JPS584241B2 - Nenshiyou Higas Karano Netsukaishyuhouhouhou - Google Patents

Nenshiyou Higas Karano Netsukaishyuhouhouhou

Info

Publication number
JPS584241B2
JPS584241B2 JP48094927A JP9492773A JPS584241B2 JP S584241 B2 JPS584241 B2 JP S584241B2 JP 48094927 A JP48094927 A JP 48094927A JP 9492773 A JP9492773 A JP 9492773A JP S584241 B2 JPS584241 B2 JP S584241B2
Authority
JP
Japan
Prior art keywords
waste gas
combustion
ammonia
heat recovery
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48094927A
Other languages
Japanese (ja)
Other versions
JPS5047001A (en
Inventor
関川礼夫
佐藤英之
山本浩
酒井直秀
飯田晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP48094927A priority Critical patent/JPS584241B2/en
Publication of JPS5047001A publication Critical patent/JPS5047001A/ja
Publication of JPS584241B2 publication Critical patent/JPS584241B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 コークス炉ガス中のアンモニア除去の一方法として、従
来からこれを洗浄除去する方式が採用されている。
DETAILED DESCRIPTION OF THE INVENTION As a method for removing ammonia from coke oven gas, a method of cleaning and removing ammonia has conventionally been adopted.

そしてここでの洗浄水は、その後アンモニアストリッパ
ーに導かれるのであるが、その際のアンモニアストリッ
パー塔頂蒸気は、これまでこれに重油その他の適宜な助
燃剤を加えて燃焼し、これをそのまま大気中に放散して
いた。
The washing water here is then led to an ammonia stripper, and the ammonia stripper top steam has traditionally been combusted with heavy oil or other appropriate combustion aids, and then released directly into the atmosphere. It was dissipating into

しかしながら、かかるアンモニア塔項蒸気を燃焼炉で燃
焼せしめた燃焼廃ガスは、きわめて高温なところから、
これをそのまま大気中に放散してしまうことははなはだ
不経済なことで、このためこれまでもこの燃焼廃ガスか
ら熱回収する試みが各種検討されて来た。
However, the combustion waste gas produced by burning such ammonia column vapor in a combustion furnace has an extremely high temperature.
It is extremely uneconomical to dissipate this into the atmosphere as it is, and for this reason various attempts have been made to recover heat from this combustion waste gas.

しかしながら、アンモニアストリッパーの塔上蒸気その
ものの中には、水蒸気の外に、アンモニア・H2Sなど
が含まれているところから、これを燃焼せしめて得られ
る燃焼廃ガスの中にも、未燃焼のアンモニアやH2Sの
燃焼によって生じたSO2,SO3が含まれていて、こ
れが種々の問題を惹起せしめていた。
However, since the overhead steam of an ammonia stripper itself contains ammonia, H2S, etc. in addition to water vapor, unburned ammonia and H2S are also included in the combustion waste gas obtained by combusting this. It contains SO2 and SO3 produced by the combustion of H2S and H2S, which causes various problems.

すなわち、燃焼廃ガス中の未燃焼アンモニアと上述のH
2Sの燃焼によって生じたSO2、SO3が反応し、こ
こにNH4HSO4或いは(NH4)3Fe(SO4)
3などの塩が著るしく析出し、これが熱回収のボイラの
伝熱管に附着して管路を閉塞したり、また水蒸気とSO
3の反応生成物であるH2SO4との相乗腐蝕作用によ
って廃熱回収ボイラチューブその他をたちまち腐蝕させ
るといった問題があった。
That is, unburned ammonia in the combustion waste gas and the above-mentioned H
SO2 and SO3 produced by the combustion of 2S react and form NH4HSO4 or (NH4)3Fe(SO4).
3 and other salts precipitate significantly, and this adheres to the heat exchanger tubes of the heat recovery boiler, clogging the pipes, and also causes water vapor and SO
There was a problem that the waste heat recovery boiler tube and other parts were immediately corroded due to the synergistic corrosion effect with H2SO4, which is the reaction product of step 3.

このため従来は止むなく上記燃焼廃ガスが持つ高エネル
ギーを回収することなく、これがそのまま大気中放散せ
ざるを得ない実情であった。
For this reason, in the past, the high energy contained in the combustion waste gas had no choice but to be dissipated into the atmosphere without being recovered.

本願の発明者は従来のこうした実情に着目し、上記の廃
ガスの熱回収をするに当り、熱回収装置の腐蝕防止策を
研究したものであるが、その結果、意外のことに上述の
熱回収装置の腐蝕防止は、ここにおける操業条件の限定
によって達成出来ることに想到するにいたったものであ
る。
The inventor of the present application focused on this conventional situation and researched corrosion prevention measures for heat recovery equipment when recovering heat from the waste gas mentioned above, and as a result, unexpectedly, the above-mentioned heat We have come to the conclusion that prevention of corrosion in recovery equipment can be achieved by limiting the operating conditions.

本発明者らはこの発明の完成に当って各種の実験を試み
たものであるが、こうした一連の実験を通じて、特に燃
焼炉にフイードするベーパ組成の中、NH3/H2Oの
割合を特定することが重要で、外に廃熱回収ボイラ缶水
側温度ならびに廃熱回収ボイラの廃ガス出口温度などを
規制するとよいことを見出し、最終的にこの発明を完成
したものである。
The present inventors attempted various experiments in completing this invention, and through a series of experiments, it was possible to specify the ratio of NH3/H2O in the vapor composition fed to the combustion furnace. This is important, and they discovered that it would be good to regulate the temperature on the water side of the waste heat recovery boiler and the temperature at the exhaust gas outlet of the waste heat recovery boiler, and finally completed this invention.

以下にこの発明の詳細を説明する。The details of this invention will be explained below.

発明者らは、この発明になる燃焼廃ガスの熱回収条件を
見出すために、既設のコークス炉ガス120000Nm
3/H規摸のアンモニアストリツパ塔頂ガス燃焼炉の機
側に第1図に示す如き蒸気発生量20kg/Hの廃熱回
収実験ボイラを設置して各種実験を行った。
In order to find heat recovery conditions for combustion waste gas according to this invention, the inventors
A waste heat recovery experimental boiler with a steam generation rate of 20 kg/h as shown in Fig. 1 was installed on the machine side of a 3/H model ammonia stripper tower top gas combustion furnace, and various experiments were conducted.

図において、1は既存燃焼炉で、これにはアンモニアス
トリツパ塔頂蒸気、助燃剤ならびに空気などが一緒に送
り込まれ燃焼される。
In the figure, reference numeral 1 denotes an existing combustion furnace, into which ammonia stripper top steam, combustion improver, air, etc. are fed together and burned.

なお、この場合の燃焼廃ガスの組成は第1図中に附記さ
れているとおりであるが、ここで特に問題となるのは未
燃焼アンモニア、SO2,SO3などである。
The composition of the combustion waste gas in this case is as shown in FIG. 1, but what is particularly problematic here are unburned ammonia, SO2, SO3, and the like.

従来、この廃ガスは何んら熱回収されることなく大気放
散されていたが、この発明においては、これを導出管2
を通して実験ボイラ3に導入される。
Conventionally, this waste gas was released into the atmosphere without any heat recovery, but in this invention, it is released into the outlet pipe 2.
It is introduced into the experimental boiler 3 through.

実験ボイラ3は煙管式ボイラであって、高温燃焼ガスは
ボイラチューブ側を通って顕熱をシェル側のボイラ缶水
に与えたのち排気ファン4によって吸出されるようにな
っている。
The experimental boiler 3 is a smoke tube boiler, and the high-temperature combustion gas passes through the boiler tube side and imparts sensible heat to the boiler canned water on the shell side, and is then sucked out by the exhaust fan 4.

排気ファン4は、その材質が通常軟鋼(SS41)であ
るために、途中図示の如く空気を吸入して温度を下げて
いる。
Since the exhaust fan 4 is usually made of mild steel (SS41), the exhaust fan 4 sucks in air as shown in the figure to lower the temperature.

排気ファン4を出た廃ガスは、既存の廃ガスダクト5で
燃焼炉廃ガス主流に混ぜられて大気中に放出される。
The waste gas exiting the exhaust fan 4 is mixed with the main stream of combustion furnace waste gas in the existing waste gas duct 5 and released into the atmosphere.

一方、実験ボイラ3K供給されるボイラ供給水は、軟水
タンク6から軟水ポンプ7、給水タンク8および給水ポ
ンプ9を経て気水ドラム10に導入される。
On the other hand, the boiler supply water supplied to the experimental boiler 3K is introduced into the air-water drum 10 from the soft water tank 6 through the soft water pump 7, the water supply tank 8, and the water supply pump 9.

缶水は、図示の如く気水ドラム10と実験ボイラ3の間
を自然循環するようになっている。
The canned water is naturally circulated between the air-water drum 10 and the experimental boiler 3 as shown in the figure.

スチームは気水ドラム10で分離されたのちスチーム管
11を通って大気に放出される。
After the steam is separated in an air-water drum 10, it is discharged into the atmosphere through a steam pipe 11.

ボイラ供給水の供給は、気水ドラム10にとりつけられ
たレベル指示制御警報装置12により制御され、またス
チーム圧は、スチームラインに設けられた圧力指示制御
警報装置13で一定に制御される。
The supply of boiler feed water is controlled by a level indicating control and alarm device 12 attached to the steam drum 10, and the steam pressure is controlled to be constant by a pressure indicating control and alarm device 13 provided in the steam line.

本実験装置で使用した主な装置の仕様は次のとおりであ
る。
The specifications of the main equipment used in this experimental equipment are as follows.

(1)ボイラ 型 式 煙管式竪型ボイラ 寸 法 シェル内径600mm×長さ3594mm材質
SS41 チューブ外径38.1mm×肉厚4.5mm×長さ34
00mm×9本 材質STB35 伝 面 3.0m2 内容積 1m3 最高使用圧 22kg/cm2G 常用圧力 20kg/cm2G (2)気水ドラム 型 式 円筒竪型 寸 法 内径600mm×長さ1400mm内容積
0.4m3 最高使用圧 22kg/cm2G 常用圧力 20kg/cm2G (3)吸水ポンプ 型 式 プランジャポンプ 能 力 70l/H×300m 電動機 0.75kW×4P×3φ×60Hz(4
)排気ファン 型 式 ターボファン 能 力 200Nm3/H×500mmAqat1
50℃ 電動機 3.7kW×4PVベルト (ファン回転数2900/min なお、図示A〜Fにおける各流体の流量、温度圧力は次
のとおりである。
(1) Boiler type Type Fire tube type vertical boiler Dimensions Shell inner diameter 600mm x length 3594mm Material SS41 Tube outer diameter 38.1mm x wall thickness 4.5mm x length 34
00mm x 9 pieces Material STB35 Transmission surface 3.0m2 Internal volume 1m3 Maximum working pressure 22kg/cm2G Regular pressure 20kg/cm2G (2) Air/water drum type Cylindrical vertical type Dimensions Inner diameter 600mm x Length 1400mm Internal volume 0.4m3 Max. Working pressure 22kg/cm2G Regular pressure 20kg/cm2G (3) Water suction pump type Plunger pump capacity 70l/H x 300m Electric motor 0.75kW x 4P x 3φ x 60Hz (4
) Exhaust fan type Turbo fan capacity 200Nm3/H x 500mmAqat1
50° C. Electric motor 3.7 kW×4 PV belt (fan rotation speed 2900/min) The flow rate and temperature pressure of each fluid in illustrations A to F are as follows.

上記装置を用いて、燃焼炉からの廃ガスの一部を実験ボ
イラに導き各種条件を変えて結果を求めた。
Using the above device, a portion of the waste gas from the combustion furnace was introduced into the experimental boiler to obtain results under various conditions.

なお、ベーパー組成中のNH3/H2Oの重量比の調整
は、常法によりアンモニアストリッパーの塔頂温度とア
ンモニアストリッパーの塔頂に設置されるベーパーコン
デンサの冷却水の流量を調節してコンデンサの出口のア
ンモニア−水蒸気ベーパ一温度を調整することによって
行った。
The weight ratio of NH3/H2O in the vapor composition can be adjusted by adjusting the temperature at the top of the ammonia stripper and the flow rate of the cooling water of the vapor condenser installed at the top of the ammonia stripper in a conventional manner. This was done by adjusting the ammonia-steam vapor temperature.

結果は第2表のとおりであった。The results were as shown in Table 2.

この表からも明らかなように、本発明を適用しない実験
1では付着塩の量は295g/本・20日で148/本
・1日であったものが、同じく本発明の実施でない実験
2で付着量は累積で338g/本、新規付着量43g/
本、1.8g/本・1日となって次第に減少している。
As is clear from this table, in Experiment 1, in which the present invention was not applied, the amount of adhering salts was 295 g/piece for 20 days, and 148 g/piece for 1 day, but in Experiment 2, also in which the present invention was not applied. Cumulative amount of adhesion is 338g/piece, new amount of adhesion is 43g/
This is gradually decreasing to 1.8g/day.

これはNH3/H2O<0.16で本発明での条件外で
あったものの実験1では管が新しいものでその表面性状
から塩類が付着しやすいため多量の塩が附着するが、実
験2では管の表面が塩類の皮膜でおおわれて、この塩類
が余り多くなるとその余分の塩類が表面から廃ガスとと
もに吹きとばされて、その堆積量は実験10期間に比し
減少したものである。
This was NH3/H2O < 0.16, which was outside the conditions of the present invention, but in Experiment 1, the tube was new and its surface properties made it easy for salts to adhere, so a large amount of salt adhered to it, but in Experiment 2, the tube was The surface of the test tube was covered with a film of salts, and when the salts became too large, the excess salts were blown away from the surface along with the waste gas, and the amount of accumulated salts decreased compared to the 10th period of the experiment.

次に本願発明方法による実験3,4の場合をみると、N
o.3では付着塩の量は累積で324g/本と、実質で
14g/本減少、即ち0.6g/本・1日減少している
Next, looking at the cases of Experiments 3 and 4 using the method of the present invention, N
o. In No. 3, the cumulative amount of attached salt was 324 g/piece, a real decrease of 14 g/piece, that is, a decrease of 0.6 g/piece/day.

これは本発明方法を実施したために、塩類の堆積は起ら
ず、反対に廃ガスで吹きとばされる量の方がかなり多く
なっていることが判る。
This shows that because the method of the present invention was carried out, no salt accumulation occurred, and on the contrary, the amount blown away by the waste gas was considerably larger.

実験No.4では、更にその傾向が一層顕著となってい
ることが判る。
Experiment no. 4, it can be seen that this tendency is even more pronounced.

これらの状態を第2図に示した燃焼炉にフイードするベ
ーパ組成のNH3/H2Oと、燃焼後の廃ガス中に含ま
れる未燃焼アンモニア濃度との関係によって説明すると
、燃焼廃ガス中に含まれる未燃焼アンモニア濃度は、ベ
ーパ組成、とくにNH3/H2Oと深く関係し、NH3
/H2O(kg/kg)の増大につれ燃焼廃ガス中の未
燃焼アンモニア濃度が低下していって、大体NH3/H
2O>0.16でアンモニア濃度が40ppm以下とな
るからである。
These conditions can be explained by the relationship between the vapor composition of NH3/H2O fed to the combustion furnace shown in Figure 2 and the concentration of unburned ammonia contained in the combustion waste gas. The unburned ammonia concentration is closely related to the vapor composition, especially NH3/H2O, and NH3
/H2O (kg/kg) increases, the unburned ammonia concentration in the combustion waste gas decreases, and approximately NH3/H
This is because when 2O>0.16, the ammonia concentration becomes 40 ppm or less.

未燃焼アンモニア濃度が低下していけばアンモニアとS
O3の反応による塩の析出が阻害されて、これがボイラ
伝熱管に付着し閉塞するような現象がみられなくなる。
As the unburned ammonia concentration decreases, ammonia and S
Precipitation of salt due to the reaction of O3 is inhibited, and a phenomenon in which salt adheres to and blocks the boiler heat exchanger tubes is no longer observed.

このことは前記第2表中のボイラチューブ付着物重量の
項にも明示されているとおりである。
This is clearly shown in the section for boiler tube deposit weight in Table 2 above.

なお、発明者は上記の実験を更にひきつづき継続してい
つたつが、90日経過後に至っても附着塩の量は略同様
で、とくに増加しなかった。
Although the inventor continued the above experiment, the amount of attached salt remained almost the same even after 90 days had passed, and there was no particular increase.

更にこの発明においては、ボイラチューブの腐蝕を回避
するために、廃熱回収ボイラ缶水側温度を酸露点(本廃
ガスの場合は150〜170℃)以上とし、かつ溶融塩
腐蝕温度約400℃以下に保ち、しかも廃ガスダクト、
排気ファンでの塩類付着を防止するために廃熱回収ボイ
ラの廃ガス出口温度も200℃以上に規制する。
Furthermore, in this invention, in order to avoid corrosion of the boiler tube, the temperature on the water side of the waste heat recovery boiler can is set to be higher than the acid dew point (150 to 170°C in the case of this waste gas), and the molten salt corrosion temperature is set to about 400°C. Keep the exhaust gas duct below,
In order to prevent salts from adhering to the exhaust fan, the exhaust gas outlet temperature of the waste heat recovery boiler is also regulated to 200°C or higher.

かくすることにより、従来の如く廃熱回収ボイラチュー
ブの腐蝕や塩類の析出を生ずることなく燃焼廃ガスから
熱回収を行うことが出来るようになった。
By doing so, it has become possible to recover heat from the combustion waste gas without causing corrosion of the waste heat recovery boiler tube or precipitation of salts as in the past.

従って、この発明によるならば、例えばコークス炉ガス
100000Nm3/H規模のアンモニア燃焼炉に廃熱
回収ボイラを併設すると1時間当り約8Tの高圧スチー
ム(20kg/cm2G)の回収が装置の腐蝕になやま
れることなく可能になることになり、その効用はすこぶ
る大である。
Therefore, according to this invention, if a waste heat recovery boiler is attached to a coke oven gas 100,000Nm3/H scale ammonia combustion furnace, the recovery of about 8T of high pressure steam (20kg/cm2G) per hour will reduce the corrosion of the equipment. This will become possible without much effort, and its benefits will be enormous.

また、従来の如く燃焼廃ガスを直接スタックを通して大
気放出するには、煙道、スタックを保護するために大量
の空気を混じて温度を下げる必要があり(例えばコーク
ス炉ガス100000Nm3/H規模で40000〜5
0000Nm3/Hの空気)、このために送風機、ダク
トの設置および運転費に無視出来ないものがあったが、
この発明によれば、これらの費用を最小限に止めること
が可能である。
Furthermore, in order to release combustion waste gas directly into the atmosphere through the stack as in the past, it is necessary to mix a large amount of air to lower the temperature in order to protect the flue and stack (for example, coke oven gas of 40,000 Nm3/H on a scale of 100,000 Nm3/H). ~5
0,000Nm3/H of air), the installation and operating costs of blowers and ducts were not negligible.
According to this invention, it is possible to minimize these costs.

更に、燃焼ガスを直接大気放散セす、脱SO2処理を行
なう場合には、従来では約1100℃の廃ガスを、一挙
に通常の脱硫装置入口温度である50〜80℃に冷却し
なければならず、そのための費用が大であったものを、
この発明によるならば約300℃からの冷却であるから
、そのための冷却設備費用も大幅に節約出来るという利
点も生じて来る。
Furthermore, when performing SO2 removal treatment in which the combustion gas is directly released into the atmosphere, the waste gas, which previously had a temperature of approximately 1100°C, must be cooled all at once to 50 to 80°C, which is the normal inlet temperature of the desulfurization equipment. First, the cost was large,
According to this invention, since cooling is performed from about 300° C., there is an advantage that the cost of cooling equipment for this purpose can be significantly reduced.

なお、上記説明においては、コークス炉ガス精製設備の
アンモニアストツパ塔頂ベーパの燃焼廃ガスからの熱回
収について述べたが、この発明は上記に止まらず、アン
モニア根、S分を含有する固体、液体、気体の燃焼廃ガ
スで未燃アンモニア分とSO3および水蒸気が共存する
燃焼廃ガスからの熱回収に広く応用することが出来る。
In the above explanation, the heat recovery from the combustion waste gas of the vapor at the top of the ammonia stopper of coke oven gas purification equipment was described, but the present invention is not limited to the above, and the present invention is not limited to the above. It can be widely applied to heat recovery from liquid or gaseous combustion waste gas in which unburned ammonia, SO3, and water vapor coexist.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアンモニアストリツパ塔頂蒸気からの廃熱回収
のフローシート、第2図は燃焼炉入口のアンモニア濃度
と未燃アンモニア濃度との関係を示す線図である。 1・・・燃焼炉、3・・・実験ボイラ、8・・・給水タ
ンク、9・・・給水ポンプ、10・・・気水ドラム、1
1・・・スチーム管。
FIG. 1 is a flow sheet for waste heat recovery from the steam at the top of the ammonia stripper tower, and FIG. 2 is a diagram showing the relationship between the ammonia concentration at the inlet of the combustion furnace and the unburned ammonia concentration. 1... Combustion furnace, 3... Experimental boiler, 8... Water supply tank, 9... Water supply pump, 10... Air water drum, 1
1...Steam pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉ガスを洗浄し、この洗浄水をアンモニア
ストリッパーにて蒸発せしめた水蒸気、アンモニア、硫
化水素を含む塔頂蒸気を燃焼炉にて燃焼せしめた燃焼廃
ガスから熱回収を行なうに当り、燃焼炉にフイードする
ベーパ組成を重量比でNH3/H2O>0.16とし、
かつ熱回収ボイラ缶水側温度を該廃ガスの酸露点以上で
400℃以下とし、さらに熱回収ボイラの廃ガス出口温
度を200℃以上として燃焼せしめることを特徴とする
燃焼廃ガスからの熱回収方法。
1. In recovering heat from the combustion waste gas, the top steam containing water vapor, ammonia, and hydrogen sulfide, which is obtained by washing coke oven gas and evaporating this washing water using an ammonia stripper, is combusted in a combustion furnace. The vapor composition fed to the furnace is set to a weight ratio of NH3/H2O>0.16,
Heat recovery from combustion waste gas, characterized in that the temperature on the water side of the heat recovery boiler is set to be above the acid dew point of the waste gas and below 400°C, and further the temperature at the exhaust gas outlet of the heat recovery boiler is set to 200°C or above. Method.
JP48094927A 1973-08-24 1973-08-24 Nenshiyou Higas Karano Netsukaishyuhouhouhou Expired JPS584241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48094927A JPS584241B2 (en) 1973-08-24 1973-08-24 Nenshiyou Higas Karano Netsukaishyuhouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48094927A JPS584241B2 (en) 1973-08-24 1973-08-24 Nenshiyou Higas Karano Netsukaishyuhouhouhou

Publications (2)

Publication Number Publication Date
JPS5047001A JPS5047001A (en) 1975-04-26
JPS584241B2 true JPS584241B2 (en) 1983-01-25

Family

ID=14123590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48094927A Expired JPS584241B2 (en) 1973-08-24 1973-08-24 Nenshiyou Higas Karano Netsukaishyuhouhouhou

Country Status (1)

Country Link
JP (1) JPS584241B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS413876Y1 (en) * 1964-02-22 1966-03-10
JPS4220802Y1 (en) * 1963-02-26 1967-12-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4220802Y1 (en) * 1963-02-26 1967-12-04
JPS413876Y1 (en) * 1964-02-22 1966-03-10

Also Published As

Publication number Publication date
JPS5047001A (en) 1975-04-26

Similar Documents

Publication Publication Date Title
EP0655414B1 (en) A process for removing elemental sulfur from a gas stream
JP5644109B2 (en) Method for producing boron-containing glass product and method for purifying exhaust gas generated during production of boron-containing glass product
US20210285637A1 (en) Method and system for improving boiler effectiveness
JP4284171B2 (en) Method and apparatus for producing electrical energy in a pulp mill
US4051225A (en) Method for the heat recovery in the processes of the removal of nitrogen oxides from exhaust gases
JPH10290919A (en) Stack gas treatment equipment and treatment of stack gas
EP0768108B1 (en) Boiler flue gas desulfuriser with heat recovery means
CN110848721B (en) Fluorine plastic steel low temperature flue gas advanced treatment device
US5517930A (en) Method for operating a coal-fired power plant
US5706644A (en) Method of operating a gas and steam power plant
JPS584241B2 (en) Nenshiyou Higas Karano Netsukaishyuhouhouhou
RU2744704C2 (en) Method for synthesis of sulphur peroxide
CN116906913A (en) Submerged incineration and waste heat recovery treatment method for organic potassium salt waste liquid containing activated carbon
CN104089492B (en) Close the purification of mineral hot furnace coal gas dry-method and recovery system
JP2012021138A (en) Dry-gas purification equipment and coal gasification-combined electric power plant
JP2019015485A (en) Exhaust gas desulfurization method for pressurized fluidized furnace system and device for the same
US5401480A (en) Removal of sulfur and nitrogen oxides from flue gases
JPS605844B2 (en) Method and apparatus for recovering energy from wet oxidation
CN113731140A (en) Lithium battery waste liquid recycling and environment-friendly treatment system and process flow
JP2009247998A (en) Exhaust gas treatment method
JPH1088144A (en) Recovery and utilization of waste heat
RU2307288C1 (en) Polyfunctional jet air heater
Kimtantas et al. Downsizing a Claus Sulfur Recovery Unit
JPS5916526A (en) Stack gas desulfurization device
Herda et al. Stack linings in high alloy stainless steels and nickel base alloys