JPS5842781A - Production of electrode - Google Patents
Production of electrodeInfo
- Publication number
- JPS5842781A JPS5842781A JP57145486A JP14548682A JPS5842781A JP S5842781 A JPS5842781 A JP S5842781A JP 57145486 A JP57145486 A JP 57145486A JP 14548682 A JP14548682 A JP 14548682A JP S5842781 A JPS5842781 A JP S5842781A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- particles
- metal
- layer
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
本発明社、水性液電解011に用いられる過電圧O低い
電極、特に水嵩過電圧O低い陰極に関する4hO″tI
Toる。DETAILED DESCRIPTION OF THE INVENTION 4hO''tI relating to low overvoltage O electrodes used in aqueous liquid electrolysis, especially cathodes with low water bulk overvoltage O.
Toru.
例えば、塩化アルカリ水溶液を電震して苛性ア羨カリと
塩嵩を製造する等O水性液を電解して電解生成物を得る
場合、11々O耐食電極が使用されている。このような
電極線、塩化アルカリ水溶液等の水性液を電解するII
K生起する過電圧を出来るだけ低くすることKよ〉、電
力費を暖滅でき、それだけ安価に電解生成物を得ること
ができる。For example, when an aqueous alkali chloride solution is subjected to electric shock to produce caustic alkali and salt, an electrolyzed aqueous solution is electrolyzed to obtain an electrolyzed product, and an 11-O corrosion-resistant electrode is used. II for electrolyzing such electrode wires and aqueous liquids such as aqueous alkali chloride solutions.
By lowering the generated overvoltage as much as possible, electricity costs can be reduced, and electrolysis products can be obtained at a correspondingly lower cost.
そのため陽極については、陽極の塩素過電圧を下ける目
的で、その材質、処理方法につ−て種々研究がなされて
お)一部鉱既に実用化されている。陰極について線、隔
膜を介して電解を行う隔展法が開発されて以来、水嵩過
電圧が低く、耐アルカリ性を有する電極が要求されてい
る。現在実施されていh%アスベス)0隔膜を用い九塩
化アルカリ水S*電解において紘、陰極として鉄が採用
されて−る。For this reason, various studies have been conducted on the materials and processing methods for anodes in order to reduce the chlorine overvoltage of the anodes, and some of them have already been put into practical use. Since the development of the partitioning method in which electrolysis is carried out at the cathode through a wire or diaphragm, there has been a demand for electrodes with low water bulk overvoltage and alkali resistance. Iron is used as the cathode in the nonachloride alkaline water S* electrolysis using a diaphragm that is currently practiced.
そして更に#O水素過電圧を下げる大め、鉄表面に−1
−ンドプラスト処II(例えば[表面処理ハンドブック
」田島栄纏−童業図書発行s41〜542頁に示される
処理方法)を施ζすことも提案されている。しかしなが
ら、かかるアスベスト膜法て絋、得られる弯性ソーダ饋
度が約10〜lj1wt嚢と低く、且つ、胃性ソーダ水
溶箪中に不純物として食塩が混入してくるという欠点が
あるため、イオン交換膜を隔膜として用いて塩化アルカ
リ水溶液を電解する方法が開発され工業化されつつある
。かかる方法によれば。And further lower the #O hydrogen overvoltage by -1 on the iron surface.
It has also been proposed to apply Ndoplast treatment II (for example, the treatment method shown in [Surface Treatment Handbook] by Eimei Tajima, published by Douji Tosho, pp. 41-542). However, the asbestos membrane method has the disadvantage that the obtained asbestos soda has a low starvation degree of about 10 to 1wt bags, and that salt is mixed in as an impurity in the aqueous solution of gastric soda. A method of electrolyzing an aqueous alkali chloride solution using a membrane as a diaphragm has been developed and is being industrialized. According to such a method.
不純物としての食塩の混入がなく25〜4゜vtdとい
う高濃度0苛性ソーダを得ることかで暑る。かかる場合
、@極として従来の鉄を採用すると、苛性ソーダ濃度が
高いこと、及び電解温度が80〜120℃と高温である
丸め、鉄陰極が応力腐食翻れt−崎こしたシ、或−は鉄
の一部が陰極液中に溶は出し、製品の純度を損うなどの
不都合が生じる。It is possible to obtain high concentration zero caustic soda of 25 to 4 degrees vtd without the contamination of salt as an impurity. In such cases, if conventional iron is used as the electrode, the concentration of caustic soda is high, and the electrolytic temperature is as high as 80 to 120°C. Some of the iron dissolves into the catholyte, causing problems such as loss of product purity.
本発明者は、鉄より4hw性アルカリに耐食性のある材
料を採用し、水素過電圧を効果的に低下せしめ、しかも
その効果が長期に夏って持続し得る電極O製造法を見出
し、本発明を提供する。The present inventor has discovered a method for producing an electrode O that uses a material that is more resistant to corrosion by 4hw alkalis than iron, effectively lowers hydrogen overvoltage, and maintains this effect for a long time, and has developed the present invention. provide.
かくして本発明は、電極石体上にニッケルから成る層を
介して、ニッケル、″:1パルトから選ばれた少なくと
も一種0金属を含む粒子を付着せしめる電極の製造法に
>hて、鋏粒子を塩化ニッケル(aicx!−6a、o
として)濃度が135t/L以上である塩化ニッケルを
含む洛中に分散せしめ九ニッケルメッキ浴に電極芯体を
浸漬せしめてメッキ処理することを特徴とする電極O製
造法を要旨とするtのである。Thus, the present invention provides a method for producing an electrode in which particles containing at least one metal selected from nickel, 1 part, and 0 metals are deposited on an electrode stone body through a layer made of nickel. Nickel chloride (aicx!-6a, o
The gist of this is a method for producing an electrode O, which is characterized by plating by immersing the electrode core in a nickel plating bath containing nickel chloride at a concentration of 135 t/L or higher.
本発明によシ得られる電極ogi面に紘、多数の粒子が
付着してお〉、巨視的に見ゐと、電極表面は微多孔性に
なっている。A large number of particles are attached to the surface of the electrode obtained by the present invention, and when viewed macroscopically, the electrode surface is microporous.
このように本発明の方法で得られる電極線。The electrode wire thus obtained by the method of the present invention.
それ自体低い水素過電圧を有するニッケル、コバルトを
含む粒子が電極表mに多数存在し、且つ前述した過多、
電極表面が微多孔性になっているため、それだ叶電極活
性藺が太きく1)。A large number of particles containing nickel and cobalt, which themselves have a low hydrogen overvoltage, exist on the electrode surface m, and the above-mentioned excessive
Because the electrode surface is microporous, the active layer of the electrode is thicker1).
これらの相乗効果によって、効果的に水素過電圧の低減
を計ることができる。しかも1本発明O方法によれば:
メツ命浴中O塩化ニッケル員度が従来O方法O場合に比
べて非常に高いため、メツ命浴中で粒子の表両に存在す
る酸素が除去されることにより、粒子O表面が清浄化畜
れ、こ0粒子は、上記金属から成る層によって、電極表
面に強固に付着しているので、劣化しにくく、上記低水
素過電圧の持続性を飛躍的Kgばすことができる。更に
、上記効果によ)得られる電極O初期性能も向上する。These synergistic effects make it possible to effectively reduce hydrogen overvoltage. Moreover, according to the method of the present invention:
Since the concentration of nickel chloride in the O method is much higher than that in the conventional O method, the oxygen present on both sides of the particles is removed in the O method, and the surface of the particles is cleaned. Since these particles are firmly attached to the electrode surface by the layer made of the above-mentioned metal, they are difficult to deteriorate, and the sustainability of the above-mentioned low hydrogen overvoltage can be dramatically extended. Furthermore, the initial performance of the electrode O obtained (by the above effect) is also improved.
本発明方法を実施する九めの電極芯体紘その材質として
任意の適尚な導電性金属例えばテ1゜Zr、ν@、 I
i、 V、 MO,On、ムg −Mn *白金族金属
、黒鉛、 Or から選ばれた金属X線これらO金属か
ら違ばれ九合金が採用し得る。ζO内We、?@合合金
F@ −111合金*Fe−0r合金、シ@ −11
−Or金合金ど)lii、]lii 合金(Ml−Ou
金合金111−Or金合金ど)OEI。The material of the ninth electrode core for carrying out the method of the present invention may be any suitable conductive metal such as Te1゜Zr, ν@, I
X-rays of metals selected from i, V, MO, On, Mg-Mn *Platinum group metals, graphite, Or Nine alloys different from these O metals can be adopted. We within ζO? @Alloy F@-111 alloy *Fe-0r alloy, C@-11
-Or gold alloy etc.)lii, ]lii alloy (Ml-Ou
Gold alloy 111-Or gold alloy etc.) OEI.
On合金などを採用することが好しい。It is preferable to use On alloy or the like.
特に好ましい電極芯体の材質は1・、Ou。A particularly preferable material for the electrode core is 1.Ou.
1i1.?e−111合金、1・−薦i −Or金合金
ある。1i1. ? There is the e-111 alloy and the 1-Or gold alloy.
電極芯体O構造IIi、*用する電極O構造に合わせて
任意適宜な形状寸渋にすゐことができる。The electrode core O structure IIi can have any suitable shape and size depending on the electrode O structure used.
そのy#状鉱例えば板状、多孔状、綱状(例えばエタス
パンドメタルなど)、すにれ状等が採用でき、これらを
平板状、画板状、筒状にしてもよい。For example, the y#-shaped ore can be in the shape of a plate, a porous shape, a wire shape (for example, ethaspand metal), a violet shape, etc., and these may be shaped into a flat plate, a drawing board, or a cylinder.
本発明におけるニッケル、コバルトを含む粒子として社
、か−る金属単独、か\る金属を主体とする金属1合金
の粒子、又はこれら金属、合金の表面層を有する複合体
から成る粒子か採用される。In the present invention, the particles containing nickel and cobalt may be particles of these metals alone, particles of a metal alloy mainly composed of these metals, or particles consisting of a composite having a surface layer of these metals or alloys. Ru.
又上記金属を主体とする金属1合金を採用する場合、上
記金属以外O成分としては、そO含有量にもよるが、水
素過電圧O低下に過度に悪影響を及ぼさない金属が採用
でき例えばム1゜Xnm Mg、 ays尋が採用でき
る0粒子の平均粒径は、電極表面の多孔性度及び後述す
る電極製造O際の粒子0分散性にも関係するが、a17
w〜100Pであれば充分で参る。In addition, when a metal 1 alloy mainly composed of the above metals is used, as the O component other than the above metals, metals that do not have an excessively negative effect on the hydrogen overvoltage O reduction can be used, such as M1, although it depends on the O content. The average particle diameter of 0 particles that can be adopted for ゜
w~100P is enough.
上記範囲中、電極表面O多孔性等θ点から、好ましく
Fil 9 p −50p 、更に好ましくは1p−3
0声である。Within the above range, preferably from the θ point such as electrode surface O porosity.
Fil 9 p -50p, more preferably 1p-3
0 voice.
更に本発明方法におけ為粒子妹、電極のよ〕低い水素過
電圧を達成する丸め1表面多孔性である仁とが好ましい
。Further, in the method of the present invention, it is preferred that the electrode has a rounded surface porosity to achieve a low hydrogen overvoltage.
この表面多孔性とは、粒子の全表面が多孔性であること
のみを意味する4hOでなく、前述し良金属から成る層
よ〉露出し九部分のみが多孔性になっておれば充分であ
る。This surface porosity does not mean only that the entire surface of the particle is porous, but it is sufficient that only the exposed portion of the layer made of good metal described above is porous. .
多孔性o1i11層、そ011度がかなシ大きい程好ま
(いが、過度に多孔性にすると粒子の機械的強度が低下
する為多孔度(porosity ) が20〜90
嘔にする仁とが好ましい。上記範囲中更に好ましくは3
5〜6ト1特に好壕しく#i50〜80嚢である。For the porous o1i11 layer, the larger the degree is, the better it is (however, if it is made too porous, the mechanical strength of the particles will decrease, so the porosity should be 20 to 90.
It is preferable to use the kernels to make a vomit. More preferably 3 within the above range
#i50-80 capsules are particularly preferred.
尚上記多孔度とは、全知O水置換法によって測定される
値である。Note that the above porosity is a value measured by the omniscient O water displacement method.
多孔性にする方法としては種々0方法が採用でき、例え
はlli、oo を主体とする合金から、か\るIi
、OO以以外金金属除去して多孔性にする方法、この他
Ni、00をカルボニル化合物化しこれを熱分解して、
多孔性O金属を得る方法、Mi、000有機酸塩を熱分
解し、多孔性の金属を得る方法、lIi、ooO酸化物
を水素遺覚 −雰囲気で加熱し、多孔性O金属を得る方
法等が採用できる。この内作業性O点で、Mi、O。Various methods can be used to create porosity, such as alloys mainly composed of lli and oo,
, a method of removing gold metal other than OO to make it porous, and a method of converting Ni, 00 into a carbonyl compound and thermally decomposing it.
Method of obtaining porous O metal, method of thermally decomposing Mi,000 organic acid salt to obtain porous metal, method of obtaining porous O metal by heating lIi,ooO oxide in a hydrogen atmosphere, etc. can be adopted. Among these, the workability is O point, Mi, O.
を主体とする合金から、か\る)ii、oo以外の金属
(除去する方法が好ましい。か\る場合、粒子素材とし
く311.Goから選ばれた總−の金属と、ムl *
Zn * Mg # am から選ばれえ第二〇金属
とO合金を採用し、苛性アルカリ処理して上記第二〇金
属の少なくとも一部を除去せしめる方法が41に好まし
い。このような合金としては、Ml−ム盈合禽、1li
−jcn4r金、Ii −Mg合金、lli −an合
金、Oo−ム1合金%co−jsn合金、Co −Mg
合金、Oo −am合金、が採用でき、これらの内入手
容鳥な点から、’ Ii−ム1合金、oO−ム1合金、
が好ましい。か−る好ましい合金は、具体的には未展開
のラネーニッケル(Raney Mickex ) 、
ラネーコバルト(Ran5yaobalt )、で
ある。この内特に肩1−ム1会金。It is preferable to remove metals other than 311.Go from an alloy mainly consisting of 311.
Preferred method 41 is a method in which a metal No. 20 selected from Zn*Mg #am and an O alloy are used, and at least a portion of the metal No. 20 is removed by caustic alkali treatment. Such alloys include Ml-mu, 1li
-jcn4r gold, Ii -Mg alloy, lli -an alloy, Oo-mu 1 alloy% co-jsn alloy, Co -Mg
alloy, Oo-am alloy, and from the point of view of these contents, 'Ii-mu 1 alloy, oO-mu 1 alloy,
is preferred. Such preferred alloys include undeveloped Raney Mickex,
It is Ranney cobalt (Ran5yaobalt). Among these, especially the shoulder 1-mu 1 fee.
具体的には未展開りネーニッケルが好ましい。Specifically, undeveloped nickel is preferred.
本発明において1粒子を付着するため0層に採用される
金属としては、耐アルカリ性を有し。In the present invention, the metal employed in the zero layer to which one particle is attached has alkali resistance.
上記粒子を強11に付着し得る金属が採用されうるが、
特KNi を採用するのがよい。特に採用する粒子の主
体となる金属と同種の金属を採用することが好ましいこ
とから、粒子としてはMl を主体とする粒子と0I
II合せて本発明を実施するのが4IKよい。A metal capable of strongly adhering the particles may be used, but
It is better to use special KNi. In particular, since it is preferable to use the same type of metal as the main metal of the particles to be adopted, the particles should be mainly composed of Ml and 0I.
It is better to implement the present invention in conjunction with II.
本発明の層の厚みは、採用する粒子0粒径にもよるが、
20〜200声であれば充分で、更に好ましくは25〜
1507m、特に好ましくは30〜100μである。こ
れは本発明では、前述し九粒子〇一部が電極芯体上O金
属から成る層KJl[没し大状態て、付着せしめるから
である。The thickness of the layer of the present invention depends on the particle size of the employed particles, but
20 to 200 voices is sufficient, more preferably 25 to 200 voices.
1507m, particularly preferably 30-100μ. This is because, in the present invention, a part of the nine particles described above is attached to the layer KJl made of O metal on the electrode core in a large state.
か\る状態を理解しゃすい様に、本発明により得られる
電極O電極表面O断面図を1g1図に示す。図示されて
いる様に電極芯体1上に金属から成る層2が設けられ、
酸層に粒子30一部が。In order to facilitate understanding of this state, a cross-sectional view of the electrode surface obtained by the present invention is shown in Figure 1g1. As shown in the figure, a layer 2 made of metal is provided on an electrode core 1,
Some particles 30 are in the acid layer.
その層の表面から露出する様に含まれている。It is included so that it is exposed from the surface of the layer.
尚層2中の粒子ID@合は5〜a Owt−であること
が好ましく、更に好ましくは10〜S OvtgIであ
る。か\る状IlO外、電極芯体と1粒子を含む層とO
関に%m1.Gos ムg、onから選ばれ九金属から
成る中間層を設ける仁とによって、更に本発明O電極の
耐久性を向上もせることができる。−1P\る中間層鉱
、上記層0金″属とpiIlll[又は異種であっても
差しつかえないが、か\る中間層【前述した層との付着
性の点からこれらの中間層及び層の金属#i同種0もの
であることが好ましい。中間層の厚みFi1機械的強度
等O点から5〜100Pであれば充分てあ〕、更に好ま
しくは20〜80p、ll!fに好ましく轄50〜50
μである〇
こO様な中間層を設けた電極を理解し中すいようK、電
極の断面図を第2図に示した。The particle ID in layer 2 is preferably from 5 to a Owt-, more preferably from 10 to S OvtgI. Outside the shape of IlO, the electrode core, a layer containing one particle, and O
Seki %m1. The durability of the O electrode of the present invention can be further improved by providing an intermediate layer made of nine metals selected from Gos, Mug, and On. -1P\ intermediate layer ore, the above layer 0 metal and piIlll [or an intermediate layer, which may be of a different type; It is preferable that the metal #i is the same type as 0.Thickness of the intermediate layer Fi1 Mechanical strength etc. 5 to 100P is sufficient from point O), more preferably 20 to 80P, preferably 50 to ll!f ~50
The cross-sectional view of the electrode is shown in FIG. 2, which is easy to understand when using an electrode with an intermediate layer like μ.
1は電極芯体、4は中間層、2社粒子を含む層%3Fi
粒子である。1 is the electrode core, 4 is the intermediate layer, and the layer containing particles from 2 companies is %3Fi.
It is a particle.
本発明による電極は第1.第2@から見て明らかな様に
、そ0表面を微視的に見れば、電極表面に多数の粒子が
露出して−るわけであるが、巨視的に見ると表Wi社多
孔性Ktりている。The electrode according to the present invention is the first one. As is clear from No. 2, if you look at the surface microscopically, many particles are exposed on the electrode surface, but if you look at it macroscopically, you can see that the porous Kt There is
前述し先様に多孔性O度合#i、水素過電圧0低下K1
m1連する為多孔性の度合社電気二重層容量て1000
1111F/−以上であれば充分に@的を達成できる。As mentioned above, the degree of porosity O is #i, the hydrogen overvoltage is 0 decrease K1
Since the m1 is continuous, the degree of porosity and the electric double layer capacity are 1000
If it is 1111F/- or more, the @ target can be fully achieved.
上記範囲中好ましく #1200口pF/am” 以上
、特に好mu<us o o o pv7−以上である
。電気二重層容量は、電解質溶液中に電極を浸漬した場
合に、電極表面近傍に正負のイオンが短い距離を隔てて
相対的に分布して形成される電気二菖層の静電容量であ
り、詳しくは、実渕される微分容量を示す。In the above range, it is preferably 1200 pF/am or more, particularly preferably mu<us o o o pv7 or more. Electric double layer capacity is defined as the positive and negative polarities near the electrode surface when the electrode is immersed in an electrolyte solution. This is the capacitance of an electric double iris layer formed by relatively distributing ions separated by a short distance, and more specifically, it shows the differential capacitance observed in practice.
ζO容量紘、電極表面が大きくなると共に大きくなる。The ζO capacitance increases as the electrode surface becomes larger.
従って電極表面が多孔性とな)電極表面積が大きくなる
と、電極表面の電気=1層容量も大きくする。よって、
電気二重層容量によって、電気化学的に有01電極表面
積即ち電極表面の多孔性度が判る。Therefore, as the electrode surface becomes porous and the electrode surface area increases, the electrical capacity of the electrode surface also increases. Therefore,
The electric double layer capacity determines the electrochemically available electrode surface area, that is, the degree of porosity of the electrode surface.
尚電気二1層容量は、測定時0温度中電解質溶液の種類
、濃度、電極電位#によっても変化するので1本発明0
電気二直履容量は、下記の方法によって測定された値を
意味する。Note that the electrical double layer capacity varies depending on the type, concentration, and electrode potential # of the electrolyte solution at zero temperature during measurement.
Electrical two-way capacity means a value measured by the method below.
試験片(電極)を40 wt* 1laoII 水S*
(251:)K浸漬し、試験片の約100倍の見掛は面
積をもつ白金黒付き白金板を対極として挿入し、ζO状
態でのセルインピーダンスをコール2ウシニブリツヂで
測定して試験片の電気二重層容量を求める。The test piece (electrode) was 40 wt* 1laoII water S*
(251:) immersed in K, a black platinum plate with an apparent area approximately 100 times that of the test piece was inserted as a counter electrode, and the cell impedance in the ζO state was measured using a Cole 2 Ushini Bridge. Find the double layer capacity.
本発明は上述の如き電極を得る方法を提供する4112
)であって、特定のメッキ浴中1(]ii、O。The present invention provides a method for obtaining an electrode as described above4112
) in a particular plating bath 1(]ii, O.
を主体とする金属粒子を分散させたメッキ浴による分散
メッキ法を特徴とする%0である。即ち、本発明はメッ
キ浴中の塩化ニッケル(ntax、・4M、O)捩度を
135 f/を以上とするニッケルメッキ浴を用いるこ
とによ〉、後述の実施例からも明らかをように、メッキ
浴中に存在する高濃度の塩素イオンによって金属粒子表
面に存在する酸素を除去し、#表面を清浄化することk
よシ本発明0目的が充分に達せられるも0である。かく
することKより、該金属粒子の表面を活性化てきること
及び該金属粒子が電極芯体上の金属層に強固に保持され
ることが初めて可能となるものである。%0, which is characterized by a dispersion plating method using a plating bath in which metal particles mainly composed of are dispersed. That is, the present invention uses a nickel plating bath in which the torsion of nickel chloride (ntax, 4M, O) is 135 f/ or more, as will be clear from the examples described below. The high concentration of chlorine ions present in the plating bath removes oxygen present on the surface of metal particles and cleans the surface.k
However, the object of the present invention can be fully achieved. By doing so, it becomes possible for the first time to activate the surface of the metal particles and to firmly hold the metal particles in the metal layer on the electrode core.
分散メッキ法とは、金属層を形成する金属を含む水溶液
に、−例としてニッケルを主体とする粒子を分散せしめ
た浴K、電極2体を陰極として、メッキを行い、電極芯
体上に、上記金属と粒子を共析せしめるもOである。In the dispersion plating method, plating is performed using an aqueous solution containing the metal forming the metal layer, a bath K in which particles mainly composed of nickel are dispersed, and two electrodes serving as cathodes, and plating is performed on the electrode core. O is also used to co-deposit the metal and the particles.
この分散状態を維持するためKIri極々O方法を採用
することができ、例として機械攪拌、ガス攪拌、液循環
方式、超音波攪拌、流動床などを採用することかできる
。In order to maintain this dispersed state, the KIri Extremely O method can be employed, and examples include mechanical stirring, gas stirring, a liquid circulation system, ultrasonic stirring, and a fluidized bed.
金属層としてニッケル層を採用する場合、全塩化ニッケ
ル浴、高塩化ニッケル浴、塩化ニッケルー酢酸ニッケル
浴を採用しうる。When a nickel layer is used as the metal layer, a total nickel chloride bath, a high nickel chloride bath, or a nickel chloride-nickel acetate bath can be used.
次いでこの様な浴4(]ii、Ooから選ばれ良金属を
含む粒子を分散せしめる。この様々粒子O材質及び粒径
社前述し九遇シである。ただ1粒子として1/IL、C
oから選ばれた第一〇金属とムλ、 Zn、 Mg、
8!lから選ばれえ第二〇金属の合金を採用する場合は
、後述する様な苛性アルカリ処理することが好ましい。Next, particles containing a good metal selected from such a bath 4(]ii, Oo are dispersed.The materials and particle sizes of these various particles are as described above.As a single particle, 1/IL, C
The 10th metal selected from o and Mgλ, Zn, Mg,
8! When an alloy of metal No. 20 selected from 1 is used, it is preferable to perform a caustic alkali treatment as described below.
か\る合金としては前述し九通〕、未展開ツネーニッケ
ル、ツネープパル)を採用することが実際的である。As such alloys, it is practical to use the aforementioned nine materials, undeveloped Tsune Nickel, and Tsune Pal).
又粒子として、前述した第一の金属単独を採用する場合
及び予め菖−の金属と第二〇金属の合金から第二〇金属
の少なくとも一部を除去しえもOt採用することもでき
、かかる場合は、後述する苛性アルカリ処理をする必要
はほとんどない。この様な40として例えば、展開し喪
ラネーニッケル、2ネーコパルFを採用で暑る。In addition, when the above-mentioned first metal is used alone as the particles, it is also possible to remove at least a part of the 20th metal from an alloy of the iris metal and the 20th metal in advance, and in such cases, There is almost no need for the caustic alkali treatment described below. For example, as a 40 like this, it is hot to use Mourning Raney Nickel and 2 Ney Copal F.
こO様な粒子の浴中での割合は% 1 t/l〜200
t7tcしておくむとが電極表両に粒子の付着状態を
嵐好にする意味から好ましい。又分散メッキ作業時O温
度条件1j2G〜80℃、電流密度は1ム/41111
”〜20ム/ am”であることが好ましい。The proportion of O-like particles in the bath is %1 t/l~200
It is preferable to leave it at t7tc in order to make the adhesion state of particles on both electrode surfaces even. Also, during dispersion plating work, the temperature conditions are 1j2G to 80℃, and the current density is 1μ/41111.
It is preferable that it is "~20 μm/am".
尚メッキ浴KFi、歪減少用の添加剤、共析を助長する
添加剤等を適宜加えてよいことはもちろんである。It goes without saying that the plating bath KFi, additives for strain reduction, additives for promoting eutectoid, etc. may be added as appropriate.
まえ、粒子と金属層との密着性をさらに強固にするため
に1分散メッキ後加熱中、再度M1メッキを行うこと等
を適宜行ってもよ−ことは?−O外前述し喪様に1電極
芯体と粒子を含む金属層と0間に中間層を設ける場合は
、電極芯体をまずMl メツ$、Oo メッキ、ムg
メ。ツキ又はOu メッキしその後前述し先分散メッ
キ法でその上に粒子を含む金属層を形成する。First, in order to further strengthen the adhesion between the particles and the metal layer, is it possible to perform M1 plating again during heating after 1 dispersion plating? -O As mentioned above, if an intermediate layer is provided between the electrode core and the metal layer containing particles, the electrode core must first be coated with Ml, Oo, plating, and Mg.
Me. Then, a metal layer containing particles is formed thereon by the above-mentioned dispersion plating method.
か\る場合のメッキ浴として社上述した種々のメッキ浴
が採用でき、Ou メッキについても公知のメッキ浴が
採用できる。The various plating baths mentioned above can be used as plating baths in such cases, and known plating baths can also be used for O plating.
この様にして、電極芯体上に1金属層を介して粒子が付
着した電極が得られる。In this way, an electrode is obtained in which particles are attached to the electrode core through one metal layer.
その俵、必要に応じ、苛性アルカリ処理(例えば苛性ア
ルカリ水溶液に浸漬する)して1合金粒子中のMi、O
O以40金属の少なくとも一部を溶出除去せしめ、該粒
子を多孔性にする。If necessary, the bales are treated with caustic alkali (for example, immersed in an aqueous caustic solution) to reduce the amount of Mi and O in one alloy particle.
At least a portion of the O40 metal is eluted and removed, rendering the particles porous.
か−る場合、苛性アルカリ水溶液Om1度鉱、NaO!
l で5−40 wt4j、温度は50℃〜150℃
の条件下で行うことが好ましい。In this case, aqueous caustic solution Om1 degree ore, NaO!
l 5-40wt4j, temperature 50℃~150℃
It is preferable to carry out under the following conditions.
又、粒子として前述し丸亀−9第二〇金属との合金を採
用し九場合、上述し九様tV性アルカリ処理を行うこと
が好ましいが、か−る粒子を付着した電極を苛性アルカ
リ処理をせず、そのまま塩化アルカリ電解槽に堆)付け
、実際に電解を行ってもよい。In addition, when the aforementioned alloy of Marugame-9 and the 20th metal is used as the particles, it is preferable to perform the above-mentioned tV-based alkali treatment. Instead, it may be directly deposited in an alkali chloride electrolytic cell and electrolyzed.
か−る場合、電解O過程で第二〇金属が溶出し、電極の
過電圧が低下する。ただし、諌溶出しえ第二〇金属イオ
ンによって、生成苛性アルカリ水5illが着干汚染さ
れる。In this case, the 20th metal is eluted during the electrolytic O process, and the overvoltage of the electrode is reduced. However, 5ill of produced caustic alkaline water is contaminated by the 20th metal ions that can be eluted.
本発明の電極はイオン交換膜法塩化アルカリ水溶液電解
用の電−1III#に陰極として採用できることはもち
ろんであるが、この外、多孔性隔膜(例えばアスベスト
隔膜)を用い九塩化アルカリ水**電解用及び水電解用
の電極としても採用し得る。The electrode of the present invention can of course be used as a cathode in Electron-1III# for electrolysis of aqueous alkali chloride solutions using an ion exchange membrane method. It can also be used as an electrode for water electrolysis.
次に本発明の実施例を挙げて説明する。Next, examples of the present invention will be described.
実施例1
全塩化ニッケル浴(11104−4夏50300F/L
%HsBOs 3 II f/l )中に用研ファイン
ケミカル社製O展開前2ネーニッケル合金粉末□1is
ob、ム15◎9II200メツシユパス)t20t”
to割合に添加し、これをよく攪拌しながらMi 板を
陽極、鉄板(電極芯体)を陰極として、電流密度S O
mA/am” %pi Lo、 50℃で!io分メツ
メツキり九。ζO結果鉄板上に黒灰色のメッキ層が得ら
れた。Example 1 Total nickel chloride bath (11104-4 Summer 50300F/L
%HsBOs 3 II f/l) before O development by Yoken Fine Chemical Co., Ltd. 2N nickel alloy powder □1is
ob, mu15◎9II200 mesh pass) t20t”
With the Mi plate as an anode and the iron plate (electrode core) as a cathode, the current density S O
mA/am'' %pi Lo, !IO minutes at 50°C. As a result, a black-gray plating layer was obtained on the iron plate.
又M1 メッキ層は約80PでTot)、メッキ層中の
Ml−ム1合金粒子紘約35 wt−でありえ。Also, the M1 plating layer can be about 80P (Tot), and the M1 alloy particles in the plating layer can be about 35 wt.
次に、ζOものを20−1亀OH中で80℃。Next, the ζO material was heated in 20-1 Kame OH at 80°C.
1時間展開してム1を嬢出湯せえ電気二重層容量#i1
@ (100p’lr/lym” ”eあ夕、水素過
電圧性601mマであつえ。Develop for 1 hour and remove the electric double layer capacity #i1
@ (100p'lr/lym) ``E, tomorrow, hydrogen overvoltage is 601m.
実施例2
高塩化ニッケル浴(Mi804−411,0200 f
/L%1lio11拳4B10175 t/ L、
l1slO140f/f)中に用研ファインケミカル社
製OjI開餉ツネーニッケル合金粉末(Mi50チ、ム
1solzooメツシエパス)を201710割合に添
加し、これをよく攪拌しながらMl板を陽極、鉄板(電
極芯体)を陰極として、電tIt書度20 mA/am
” 、pHt 8.45℃で1時間メツキを行つえ。こ
0結果、鉄板上に黒灰色0メッキ層が得られた。Example 2 High nickel chloride bath (Mi804-411,0200 f
/L%1lio11fist4B10175t/L,
Add 201710 ratio of OjI open nickel alloy powder (Mi50chi, M1solzoo Metsushiepasu) manufactured by Yoken Fine Chemical Co., Ltd. into 140f/f), and stir well to form the Ml plate as an anode and the iron plate (electrode core). as a cathode, the current level is 20 mA/am
Plating was carried out for 1 hour at a pH of 8.45°C.As a result, a black-gray plating layer was obtained on the iron plate.
又舅1 メッキ層は約100Pであ〉、メッキ層中01
11−ム1重合数子は約255tlで6つ喪。Mata 1 The plating layer is about 100P〉, and the plating layer is 01
11-mu 1 polymerization number is about 255 tl and there are 6 numerators.
これを実施例1と同様の方法でム1 を溶出させえ。電
気二菖層容量は15000pν15+3 であシ、水
素過電圧#i70 wrマであった。Elute Mu1 using the same method as in Example 1. The electric double layer capacity was 15,000 pv15+3, and the hydrogen overvoltage was #i70 wr.
実施例5
塩化ニッケル、酢酸ニッケル浴(菖to1g・61sO
I S 5 f / L 、 111(OliaOOO
)怠1141m0 105pit)中に用研ファインケ
ミカル製01開前ラネーニッケル合金着末(Mis($
1!、ム15G9120077シ、Wバx)fsof/
ltD割合に添加し、これを攪拌しながらlli @を
陽極。Example 5 Nickel chloride, nickel acetate bath (1g of irises, 61sO
I S 5 f/L, 111 (OliaOOOO
) 1141m0 105pit) during which Yoken Fine Chemicals 01 Raney nickel alloy was deposited (Mis($
1! , MU15G9120077SI, WBAx) fsof/
Add it to the ltD ratio and add the lli@ to the anode while stirring.
鉄板(電極芯体)を陰極として、電流密度50mA/a
w” %pm I O、50℃でso分メッキを行った
。eO結釆、鉄板上に黒灰色のメッキ層が得られた。Current density 50mA/a using iron plate (electrode core) as cathode
plating was carried out using w''% pm IO at 50° C. As a result, a black-gray plating layer was obtained on the iron plate.
又M1 メッキ層線約40p″eあ)、メッキ層中01
11−ム1合金粒子妹約S Ovt−であつぇ。Also, M1 plated layer wire approx. 40p"ea), plated layer middle 01
11-mu1 alloy particle sister is about S Ovt-.
これを実施例1と同様の方法でム1 を溶出させた。電
気二電層容量は10000 FF151” でTol
、水素過電圧は80℃マであつ九。Mu1 was eluted from this in the same manner as in Example 1. The electric double electric layer capacity is 10000 FF151” and Tol
, hydrogen overvoltage is 80℃.
以上の実施例からも分る通〉、メッキ浴中O塩化ニッケ
ルtVH度が上昇するKつれて、電極性能が向上する。As can be seen from the above examples, as the degree of nickel chloride tVH in the plating bath increases, the electrode performance improves.
比較例 ワット浴(1iisO4俸71!、OS OOf/l。Comparative example Watt bath (1iisO4 salary 71!, OS OOof/l.
MiO14・4H1040f / t、 H2BO3S
Of / J! )中に用研ファインケミカル社製O
展−前ラネーニッケル粉末(itiso哄、ムl 5[
1平均粒径sOμ)を100 f/lの割合に添加し、
これをよく攪拌しながらMi板を陽極、Ou板(電極2
体)を陰極として、CD30mム/国1、pHK5.5
5℃の条件で50分Oり板のメッキを行った。その結果
Ou版板上黒灰色Oメッキ層が得られ1表面には微細t
k!!凸が多数存在していることが顕微鏡観察O結果判
り九。こOも(Dt−2011NaOH中で80℃で1
時間展開してム1t−溶出させた。MiO14・4H1040f/t, H2BO3S
Of/J! ) Inside is O made by Yoken Fine Chemical Co., Ltd.
Exhibition - Former Raney Nickel Powder (Itiso 哄, Mul 5 [
1 average particle size sOμ) at a rate of 100 f/l,
While stirring this well, use the Mi plate as the anode and the Ou plate (electrode 2).
body) as a cathode, CD30mm/country 1, pHK5.5
The plate was plated at 5° C. for 50 minutes. As a result, a black-gray O plating layer was obtained on the O plate.
k! ! It is clear from microscopic observation that there are many convexities. Komo (Dt-20111 at 80℃ in NaOH
The time was developed and the sample was eluted.
か\るメッキされ九〇u 板の電気二菖層容量Id 5
000 pν/am”であつ九。尚電気二菖層容量嬬試
験片を40 vtll 11aoIi 水溶t(25℃
)中に浸漬し、試験片0100倍O見掛叶画積をもつ白
金黒付き白金板を対極として挿入し、こO状態でOセル
インピーダンスを冨−ルラウシエブリッジで測定して試
験片O電気二直層容量を求めえ。Electric double layer capacitance of plated 90u board Id 5
000 pν/am''.In addition, the electrical double layer capacitance test piece was dissolved in water at 40 vtll 11aoIi (25℃
), insert a platinum black plate with a platinum black plate having an apparent leaf area of 0100 times the test piece as a counter electrode, and measure the O cell impedance in this O state with a Tomi-Leroucier bridge. Find the double layer capacity.
又菖1 メッキ層紘約40声であ)、メッキ層中0M1
−ム1重合数子は約ISwt−であつえ。Mataya 1 (approximately 40 plating layers), 0M1 in the plating layer
-Mu1 polymerization number is about ISwt-.
次にか−るメッキ処理し九〇u板を陰極として用い、
40 vt% ]IaOIi 水溶液(?OC)。Next, using the plated 90U plate as a cathode,
40 vt%]IaOIi aqueous solution (?OC).
20ム/a−条件下で飽和せプク電極を参照電極として
使用して電極電位を測定しえ。これより水素過電圧は1
20 mVであった。Measure the electrode potential using a saturated electrode as a reference electrode under 20 μm/a-conditions. From this, the hydrogen overvoltage is 1
It was 20 mV.
第1図は本発明の電極の一例む表面部分断藺図%第2図
は本発明の電極O他ovgotirri*分断面図を夫
々示す。
茅 l 圀
芽2)覇FIG. 1 is a partial cross-sectional view of the surface of an example of the electrode of the present invention. FIG. 2 is a cross-sectional view of the electrode O and other electrodes of the present invention. Kaya l Kunime 2) Victory
Claims (5)
ニッケル、:Iバルトから選ばれえ少なくとも一種の金
属を含む粒子を付着せしめる電極の製造法において、′
諌粒子を塩化ニッケル(MiOl、−4Hmo トL、
”() 11度$I S S f/A以上である塩化ニ
ッケルを含む浴中に分散せしめ九ニッケルメツ午11に
電極芯体を浸漬せしめてメッキ処理することを特徴とす
る電極O#!造法。(1) Through a layer of nickel on the three electrodes,
In a method for manufacturing an electrode to which particles containing at least one metal selected from nickel, :I balt are attached,
Nickel chloride (MiOl, -4HmotoL,
``() Electrode O#! Manufacturing method characterized by plating by immersing the electrode core in nickel chloride dispersed in a bath containing nickel chloride having a temperature of 11 degrees or higher. .
の金属とアル々エクム、m鉛、!ダネVウム、スズから
選ばれ大第二〇金属との合金から第二〇金属の少なくと
も一部を除去してなる粒子である特許請求の範1i(1
)の電極01m造法。(2) Particles are a first metal selected from nickel and cobalt, Al-ecum, m-lead,! Claim 1i (1
) electrode 01m manufacturing method.
ニッケル、コバルトから選ばれ九嬉−t)41属とアル
建ニウム、亜鉛、マグネシクム、スズから選ばれた第二
〇金属とO合金から成る粒子を・付着せしめ1次いで苛
性アルカリ処理して、上記合金から成る粒子中から第二
〇金属の少なくとも一部を除去せしめる巷許諦求の範囲
(1)0電極の製造法。(3) On the electrode core, through a layer consisting of nickel, 41 metals selected from nickel and cobalt, 20 metals selected from aluminum, zinc, magnesium, and tin, and O alloy. (1) A method for manufacturing a 0 electrode, in which at least a part of the metal No. 20 is removed from the particles made of the above-mentioned alloy by adhering the particles and then treating with caustic alkali.
である特許lIL、*の範囲(1)〜(3)の電極O製
造法。(4) The proportion of particles contained in the layer is 5-8Q wt9G
A method for manufacturing an electrode O according to the ranges (1) to (3) of patent lIL, *.
−8以上である特許請求の範囲(1)〜(4)O電極の
製造法。(5) Electrode *1 Ik0 electric double electric quantity is 1000Fν/
-8 or more Claims (1) to (4) A method for manufacturing an O electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57145486A JPS5842781A (en) | 1982-08-24 | 1982-08-24 | Production of electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57145486A JPS5842781A (en) | 1982-08-24 | 1982-08-24 | Production of electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5842781A true JPS5842781A (en) | 1983-03-12 |
JPS6123278B2 JPS6123278B2 (en) | 1986-06-05 |
Family
ID=15386369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57145486A Granted JPS5842781A (en) | 1982-08-24 | 1982-08-24 | Production of electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842781A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62241278A (en) * | 1986-04-11 | 1987-10-21 | 矢崎総業株式会社 | Wire strain relief connector |
JPH02102665U (en) * | 1989-02-01 | 1990-08-15 | ||
JPH0651013U (en) * | 1992-12-17 | 1994-07-12 | 古河電気工業株式会社 | Wire harness for door |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1148865A (en) * | 1965-05-07 | 1969-04-16 | Ceskosloveska Akademie Ved | A method of producing active electrodes with a low over-voltage for electrolysis |
US3790454A (en) * | 1971-01-22 | 1974-02-05 | Nat Defence | Electrodeposition of sponge nickel |
-
1982
- 1982-08-24 JP JP57145486A patent/JPS5842781A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1148865A (en) * | 1965-05-07 | 1969-04-16 | Ceskosloveska Akademie Ved | A method of producing active electrodes with a low over-voltage for electrolysis |
US3790454A (en) * | 1971-01-22 | 1974-02-05 | Nat Defence | Electrodeposition of sponge nickel |
Also Published As
Publication number | Publication date |
---|---|
JPS6123278B2 (en) | 1986-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11757101B2 (en) | Metal porous body and method for producing metal porous body | |
US4302322A (en) | Low hydrogen overvoltage electrode | |
KR101832251B1 (en) | Highly corrosion-resistant porous metal body and method for producing the same | |
JP6960096B2 (en) | Composite metal porous material, insoluble anode, fuel cell electrode, hydrogen production equipment, shape memory alloy, biomaterial, and method for producing composite metal porous material. | |
JPS5948872B2 (en) | Electrolytic cathode and its manufacturing method | |
US4498962A (en) | Anode for the electrolysis of water | |
JPH01139785A (en) | Electrode catalyst and production thereof | |
US3732157A (en) | Electrolytic cell including titanium hydride cathodes and noble-metal coated titanium hydride anodes | |
KR890000179B1 (en) | Cathode having high durability and iow hydrogen overvoltage and process for the production thereof | |
JPS5842781A (en) | Production of electrode | |
JP2000256898A (en) | Copper plating method of wafer | |
GB2056495A (en) | Process for the preparation of low hydrogen overvoltage cathodes | |
JPS60159184A (en) | Anode for electrolyzing water | |
Pavlović et al. | On the use of platinized and activated titanium anodes in some electrodeposition processes | |
Nikolić et al. | The control of morphology and structure of galvanostatically produced tin dendrites by analysis of chronopotentiometry response | |
JP4632966B2 (en) | Method for producing electrolytic metal powder | |
CN110073037A (en) | The manufacturing method and manufacturing device of electrolytic aluminum foil | |
JP4278406B2 (en) | Fuel cell separator | |
TWI300447B (en) | Method of recycling plating liquid | |
JPS6125790B2 (en) | ||
Kahlenberg | Note on the preparation of metallic lithium | |
KR820000886B1 (en) | Process for preparing electrode | |
JPS58133387A (en) | Cathode having low hydrogen overvoltage and preparation thereof | |
Evans et al. | Studies in the Discontinuities in Electrodeposited Metallic Coatings: Part I. | |
WO2021106291A1 (en) | Method for suppressing increase in zinc concentration in plating solution, and method for producing zinc-based plating member |