, the bias currents are always equal, and as for the noise component where ΔR1=ΔR2, equation (6) always satisfies Δe=O.

以上に説明したように、本発明による第4図あるいは第
5図の回路によれば、定電流回路は1回路でよく、第3
図の回路の場合のように、それぞれの定電流回路の特性
をそろえるための調整等は必要がない。
As explained above, according to the circuit of FIG. 4 or 5 according to the present invention, only one constant current circuit is required, and the third
Unlike the circuit shown in the figure, there is no need to make adjustments to make the characteristics of the constant current circuits the same.

また、磁気抵抗素子1,2は直列に接続されているから
、それぞれのバイアス電流が異なることはあり得ず、し
たがって、(4) 、 (6)式よりノイズ成分に関し
ては△e = 0となり、磁気センサ回路として高いS
/Nを得ることができる0
Furthermore, since the magnetoresistive elements 1 and 2 are connected in series, it is impossible for their respective bias currents to be different. Therefore, from equations (4) and (6), regarding the noise component, △e = 0, High S as a magnetic sensor circuit
/N can be obtained 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気抵抗素子を用いた従来の磁気検出回路、第
2図は磁気抵抗素子の抵抗値のばらつきと温度特性の図
、第3図は定電流バイアス方式による磁気検出回路、第
4図および第5図は本発明による改良された磁気検出回
路を示す。 1.2・・・・・・磁気抵抗素子、3・・・・・・定電
圧電源、4・・・・・・増幅器、5・・・・・・ボルテ
ージフォロワ、6゜7・・・・・・分圧用抵抗器、8・
・・・・・演算増幅器(利得2)。
Figure 1 is a conventional magnetic detection circuit using a magnetoresistive element, Figure 2 is a diagram of variation in resistance value and temperature characteristics of a magnetoresistive element, Figure 3 is a magnetic detection circuit using a constant current bias method, and Figure 4 and FIG. 5 illustrate an improved magnetic detection circuit according to the present invention. 1.2... Magnetoresistive element, 3... Constant voltage power supply, 4... Amplifier, 5... Voltage follower, 6°7...・Voltage dividing resistor, 8・
...Operation amplifier (gain 2).

Claims (1)

【特許請求の範囲】 1 磁気的にバイアスされ、磁性体成分を含有する紙弊
等の通過による磁束変動により電気的抵抗特性が変化す
る直列に接続された2個の磁気抵抗素子、該磁気抵抗素
子を一定電流でバイアスするための定電流回路、前記2
個の磁気抵抗素子の合成出力を入力とするボルテージフ
オロフ回路、該ボルテージフオロフ回路の出力を1/2
に介在するための分圧回路、該分圧回路の出力と前記2
個の磁気抵抗素子の内の1個の出力を入力とする交流差
動増幅回路を備えたことを特徴とする紙弊等の磁気検出
回路。 2 磁気的にバイアスされ、磁性体成分を含有する紙弊
等の通過による磁束変動により電気的抵抗特性が変化す
る直列に接続された2個の磁気抵抗素子、該磁気抵抗素
子を一定電流でバイアスするための定電流回路、前記2
個の磁気抵抗素子の内の1個の出力を入力とする利得が
2の演算増幅回路、該演算増幅回路の出力と前記2個の
磁気抵抗素子の合成出力を入力とする交流差動増幅回路
を備えたことを特徴とする紙弊等の磁気検出回路。
[Claims] 1. Two magnetoresistive elements connected in series that are magnetically biased and whose electrical resistance characteristics change due to magnetic flux fluctuations due to passage of a piece of paper or the like containing a magnetic material component; A constant current circuit for biasing an element with a constant current, 2 above.
A voltage follower circuit whose input is the composite output of two magnetoresistive elements, and the output of the voltage follower circuit is halved
a voltage divider circuit for intervening in the voltage divider circuit, the output of the voltage divider circuit and the
1. A magnetic detection circuit, such as a magnetic detection circuit, characterized by comprising an AC differential amplifier circuit whose input is the output of one of the magnetoresistive elements. 2. Two magnetically biased magnetoresistive elements connected in series whose electrical resistance characteristics change due to changes in magnetic flux due to the passage of a piece of paper or the like containing a magnetic material component; the magnetoresistive elements are biased with a constant current. Constant current circuit for
an operational amplifier circuit with a gain of 2 that receives as input the output of one of the two magnetoresistive elements, and an AC differential amplifier circuit that receives as input the output of the operational amplifier circuit and the combined output of the two magnetoresistive elements. 1. A magnetic detection circuit for paper-based products, etc., characterized by comprising:
JP50150402A 1975-12-16 1975-12-16 Shiheitouno Jikikenshiyutsu Cairo Expired JPS5843793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50150402A JPS5843793B2 (en) 1975-12-16 1975-12-16 Shiheitouno Jikikenshiyutsu Cairo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50150402A JPS5843793B2 (en) 1975-12-16 1975-12-16 Shiheitouno Jikikenshiyutsu Cairo

Publications (2)

Publication Number Publication Date
JPS5273793A JPS5273793A (en) 1977-06-21
JPS5843793B2 true JPS5843793B2 (en) 1983-09-29

Family

ID=15496179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50150402A Expired JPS5843793B2 (en) 1975-12-16 1975-12-16 Shiheitouno Jikikenshiyutsu Cairo

Country Status (1)

Country Link
JP (1) JPS5843793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127628A (en) * 1981-01-27 1982-08-07 Citizen Watch Co Ltd Parts feeding device
JP6454228B2 (en) * 2015-06-09 2019-01-16 株式会社ヴィーネックス Magnetic sensor device

Also Published As

Publication number Publication date
JPS5273793A (en) 1977-06-21

Similar Documents

Publication Publication Date Title
US4596950A (en) Compensated transducer
US4464625A (en) Magnetoresistive current detector
US4646014A (en) Hall effect field sensor circuit with temperature compensation using OP amplifier
US3525041A (en) Magnetic field measuring method and device effective over a wide frequency range
JPH01206267A (en) Current detector
GB798523A (en) Improvements relating to transistor amplifier circuits
US3613021A (en) Hall-effect amplifying device with temperature compensated characteristic
JPH03187002A (en) Amplification circuit for signal generated from magnetic resistance element
US4091333A (en) Transconductance amplifier circuit
US4683429A (en) Electrical circuit which is linearly responsive to changes in magnetic field intensity
US4435653A (en) In-phase voltage elimination circuit for Hall element
US20180372811A1 (en) Temperature compensation circuit, corresponding device and method
US10161969B2 (en) Method and apparatus for the measurement of electrical current by means of a self-compensating configuration of magnetic field sensors
US3555402A (en) Constant current temperature stabilized signal converter circuit
JPS5843793B2 (en) Shiheitouno Jikikenshiyutsu Cairo
JPS5843794B2 (en) Shiheitouno Jikikenshiyutsu Cairo
US3016493A (en) Electric-signal converting apparatus
US2831929A (en) Magnetic amplifier
JPS58111415A (en) Offset cancelling circuit for differential amplifier
US2882352A (en) D. c. amplifier system
US6204657B1 (en) Temperature compensated closed-loop hall effect current transformer
US3218565A (en) Amplifier having an output which is substantially uninfluenced by external variables
Billings et al. The sources of error in Hall-effect multipliers
JPH08233867A (en) Bridge detection circuit
KR102089870B1 (en) Hall sensor using current signal