JPH1088144A - Recovery and utilization of waste heat - Google Patents

Recovery and utilization of waste heat

Info

Publication number
JPH1088144A
JPH1088144A JP8239166A JP23916696A JPH1088144A JP H1088144 A JPH1088144 A JP H1088144A JP 8239166 A JP8239166 A JP 8239166A JP 23916696 A JP23916696 A JP 23916696A JP H1088144 A JPH1088144 A JP H1088144A
Authority
JP
Japan
Prior art keywords
heat
hot water
water
gas
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8239166A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurihara
博 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8239166A priority Critical patent/JPH1088144A/en
Publication of JPH1088144A publication Critical patent/JPH1088144A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PROBLEM TO BE SOLVED: To recover low-grade and unutilized waste heat, provide an effective energy having the objective form, quality and quantity, convert the resultant energy into the one for providing a high efficiency and a high utilization ratio and recycle and utilize the energy in the own process by utilizing a cascade. SOLUTION: This method for recovering waste heat comprises heating clean warm water 14 heated by the contact heat exchange between polluted warm water 3a from which heat is recovered and clean water 13a is further heated with waste gas 15 after combustion in a coke oven 1 in a gas-liquid heat exchanger 16 to afford hot water 16a in direct heat recovery from a by-product gas 2 with a liquid coolant 3 in the waste heat of the coke oven 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコークス炉から排出
される形態の異なった排熱をカスケードすることにより
有効熱として回収すること及びその利用方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of recovering effective heat by cascading waste heat of different forms discharged from a coke oven and a method of using the same.

【0002】[0002]

【従来の技術】コークス炉の排熱の内、主なものは赤熱
状態(約900°C)で抽出される高温コークス塊の顕
熱、燃焼排ガス及び副生ガス(COG)の顕熱・潜熱が
ある。これら排熱の内、コークス塊の顕熱は最新の技術
としてコークス乾式消火設備(以下CDQという)によ
り高温ガスを製造し、蒸気あるいは電力に変換され、有
効エネルギとして回収・利用されている。
2. Description of the Related Art Among the exhaust heat of a coke oven, the main ones are sensible heat of a high-temperature coke mass extracted in a red hot state (about 900 ° C.), sensible heat and latent heat of combustion exhaust gas and by-product gas (COG). There is. Of the waste heat, the sensible heat of the coke mass is produced as a high-tech gas by a coke dry fire extinguishing system (hereinafter referred to as CDQ), converted into steam or electric power, and recovered and used as effective energy.

【0003】C0Gの潜熱は化工設備にて、タールやベ
ンゾール等の粗軽油の有効成分を分離・回収した後、H
2 、炭化水素等のガスを含有する可燃性ガス燃料として
熱プロセスに供給利用されている。
[0003] The latent heat of COG is obtained by separating and recovering the effective components of crude light oil such as tar and benzol in a chemical conversion facility.
2. It is supplied to and utilized in thermal processes as a combustible gas fuel containing gas such as hydrocarbons.

【0004】副生ガスであるCOGは、炉出口で約80
0°Cと高温であるが、この状態での顕熱利用は熱交換
器の伝熱面にタールの析出、被覆現象が課題として残
り、汎用技術にはなっていない。
[0004] COG, which is a by-product gas, is discharged from the furnace at about 80%.
Although the temperature is as high as 0 ° C., the use of sensible heat in this state remains a problem of tar precipitation and coating on the heat transfer surface of the heat exchanger, and has not become a general-purpose technology.

【0005】C0Gの直接冷却水(安水)の顕熱/蒸発
潜熱利用技術としては、特公昭60−15676、特公
昭59−41972等の回収技術が提案されている。こ
こで、回収した熱はコークスプロセスにおける冷熱に利
用され、ベンゾール等粗軽油回収プラントでの吸収油及
び/又はC0G冷却用の熱源として利用することが提案
されている。この技術の目的は副生物の回収率アップを
図ることである。そのシステム構成を図3に示す。
[0005] As techniques for utilizing sensible heat / evaporative latent heat of direct cooling water (amsible water) for C0G, recovery techniques such as Japanese Patent Publication Nos. 60-15676 and 59-41972 have been proposed. Here, it has been proposed that the recovered heat is used for cold heat in the coke process, and is used as a heat source for absorbing oil and / or COG cooling in a crude light oil recovery plant such as benzol. The purpose of this technique is to increase the recovery of by-products. FIG. 3 shows the system configuration.

【0006】この提案は、コークス炉51から副生され
たC0G52を冷却するプライマリークーラ53からの
熱排水54を、真空発生装置55により減圧し、減圧フ
ラッシュ蒸気56を製造する。そして、これを駆動源と
する吸収式冷凍機57で冷水58を得る。この冷水でベ
ンゾールスクラバー59の吸収油60を冷却し、粗軽油
の回収効率をアップさせる技術である。
In this proposal, hot waste water 54 from a primary cooler 53 for cooling COG 52 by-produced from a coke oven 51 is depressurized by a vacuum generator 55 to produce a depressurized flash steam 56. Then, cold water 58 is obtained by an absorption refrigerator 57 using this as a driving source. This is a technique for cooling the absorption oil 60 of the benzol scrubber 59 with this cold water to improve the recovery efficiency of crude light oil.

【0007】燃焼排ガスの顕熱は、その排出温度レベル
が低いため、ダクト、スタック等の酸露点(約180°
C)腐食防止の観点と利用先に適当なプロセスがないこ
と等の理由から、このガス顕熱の利用例は少ない。
[0007] The sensible heat of the combustion exhaust gas has an acid dew point (about 180 °
C) There are few examples of using this gas sensible heat from the viewpoint of corrosion prevention and lack of an appropriate process at the place of use.

【0008】排熱回収し、吸収式冷凍機にて冷水を製造
し、空気圧縮機の吸気冷却することで電力削減を図る技
術(特公昭59−30769)や、空気、燃料を除湿し
て燃焼管理を容易にする(特開昭56−61479)等
の技術が提案されている。図4は、コークス炉の熱回収
と冷熱による燃料等の除湿プロセスの構成を示す。
[0008] A technique for reducing power consumption by recovering exhaust heat, producing chilled water by an absorption refrigerator, and cooling the intake air of an air compressor (Japanese Patent Publication No. 59-30767), and dehumidifying air and fuel for combustion Techniques for facilitating management (JP-A-56-61479) have been proposed. FIG. 4 shows the configuration of a coke oven heat recovery and dehumidification process for fuel or the like by cold heat.

【0009】これはコークス炉61から抽出された赤熱
コークス62を散水63にて直接冷却している設備64
の汚濁温排水65の顕熱回収に関するもので、汚濁温排
水は吸収冷凍機の駆動源となり、冷水67を製造する。
そして、製造された冷水67は、コークス炉の燃焼用空
気68、燃料69を熱交換器70,71で冷却・除湿
し、燃焼管理作業を容易(作業環境の改善、快適化)に
するものである。
This is a facility 64 for directly cooling red hot coke 62 extracted from a coke oven 61 by sprinkling 63.
This is related to sensible heat recovery of the polluted temperature wastewater 65. The polluted temperature wastewater serves as a drive source of the absorption refrigerator to produce cold water 67.
The produced cold water 67 is used to cool and dehumidify the combustion air 68 and fuel 69 of the coke oven in the heat exchangers 70 and 71, thereby facilitating the combustion management work (improving the working environment and making it comfortable). is there.

【0010】[0010]

【発明が解決しようとする課題】赤熱コークスの顕熱、
COGの潜熱等比較的エネルギポテンシャルの高いエネ
ルギは回収技術も確立し、有効利用されている。しか
し、反面低質/汚濁排熱は回収技術が複雑、高コスト等
の課題が残り、かつ利用先がない等の理由で、未利用の
ケースが多い。
The sensible heat of red hot coke,
Energy with relatively high energy potential, such as latent heat of COG, has also been established for recovery technology and is being used effectively. However, on the other hand, low-quality / contaminated waste heat is often unused because the recovery technology is complicated, high cost and other issues remain, and there is no destination for use.

【0011】COGの炉出口の約700〜750°Cの
顕熱の回収には、種々の技術が提案されているが、熱交
換器の伝熱面のにタール等が析出する現象を回避する技
術が十分でなく、除去にもコストがかかる事などから実
用化例も少ない。
Various techniques have been proposed for recovering sensible heat at about 700 to 750 ° C. at the COG furnace outlet, but avoid the phenomenon of tar or the like being deposited on the heat transfer surface of the heat exchanger. The technology is not sufficient, and removal is costly.

【0012】安水の潜熱/顕熱の回収に関しても、排熱
温度レベルが75〜85°C程度と低く、また汚濁して
いる。そのため、汚濁物を分離する手段として、減圧フ
ラッシュさせ蒸気の形態にする技術がある。しかし、そ
のため、真空設備の設置、新旧設備のランニングコスト
を投資しても、得られた蒸気は高々65〜70°C程度
のポテンシャルでしかなく、冷凍機に供給しても冷水製
造のプラント効率は低い。このような理由から、汚濁温
水のフラッシュ蒸気化〜冷凍機(冷水)の利用例は少な
い。
Regarding the recovery of the latent heat / sensible heat of the warm water, the exhaust heat temperature level is as low as about 75 to 85 ° C., and it is polluted. Therefore, as a means for separating pollutants, there is a technique of flashing under reduced pressure to form a vapor. However, even if the investment of the installation of vacuum equipment and the running cost of old and new equipment is invested, the obtained steam has only a potential of at most about 65 to 70 ° C, and even if it is supplied to a refrigerator, the plant efficiency of chilled water production is increased. Is low. For these reasons, there are few uses of flash vaporization of contaminated hot water to refrigerators (cold water).

【0013】COG中のベンゾール回収に冷熱は有効
で、冷凍機を併設して副産物の回収効率向上を図ってい
るが、冷凍機稼働時のランニングコストも大きい。その
ため、ガス/吸収液冷却にも副産物回収以外の複合効果
が望まれる。
[0013] Cold heat is effective in recovering benzol in COG, and a refrigerator is provided to improve the efficiency of recovering by-products. However, the running cost when the refrigerator is operated is large. Therefore, a combined effect other than by-product recovery is desired for gas / absorbent liquid cooling.

【0014】排熱回収/利用システムの主要な課題は、
利用/回収の形態、レベル及び量並びにタイミングのマ
ッチングであり、更にエネルギ輸送コスト(イニシャル
+ランニングコスト)の面から両者の近接化がシステム
成立上のキーポイントとなる。即ち、熱利用効率、稼働
率が高位でないと、低質排熱の回収/利用システムは成
立しにくい。
[0014] The main issues of the waste heat recovery / utilization system are:
It is the matching of the form, level, amount and timing of utilization / recovery, and the proximity of both is a key point in establishing the system in terms of energy transportation cost (initial + running cost). That is, unless the heat utilization efficiency and the operation rate are high, it is difficult to establish a system for collecting and using low-quality waste heat.

【0015】汚濁物質を扱う間接熱交換器は、その汚れ
物質が伝熱面に付着、析出する等により被覆され、熱抵
抗となり伝熱効率の低下を来す。そのため、定期的にバ
ッチで薬液や蒸気等にて伝熱面を洗浄する必要があり、
その蒸気等の洗浄エネルギ、コストがかかる。
In the indirect heat exchanger that handles polluted substances, the contaminated substances are coated on the heat transfer surface by depositing and depositing on the heat transfer surfaces, resulting in thermal resistance and a decrease in heat transfer efficiency. Therefore, it is necessary to periodically clean the heat transfer surface with chemicals, steam, etc. in batches,
Cleaning energy such as steam and cost are required.

【0016】COG中のNH3 、タールおよびH2 S等
のガス不純物は温度飽和状態で混入しており、利用先へ
の輸送過程で、供給配管の途中や燃焼機器、制御機器等
で凝縮、析出を生じ詰まり、腐食の原因となり、更に燃
焼過程でNOX 、SOX 等に酸化されて問題となる。現
有設備では、ガスドレーン排出装置や繊維類を捕集材と
したフィルタでダスト、凝縮水のトラップ・除去を行っ
ているが、ガス飽和物質の分離は出来ない。
Gas impurities such as NH 3 , tar and H 2 S in COG are mixed in a temperature-saturated state, and condensed in a supply pipe, a combustion device, a control device, or the like during a transportation process to a destination. clogging cause precipitation, cause corrosion, and further NO X in the combustion process, the problem is oxidized to SO X or the like. In the existing facilities, dust and condensed water are trapped and removed with a gas drain discharge device and a filter using fibers as a trapping material, but gas-saturated substances cannot be separated.

【0017】特に同伴されたNH3 はかなりの割合で燃
焼過程でNOX に酸化され、そのまま排出され、環境汚
染の原因となる。燃焼過程でNOX 抑制技術としては、
低空気比燃焼、緩慢燃焼やバーナ構造改善等いわゆるサ
ーマルNOX 低減が主体であり、COGのような随伴N
3 の濃度変化に対し、抑制対応は困難である。
In particular, the entrained NH 3 is oxidized to NO x in a considerable proportion in the combustion process and is discharged as it is, causing environmental pollution. The NO X control technology in the combustion process,
Low air ratio combustion, slow combustion and burner structure improvement called thermal NO X reduction is mainly such as COG associated N
It is difficult to respond to changes in the concentration of H 3 .

【0018】以上の課題に対し、本発明が解決しようと
する目的は、 (1)低質・未利用排熱をカスケード利用し、目的の形
態、質、及び量を持つ有効エネルギを得、高効率、高利
用率となるエネルギに変換し、自工程にリサイクル利用
する。
The objects of the present invention to solve the above problems are as follows: (1) Cascade use of low-quality / unused waste heat to obtain effective energy having a desired form, quality and quantity, and to achieve high efficiency , Convert it to high utilization energy and recycle it to your process.

【0019】(2)COG中の不純物を分離、除去する
ことで、燃焼設備等の腐食、詰まりを軽減し、設備の保
全費を削減させ、更に燃焼過程でのNOX 生成量を削減
する。
(2) By separating and removing impurities in the COG, corrosion and clogging of the combustion equipment and the like are reduced, the maintenance cost of the equipment is reduced, and the amount of NO X generated in the combustion process is reduced.

【0020】(3)排熱回収で得たエネルギを利用して
熱交換器の伝熱効率を維持し、不純物の随伴量を削減す
る。 (4)高炉水砕スラグを利用して、間接熱交換器の汚濁
温水による伝熱面の汚れを除去し、伝熱効率を維持す
る。 等が可能な方法を得る事である。
(3) The heat transfer efficiency of the heat exchanger is maintained by utilizing the energy obtained in the exhaust heat recovery, and the amount of accompanying impurities is reduced. (4) Using the granulated blast furnace slag, remove the dirt on the heat transfer surface due to the polluted hot water of the indirect heat exchanger, and maintain the heat transfer efficiency. Is to get a method that can do it.

【0021】[0021]

【課題を解決するための手段】本発明の排熱回収方法
は、コークス炉の排熱の内、副生ガスの直接冷却液によ
る熱回収において、熱を回収した汚濁温水と清浄水との
間接熱交換により加熱された清浄温水を、更に気液熱交
換器においてコークス炉燃焼排ガスにより加熱して熱水
を得ることを特徴とするものである。
According to the present invention, there is provided a method for recovering waste heat, comprising: in the heat recovery of a coke oven by direct cooling liquid of by-product gas, indirect heat transfer between polluted hot water and clean water. Clean hot water heated by heat exchange is further heated by a coke oven combustion exhaust gas in a gas-liquid heat exchanger to obtain hot water.

【0022】そして、汚濁温水と清浄水との間接熱交換
器において、汚濁温水中に粒子径0.15〜0.2mmの
高炉水砕スラグを、濃度800〜1000ppm で混入さ
せ、伝熱面の汚れを除去するようにする。
Then, in the indirect heat exchanger between the polluted hot water and the clean water, granulated blast furnace slag having a particle diameter of 0.15 to 0.2 mm is mixed in the polluted hot water at a concentration of 800 to 1000 ppm to form a heat transfer surface. Try to remove dirt.

【0023】また、得られた熱水により吸収式ヒートポ
ンプにおいて飽和蒸気を得ると共に、該ヒートポンプ出
口の熱水を吸収式冷凍機に導き、冷水を得ることを特徴
とするものである。そして、得られた飽和蒸気により副
生ガスクーラの伝熱面を清浄にし、また得られた冷水を
副生ガスの不純物除去装置に供給し不純物を除去するも
のである。
Further, the present invention is characterized in that saturated steam is obtained in the absorption heat pump using the obtained hot water, and the hot water at the outlet of the heat pump is led to an absorption refrigerator to obtain cold water. Then, the heat transfer surface of the by-product gas cooler is cleaned with the obtained saturated steam, and the obtained cold water is supplied to a by-product gas impurity removing device to remove impurities.

【0024】[0024]

【発明の実施の形態】図1は本発明の実施の態様の一例
を示す全体構成図である。コークス炉1から副生したガ
スはCOG2と呼ばれ約900°Cで排出され、ガス冷
却装置3で直接冷却水6と、また冷却装置4及び5で間
接冷却水7と熱交換しつつ、副産物回収設備8、8aで
タール、ナフタリン及びベンゾール等の粗軽油9を凝縮
分離・回収された後、ガス中の不純物が不純物除去装置
23により除去されてからガスホルダー10を経て,ガ
スブースタ11により熱プロセス12へ供給される。
FIG. 1 is an overall configuration diagram showing an example of an embodiment of the present invention. The gas produced as a by-product from the coke oven 1 is called COG 2 and is discharged at about 900 ° C., and heat exchanges with the direct cooling water 6 in the gas cooling device 3 and the indirect cooling water 7 in the cooling devices 4 and 5, while producing by-products. After the crude gas oil 9 such as tar, naphthalene and benzol is condensed and separated and recovered by the recovery equipments 8 and 8a, impurities in the gas are removed by the impurity removing device 23 and then passed through the gas holder 10 and then heated by the gas booster 11. Provided to process 12.

【0025】直接冷却水6は安水と呼ばれ75°Cで入
り、COGと熱交換して80〜84°Cの安水3aで排
出される。この安水の顕熱を汚濁/清浄水間接熱交換器
13に導き、清浄水13aから約80°Cの清浄温水1
4を得る。
The direct cooling water 6, which is called "aqueous water", enters at 75 ° C., exchanges heat with COG, and is discharged as the aqua water 3a at 80 to 84 ° C. The sensible heat of the low-temperature water is led to the polluted / clean water indirect heat exchanger 13 and the clean hot water 1 of about 80 ° C.
Get 4.

【0026】清浄温水はコークス炉の燃焼排ガス15の
顕熱を利用する気/液熱交換器16で更に昇温され、ポ
テンシャルの高い約90〜95°Cの熱水16aを得
る。これを、吸収式ヒートポンプ17の駆動熱源とし、
約5kg/ cm2 の飽和蒸気18を製造し、更にヒートポン
プ出口の約80〜84°Cの熱水17aをカスケード的
に配置した吸収式冷凍機19に導き、約8〜10°Cの
冷水20を得る。こうして、回収形態の異なった熱水や
冷水を得ることができる。
The temperature of the clean hot water is further raised by a gas / liquid heat exchanger 16 utilizing the sensible heat of the combustion exhaust gas 15 of the coke oven to obtain hot water 16a having a high potential of about 90 to 95 ° C. This is used as a driving heat source of the absorption heat pump 17,
A saturated steam 18 of about 5 kg / cm 2 is produced, and hot water 17a of about 80-84 ° C. at the outlet of the heat pump is led to an absorption refrigerator 19 arranged in cascade, and cold water 20 of about 8-10 ° C. Get. Thus, hot water and cold water in different recovery forms can be obtained.

【0027】なお、熱水16aの供給において、ヒート
ポンプ17をバイパスするバイパス管21及び流量調節
弁22を備え、発生/使用側の量、質,及びタイミング
等の調整機能を持たせる。
In supplying the hot water 16a, a bypass pipe 21 for bypassing the heat pump 17 and a flow rate control valve 22 are provided, and a function of adjusting the quantity, quality, timing, etc. on the generation / use side is provided.

【0028】排熱回収で得られた飽和蒸気18は、冷却
装置である間接熱交換器4,5の伝熱面の汚れ除去用と
して供給され、伝熱面の清浄がなされる。また、冷水2
0は不純物除去装置23に送られ、ガス中の温度飽和し
ているNH3 、H2 S等の不純物を除去する。こうし
て、燃焼設備等の腐食、詰まりを軽減し、設備の保全費
を削減させ、更に燃焼過程でのNOX 、SOX 生成量を
削減する。
The saturated steam 18 obtained by the exhaust heat recovery is supplied for removing dirt on the heat transfer surfaces of the indirect heat exchangers 4 and 5 as cooling devices, and the heat transfer surfaces are cleaned. In addition, cold water 2
0 is sent to the impurity removing device 23 to remove impurities such as NH 3 and H 2 S which are saturated in temperature in the gas. In this way, the corrosion and clogging of the combustion equipment and the like are reduced, the maintenance cost of the equipment is reduced, and the amount of NO X and SO X generated in the combustion process is reduced.

【0029】なお、季節、昼夜等の環境温度変化に対応
する為、冷凍機19と除去装置23の間に冷水アキュム
レータ(蓄熱槽を含む)を設けることもある。図2は、
熱交換器の効率維持方法に関する構成図を示す。
Incidentally, a cold water accumulator (including a heat storage tank) may be provided between the refrigerator 19 and the removing device 23 in order to cope with changes in the environmental temperature during the season, day and night. FIG.
The block diagram regarding the efficiency maintenance method of a heat exchanger is shown.

【0030】汚濁安水31と清浄水32の間接熱交換器
33において、汚濁水側の伝熱面34の汚れに対し、粒
子径約0.2mmの高炉水砕スラグ35を、供給装置36
から濃度約1000ppm で混入させ、伝熱面34の汚れ
を除去する。そして、混入させた水砕スラグは、熱交換
器出口でサイクロン等の粒子捕集装置37により安水と
分離して回収される。この場合、高炉水砕スラグの粒子
径は0.15〜0.2mmが望ましく、また濃度は800
〜1000ppm が望ましい。
In the indirect heat exchanger 33 between the polluted low-temperature water 31 and the clean water 32, the granulated blast-furnace slag 35 having a particle diameter of about 0.2 mm is supplied to the supply unit 36 against the contamination on the heat transfer surface 34 on the polluted water side.
From the heat transfer surface 34 to remove dirt. Then, the mixed granulated slag is separated and recovered from low-temperature water by a particle collecting device 37 such as a cyclone at a heat exchanger outlet. In this case, the particle size of the granulated blast furnace slag is desirably 0.15 to 0.2 mm, and the concentration is 800.
~ 1000 ppm is desirable.

【0031】[0031]

【発明の効果】本発明方法により、製鉄所のコークス炉
で、安水、燃焼排ガスの顕熱回収を、吸収式ヒートポン
プ、冷凍機をシリーズに構成し、飽和蒸気と冷水に変換
し、そのエネルギを間接熱交換器の伝熱面の汚れ除去及
びCOG不純物除去装置でのNH3 等の低減に利用し、
更に汚濁温水による間接熱交換器の伝熱面の汚れを高炉
水砕スラグを利用してクリーニングする等により、以下
の効果を得た。
According to the method of the present invention, in a coke oven of an ironworks, sensible heat recovery of combustion water and flue gas is configured as a series of absorption heat pumps and refrigerators. Is used to remove dirt on the heat transfer surface of the indirect heat exchanger and to reduce NH 3 etc. in the COG impurity removing device,
Furthermore, the following effects were obtained by cleaning dirt on the heat transfer surface of the indirect heat exchanger with polluted hot water using blast furnace granulated slag.

【0032】(1)COG中のNH3 やタール、H2
S,炭酸水素化合物等の腐食、詰まりが大幅に低減さ
れ、燃焼機器の補修コストの削減ができた。 (2)燃焼過程でのNOX 、SOX に酸化する物質の濃
度が低下し、安定燃焼が可能になった。 (3)汚濁温水等の間接熱交換器における伝熱面の清浄
化が排熱回収蒸気のパーシにより、また高炉水砕スラグ
によりでき、安定操業が可能になった。
(1) NH 3 , tar, H 2 in COG
Corrosion and clogging of S, bicarbonate compounds, etc. were greatly reduced, and repair costs for combustion equipment were reduced. (2) NO X, the concentration of a substance to be oxidized to SO X in the combustion process is reduced, made it possible to stabilize the combustion. (3) Purification of the heat transfer surface of the indirect heat exchanger such as polluted hot water was achieved by purging waste heat recovery steam and blast-furnace slag, enabling stable operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の態様の一例の全体構成を示すブ
ロック図。
FIG. 1 is a block diagram showing an overall configuration of an example of an embodiment of the present invention.

【図2】熱交換器の効率維持方法に関する構成説明図。FIG. 2 is an explanatory view of a configuration relating to a method for maintaining the efficiency of the heat exchanger.

【図3】C0Gの直接冷却水(安水)の顕熱/蒸発潜熱
利用技術の説明図。
FIG. 3 is an explanatory diagram of a technology utilizing sensible heat / evaporation latent heat of direct cooling water (amsible water) of C0G.

【図4】コークス炉の熱回収と冷熱による燃料等の除湿
プロセスの説明図。
FIG. 4 is an explanatory diagram of a heat recovery process of a coke oven and a dehumidification process of fuel or the like by cold heat.

【符号の説明】[Explanation of symbols]

1…コークス炉,2…副生ガス(COG),3…直接冷
却器、3a…汚濁温水、4,5…間接冷却器、13…汚
濁/清浄水熱交換器、13a…清浄水、14…清浄温
水、16…気液熱交換器、16a…熱水、17…吸収式
ヒートポンプ、18…飽和蒸気、19…吸収冷凍機、2
0…冷水、23…不純物除去装置。
DESCRIPTION OF SYMBOLS 1 ... Coke oven, 2 ... By-product gas (COG), 3 ... Direct cooler, 3a ... Contaminated hot water, 4,5 ... Indirect cooler, 13 ... Pollution / clean water heat exchanger, 13a ... Clean water, 14 ... Clean hot water, 16: gas-liquid heat exchanger, 16a: hot water, 17: absorption heat pump, 18: saturated steam, 19: absorption refrigerator, 2
0: cold water, 23: impurity removing device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コークス炉の排熱の内、副生ガスの直接
冷却液による熱回収において、熱を回収した汚濁温水と
清浄水との間接熱交換により加熱された清浄温水を、更
に気液熱交換器においてコークス炉燃焼排ガスにより加
熱して熱水を得ることを特徴とする排熱回収方法。
In the heat recovery of a coke oven by using a direct cooling liquid of by-product gas, clean hot water heated by indirect heat exchange between polluted hot water from which heat is recovered and clean water is further separated into gas and liquid. An exhaust heat recovery method characterized by obtaining hot water by heating with coke oven combustion exhaust gas in a heat exchanger.
【請求項2】 汚濁温水と清浄水との間接熱交換器にお
いて、汚濁温水中に粒子径0.15〜0.2mmの高炉水
砕スラグを、濃度800〜1000ppm で混入させ、伝
熱面の汚れを除去するようにした請求項1に記載の排熱
回収方法。
2. In an indirect heat exchanger between polluted hot water and clean water, granulated blast furnace slag having a particle diameter of 0.15 to 0.2 mm is mixed at a concentration of 800 to 1000 ppm into the polluted hot water to form a heat transfer surface. The exhaust heat recovery method according to claim 1, wherein dirt is removed.
【請求項3】 得られた熱水により吸収式ヒートポンプ
において飽和蒸気を得ると共に、該ヒートポンプ出口の
熱水を吸収式冷凍機に導き、冷水を得ることを特徴とす
る請求項1に記載の排熱回収方法。
3. The exhaust system according to claim 1, wherein saturated steam is obtained from the obtained hot water in an absorption heat pump, and the hot water at the outlet of the heat pump is led to an absorption refrigerator to obtain cold water. Heat recovery method.
【請求項4】 得られた飽和蒸気により副生ガスクーラ
の伝熱面を清浄にし、また得られた冷水を副生ガスの不
純物除去装置に供給し不純物を除去することを特徴とす
る請求項3に記載の回収排熱の利用方法。
4. The apparatus according to claim 3, wherein the heat transfer surface of the by-product gas cooler is cleaned by the obtained saturated steam, and the obtained cold water is supplied to an apparatus for removing impurities of the by-product gas to remove impurities. Method for utilizing recovered waste heat described in the section.
JP8239166A 1996-09-10 1996-09-10 Recovery and utilization of waste heat Pending JPH1088144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8239166A JPH1088144A (en) 1996-09-10 1996-09-10 Recovery and utilization of waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8239166A JPH1088144A (en) 1996-09-10 1996-09-10 Recovery and utilization of waste heat

Publications (1)

Publication Number Publication Date
JPH1088144A true JPH1088144A (en) 1998-04-07

Family

ID=17040719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8239166A Pending JPH1088144A (en) 1996-09-10 1996-09-10 Recovery and utilization of waste heat

Country Status (1)

Country Link
JP (1) JPH1088144A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356431A (en) * 1999-05-13 2000-12-26 General Electric Co <Ge> Method and apparatus for converting low quality level heat into cooling load in integrated gasifying system
WO2006050645A1 (en) * 2004-11-15 2006-05-18 East China University Of Science And Technology A method and an equipment for waste water of cooling coke
CN107236553A (en) * 2017-07-21 2017-10-10 中冶华天工程技术有限公司 Raw coke over gas riser evaporator
CN109679668A (en) * 2019-02-02 2019-04-26 中钢集团鞍山热能研究院有限公司 A kind of waste heat of coke oven crude gas limit recoverying and utilizing method and system
CN110240949A (en) * 2019-07-02 2019-09-17 武汉方特工业设备技术有限公司 A kind of raw coke oven gas waste heat recycling system and method
CN116121472A (en) * 2023-04-14 2023-05-16 常州中源工程技术有限公司 Waste heat recovery system for slag flushing water of blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356431A (en) * 1999-05-13 2000-12-26 General Electric Co <Ge> Method and apparatus for converting low quality level heat into cooling load in integrated gasifying system
WO2006050645A1 (en) * 2004-11-15 2006-05-18 East China University Of Science And Technology A method and an equipment for waste water of cooling coke
US7419608B2 (en) 2004-11-15 2008-09-02 East China University Of Science And Technology Treating method and equipment for coke-cooling wastewater
CN107236553A (en) * 2017-07-21 2017-10-10 中冶华天工程技术有限公司 Raw coke over gas riser evaporator
CN109679668A (en) * 2019-02-02 2019-04-26 中钢集团鞍山热能研究院有限公司 A kind of waste heat of coke oven crude gas limit recoverying and utilizing method and system
CN110240949A (en) * 2019-07-02 2019-09-17 武汉方特工业设备技术有限公司 A kind of raw coke oven gas waste heat recycling system and method
CN116121472A (en) * 2023-04-14 2023-05-16 常州中源工程技术有限公司 Waste heat recovery system for slag flushing water of blast furnace
CN116121472B (en) * 2023-04-14 2023-09-19 常州中源工程技术有限公司 Waste heat recovery system for slag flushing water of blast furnace

Similar Documents

Publication Publication Date Title
CN107860153B (en) Energy-saving water-saving coal-fired boiler wet flue gas deep comprehensive treatment system and method
RU2378040C2 (en) Thorough purification of gaseous combustion products, including removal of co2
RU2091135C1 (en) Method and installation for cleaning hot gas containing superfine particles
CN103868087B (en) A kind of collaborative enhancing PM2.5The method of elimination and fume afterheat deep exploitation and device
CN106823754B (en) Hydrate method for continuously capturing CO in cement kiln flue gas 2 Is equipped with a system
CN100584434C (en) Processing technology for medical waste, dangerous waste, domestic garbage and burning tail gas
CN105944495A (en) Coal-fired flue gas deep purification smoke plume removing system
CN1708659A (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
CN105536484B (en) A kind of pollutant pre-corrosion tower based on flue gas condensing
CN107327863A (en) Suitable for the flue gas purification system and flue gas purifying method of gas turbine
EP0177498A1 (en) Method and apparatus for improving the operation of a heat generator
CN212025276U (en) Purification device, blast furnace ironmaking system and coal gas and wastewater treatment system
JPS61501107A (en) heat recovery equipment
CN107781832A (en) Wet desulfurization flue gas is dehydrated reheating UTILIZATION OF VESIDUAL HEAT IN minimum discharge system and method
CA1222940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
CN201871300U (en) Wet dedusting device of self-heating furnace
CN101613626A (en) A kind of technology of production cooled coal gas of no discharge of phenolic water
CN109224806A (en) A kind of waste gas purification technique and purification system
CN206799197U (en) A kind of undersaturation flue gas condensing crystallizing desulfurization wastewater zero-discharge treatment system
CN205948591U (en) System is got rid of to coal -fired flue gas deep purification plume
JPH1088144A (en) Recovery and utilization of waste heat
CN102512910B (en) Smoke heat exchange process for recycling evaporated water of gas desulfurization system
CN203737036U (en) Device for cooperatively reinforcing PM2.5 removing and deep utilization of flue gas residual heat
CN112044222A (en) System and method for removing colored smoke plume of high-temperature water-washed slag steam
CN206108916U (en) Recovery system of ammonia among coking raw coke oven gas and coking wastewater