JPS5842237A - Formation of irregular pattern - Google Patents

Formation of irregular pattern

Info

Publication number
JPS5842237A
JPS5842237A JP14061181A JP14061181A JPS5842237A JP S5842237 A JPS5842237 A JP S5842237A JP 14061181 A JP14061181 A JP 14061181A JP 14061181 A JP14061181 A JP 14061181A JP S5842237 A JPS5842237 A JP S5842237A
Authority
JP
Japan
Prior art keywords
layer
heat
resistant resin
resist pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14061181A
Other languages
Japanese (ja)
Inventor
Atsushi Endo
厚志 遠藤
Toshio Yada
矢田 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14061181A priority Critical patent/JPS5842237A/en
Publication of JPS5842237A publication Critical patent/JPS5842237A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a minute and highly accurate resist pattern by a method wherein a photoresist layer is formed after forming a heat resistant resin layer on a substrate and patterning is performed to obtain a predetermined pattern and after performing dry etching by using the resist pattern as a mask, the resist pattern is removed. CONSTITUTION:A metal thin film 5 such as silicon dioxide is formed on the whole surface of a silicon substrate 4 having good plane and after applying a polyimide resin as heat resistant resin on the film 5, a heat resistant resin layer 6 is formed by baking the polyimide resin. Positive-type photoresist is similarly rotated and applied on the layer 6 for baking and a photoresist layer 7 is obtained. Furthermore, light is irradiated at the layer 7 through a photo mask for printing. Next, a predetermined resist pattern is obtained by executing development. Furthermore, etching is performed to the layer 6 by using the resist pattern as a mask.

Description

【発明の詳細な説明】 この発明は凹凸パターンの形成方法、特に半導体集積回
路とか、高性能電子部品製造の際の耐熱性樹脂による微
細かつ高精度な凹凸パターンの形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a concavo-convex pattern, and particularly to a method for forming a fine and highly accurate concavo-convex pattern using a heat-resistant resin in the production of semiconductor integrated circuits and high-performance electronic parts.

近時、半導体素子あるいは超小型電子部品の高性能化に
伴なって、微細かつ高精度の凹凸パターン形成に種々の
方法が提案さnている。この方法を微細加工に利用され
るリングラフィ技術の観点から分類すると、レジストに
像を形成させる放射エネルギの違いによって、次の5種
類に区分できる。丁なわち、ホトリングラフィ、電子線
リングラフィ、X線リングラフィ、D・・p−UV リ
ソグラフィおよびイオンビームリソグラフィのそれぞn
である。
Recently, as the performance of semiconductor elements or microelectronic components has improved, various methods have been proposed for forming fine and highly accurate concavo-convex patterns. Classifying this method from the viewpoint of phosphorography technology used for microfabrication, it can be divided into the following five types depending on the difference in the radiant energy used to form an image on the resist. namely, photolithography, electron beam lithography, X-ray phosphorography, D...p-UV lithography, and ion beam lithography.
It is.

そしてこれらの各技術は、歴史的に出現した原産で示し
、そnで九の技術に対する時代O要請と、その時代の工
業技術全体のレベルとに密接に関係してお夕、最も新し
いイオンビームリソグラフィな除き、各リソグラフィの
それぞれに対応した特黴あるレジストが開発、供給てれ
ている。
Each of these technologies is indicated by its historical origin, and is closely related to the requirements of the era for nine technologies and the overall level of industrial technology of that era. Except for lithography, special resists have been developed and supplied for each type of lithography.

従来の微細パターン形成プロセスの例として、第1図に
エツチング法を、第2図にリフトオフ法をそれぞれに示
しである。
As examples of conventional fine pattern forming processes, FIG. 1 shows an etching method, and FIG. 2 shows a lift-off method.

まず第1図のエツチング法は、基板α)上に被加工金属
薄*(2)を、続いてホトレジスト、電子線レジストな
どのレジスト層0)を形成したのち(同図に))、紫外
九、電子線などの放射線をレジスト層に選択的に照射し
、かつ現像処理して所定のパターンを形成式せ(同図側
))、その後、残ブれ九レジスト層(勢をマスクにして
被加工金属薄膜(2)を選択的に蝕刻しく同図(C) 
’) 、さらに残されたレジスト層(3)を除去して、
所期の金属薄膜パターンを形成する(同図(ロ))。ま
た第2図のリフトオフ法紘、基板α)上にレジスト層(
句を形成しく同図に))、このレジスト層(3)に放射
線を選択的に照射、翼1146理して所定のパターンを
形成させ(同図の))、ついで蒸着もしくはスパッタな
どによ)全面に金属薄11(2)を形成してから(同図
((15’)、溶媒によりレジスト層(3)と同層上の
金属薄a(2)とを溶解除去して、同様に所期の金属薄
膜パターンを形成する(同図(2))。
First, the etching method shown in Fig. 1 involves forming a thin metal to be processed *(2) on a substrate α), followed by a resist layer 0) such as photoresist or electron beam resist (see the same figure), and then etching with ultraviolet light. , the resist layer is selectively irradiated with radiation such as an electron beam, and developed to form a predetermined pattern (see the same figure), and then the remaining resist layer is covered using the remaining resist layer as a mask. The same figure (C) shows the processed metal thin film (2) being selectively etched.
'), further remove the remaining resist layer (3),
The desired metal thin film pattern is formed (see figure (b)). In addition, in the lift-off method shown in Figure 2, a resist layer (
This resist layer (3) is selectively irradiated with radiation and processed to form a predetermined pattern (as shown in the same figure), and then by vapor deposition or sputtering). After forming the metal thin layer 11 (2) on the entire surface (see (15') in the same figure, the resist layer (3) and the metal thin layer a (2) on the same layer are dissolved and removed using a solvent, and the metal thin layer a (2) on the same layer is removed in the same way. A metal thin film pattern is then formed ((2) in the same figure).

こ\でこのようにして得られる余興薄膜パターンの加工
精度は、当然のこと乍ら、直接レジストパターンの加工
精度1例えば感度とう解像力、ま九レジストと基板との
なす角度などによって影響される丸めに、レジスト質料
の特性が大切な要素となる。
Of course, the processing accuracy of the entertainment thin film pattern obtained in this way is directly influenced by the processing accuracy of the resist pattern 1, such as sensitivity, resolution, and the angle between the resist and the substrate. In this regard, the characteristics of the resist material become an important factor.

前記したように従来から多くのレジストが開発@れてい
るが、電子線用レジスト紘解像力の点では最屯優nてい
るが、一方、感度とか耐ドライエツチング性などの点で
劣り、必ずしも充分な総合特性を有していない、またX
線用レジストは優れ良郷像性を可能にするものとして注
目υれてはいるオζできの電子線用レジスト以上の高感
度化が望まれているところである。さらにDeep−U
V用レジストは短波長の紫外線域(200〜350m鵬
)に感度を有するために、ホトレジストに比較して解像
力がttっており、かつ電子機やxIsを用いるものよ
りも生産現場に導入し易い利点があるが、しかし前二者
と同様にすべての点で総合特性を満足させ得るレジスト
はない。そしてまたこれらの新しbレジスト社、それぞ
れに専用の露光装置を必要とするために、装置価格また
装置の操作性などの点で、通常のホトレジストとは異な
った問題点をもつほか、レジストパターンの信頼性、安
定性などにも難点がある。
As mentioned above, many resists have been developed in the past, but resists for electron beams are the best in terms of high resolution, but on the other hand, they are inferior in terms of sensitivity and dry etching resistance, and are not always sufficient. X
Ray resists are attracting attention as they enable excellent image quality, but there is a desire for higher sensitivity than that of electron beam resists. Furthermore, Deep-U
V resists are sensitive to the short wavelength ultraviolet range (200 to 350 m), so they have higher resolution than photoresists, and are easier to introduce into production sites than those that use electronic equipment or xIs. Although there are advantages, there is no resist that can satisfy the overall characteristics in all respects like the first two. In addition, each of these new b-resist products requires its own dedicated exposure equipment, so it has different problems than regular photoresists in terms of equipment cost and equipment operability, as well as resist pattern There are also problems with reliability and stability.

この発明社このような従来の実情に―み、現在の一般的
な材料、設備を利用して、耐熱性に優れ微細かつ高精度
表樹脂による凹凸ノくターンの形成方法を提供するもの
で、基板上に耐熱性樹脂層を形成する工程と、この耐熱
性樹脂層上にホトレジスト層を形成する工程と、このホ
トレジスト層を所定パターンにパターニングする工程と
、ノ(ターニングされたレジストパターンをマスタにし
て前記耐熱性樹脂層を選択的に乾式蝕刻する工程と、残
されたレジストパターンを除去する工程とを含むことt
4I徴としている。
In view of these conventional circumstances, the present invention company provides a method for forming concave and convex turns using a heat resistant, fine and highly precise surface resin, using current common materials and equipment. A process of forming a heat-resistant resin layer on a substrate, a process of forming a photoresist layer on this heat-resistant resin layer, a process of patterning this photoresist layer into a predetermined pattern, and a process of (using the turned resist pattern as a master). and selectively dry etching the heat-resistant resin layer, and removing the remaining resist pattern.
It is considered to be a 4I symptom.

以下、この発明方法の一実施例につき、半導体装置の製
造を例にとり、第5WIAおよび第4図な参・照して詳
細に説明する。
Hereinafter, one embodiment of the method of the present invention will be described in detail, taking the manufacture of a semiconductor device as an example, with reference to FIG. 5WIA and FIG.

#I3図(2)〜に)はこの実總例方法を工程願に示し
ている。すなわち、まず平面性が良好なシリコン基板(
4)の全面に二酸化珪素などの金属薄膜(5)を約20
0OAの厚ぢに形成式せ、かつその上に耐熱性樹脂とし
てのポリイミド樹脂2例えば電子絶縁コーティング剤8
P510(商品名、東し社II)を回転塗布機により、
3000rpmで塗布したのち、約1000℃で1時間
、約200℃で1時間脅素雰囲気中でベーキングし、約
2.4μmの厚石の耐熱性樹脂層(6)を形成し、また
その上にポジ型ホトレジストとしてムZ1350J (
商品名、米国シラプレー社1lI)を同様に回転塗布さ
せ、約80℃で30分間窒素雰囲気中でベーキングし、
約2,4μ−のホトレジスト層(7)を得、ざらにこの
ホトレジスト層ヴ)に本トマスグを介して尤(凰V)を
照射し、かつ焼付ける。ζOatの照射は超高圧水銀灯
(三笠社製マスクアライメント:出力25OW)を用い
3秒間行なり九。この状部が第3図(4)である。
#I3 Figure (2) to ) shows this practical example method in the process application. That is, first, a silicon substrate with good planarity (
4) Spread a metal thin film (5) of silicon dioxide etc. on the entire surface for about 20 minutes.
A polyimide resin 2 as a heat-resistant resin, such as an electronic insulating coating agent 8, is applied on the molding formula to a thickness of 0OA.
P510 (product name, Toshisha II) was applied using a spin coating machine.
After coating at 3000 rpm, it was baked at about 1000°C for 1 hour and at about 200°C for 1 hour in a threatening atmosphere to form a thick heat-resistant resin layer (6) of about 2.4 μm. Mu Z1350J (
(trade name, Silapray Co., USA) was applied by spin in the same manner, and baked at about 80°C for 30 minutes in a nitrogen atmosphere.
A photoresist layer (7) of approximately 2.4 .mu.m is obtained, and the photoresist layer (7) is roughly irradiated with a photoresist through the photoresist and baked. Irradiation with ζOat was performed for 3 seconds using an ultra-high pressure mercury lamp (Mikasa Co., Ltd. mask alignment: output 25OW). This shaped portion is shown in FIG. 3 (4).

ついで現像ii1[MK−5(商品名、三栄化学社展)
を用いて、この液中に前記製品を90秒間攪拌し乍ら浸
漬して現像を行な−、この操作によl光照射した部分が
除去されて、所定のレジストパターンが得られる0この
状態が第3崗−)である。
Then, development II1 [MK-5 (product name, Sanei Kagakusha Exhibition)
The product is stirred and immersed in this solution for 90 seconds to develop the product. Through this operation, the light irradiated area is removed and a predetermined resist pattern is obtained. is the third stage).

さらに続いてこれを平行平板層ドツィエッチング装置D
IM451(商品4.日電アネルパ社II、)により、
レジストパターンをマスクとして耐熱性@HIMm)0
エツチングt−なす。このエツチング紘エッチャントと
してOsガスを20 BCCM (Btamdar4 
Cvablc C@ntim@terper M1mi
tt+e)減し、印加電a:soow、圧カ&17iT
orrで4分間行なつ九。このとき耐熱性樹脂層ホトレ
ジストと同様に有機物である丸めに、o3ガスにょp同
時にエツチングされて、第3図仲に示す凹凸パターンが
得られた。
Further, this is etched using a parallel plate layer etching device D.
By IM451 (Product 4. Nichiden Anelpa II,),
Heat resistance using resist pattern as a mask @HIMm)0
Etching t-eggplant. Os gas was used as an etchant for this etching process at 20 BCCM (Btamdar4
Cvablc C@ntim@terper M1mi
tt+e) decrease, applied voltage a: soow, pressure & 17iT
Orr for 4 minutes. At this time, like the heat-resistant resin layer photoresist, the round part, which is an organic material, was simultaneously etched with O3 gas, and the uneven pattern shown in the middle of FIG. 3 was obtained.

こ−で菖4図に前記耐熱性樹脂層(8P510)と、ホ
トレジスト層(AX 1350JTh!び0MR83゜
商品名、東京応化社製)とのエツチング速度とベーキン
グ温度とOgl係を示しである。なお、Jilt510
ti○印、Ag1350J#iΔ印、0M183ijO
印で示してあゐ0また、条件はガス:08、流量:zo
sccm、印7JItカニ s o ow、圧カニQ、
17!!?@rrである0こ0JI4図からも明らかな
ように、耐熱性樹脂として用いたポリイミドl!f脂は
、べ−キンダ温度によってエツチング速度が大きく変化
するtので、実験結果として丸印で嵌わしたように、約
&6μas/wak!1から1.1 Pg/sinの値
が得られ良が、これに対してホトレジストのエツチング
遍mu、ベーキング温度にはそれほど依存せず、約0.
55 Pvm/ra i mからα65 pm/ml 
m01l[が得られた0従ってこの関係から前記耐熱性
樹脂層(2)とホトレジスト層σ)との厚さを適切に設
定し、かつ樹脂処理温度をも適切に選択することによ夕
、これら両層(6) 、 (7]のエツチングを同時に
行なうことが可能となる。実際に前記実IIAfBで鉱
、耐熱性樹脂層(6)とホトレジスト層(7)とをそれ
ぞれ2.4PmC)厚さとした結果、IIK3E9)に
みられるように、耐ima*脂層卸のエツチング部属に
伴なって、ホトレジスト1g)を同時に除去し得た〇七
してまた耐熱性樹脂11ψ)Oエツチングを1それが丁
度エツチングされる時間〔前記実施例では3分40秒間
〕よりもや\長めに行なうことによ夕、この耐熱性樹脂
層(6)および金属薄MCI)の異面を同時に清浄化で
きることが確認され、さらに得られる耐熱性樹脂の凹凸
バター7の断面エッチ角度(#)t;jはソ90″であ
り、極めて高精度であると共に、パターンの寸法ずれも
全くないものであった0 なお前記実施例では、耐熱性樹脂のベーキング温度を2
00℃としたが、これは200℃以下あるい鉱以上であ
っても、同様に高精度の凹凸パターンを得ることができ
る(実験ては80℃から460℃の温縦範囲でi[gL
九)0また凹凸パターンの形成後に再度ベーキング処理
しても、断面エッヂ角gL′1にどに悪影響を与えるこ
と妹なく(実験で扛460℃1時間、窒素ガス雰囲気中
に放置する条件までiii&!した)、安定なパターン
を維持し得て、熱的信頼性にも優れていることが判った
Oさらに前記実施ガて扛、耐熱aIIf脂上の遮蔽材と
してポジ製ホトレジストを使用したが、ネガ思ホFレジ
ストを使用してt5凹凸パターンの成膜性、バター二/
グ性に何等影響がなかった。そしてまた得られる耐熱性
樹脂の凹凸パターン解像力は、その厚さに拡依存せずに
使用するホトレジストの解像力の影響を受ける0実験で
はポジ型ホトレジストであるムZ 1350Jを使用し
て、ライン中2 Pwa ?厚さ8μmのアスペクト比
()くメーン巾/膜厚ンが4の凹凸パターンを容易に得
ることができた0 さらにまた前記実施ガでは、基板として8it用−たが
、平面性さえよければ何でもよくて特に制@はな(、飼
えばガラス、セラミックその他があ夕、かつまたこれら
の基板上にCr 、その酸化物、Ni、F・ 、ム電、
pt、w1にどの適宜必要な金属を蒸着、スパッタリン
グなどで付着させたものであってもよいO なおま九ホトレジストの他の例としては、例えば組*r
+e Pe5ltiv*鼠esist 809 (商品
名、米国コダック社製)、oFPIL−IC商品名、東
京応化社Il)参るいIIiKMR747(商品名、米
国コダツり社製) e Way Coat I C−璽
(商品名、米11/%ント社袈〕があり、かつ対応する
現像液がある。
Figure 4 shows the etching rate, baking temperature, and Ogl relationship of the heat-resistant resin layer (8P510) and the photoresist layer (AX 1350JTh! and 0MR83° trade name, manufactured by Tokyo Ohka Co., Ltd.). In addition, Jilt510
ti○ mark, Ag1350J#iΔ mark, 0M183ijO
In addition, the conditions are gas: 08, flow rate: zo
sccm, mark 7 JIt crab s o ow, pressure crab Q,
17! ! ? As is clear from Figure 0JI4, which is @rr, the polyimide used as the heat-resistant resin! Since the etching speed of F-fat varies greatly depending on the baking temperature, the etching rate is about &6μas/wak as shown in the experimental results by the circle. A good value of 1 to 1.1 Pg/sin can be obtained, but on the other hand, the etching density of the photoresist does not depend much on the baking temperature, and is about 0.1 Pg/sin.
55 Pvm/ra i m to α65 pm/ml
Therefore, based on this relationship, by appropriately setting the thickness of the heat-resistant resin layer (2) and the photoresist layer σ) and appropriately selecting the resin processing temperature, these values can be obtained. It becomes possible to perform etching of both layers (6) and (7) at the same time.Actually, the heat-resistant resin layer (6) and the photoresist layer (7) were etched with a thickness of 2.4 PmC) using the actual IIAfB. As a result, as seen in IIK3E9), 1g of photoresist was simultaneously removed along with the etching part of the ima*resin layer. It was confirmed that different surfaces of the heat-resistant resin layer (6) and metal thin MCI) could be cleaned at the same time by etching for a slightly longer time than the etching time (3 minutes and 40 seconds in the above example). Furthermore, the cross-sectional etch angle (#) t; In the example, the baking temperature of the heat-resistant resin was set to 2.
00℃, but even if the temperature is below 200℃ or above 200℃, it is possible to obtain similarly highly accurate uneven patterns (in experiments, i[gL
9) In addition, even if the baking treatment is performed again after the formation of the uneven pattern, there is no adverse effect on the cross-sectional edge angle gL'1 (experiments have shown that baking is performed at 460°C for 1 hour under conditions of leaving it in a nitrogen gas atmosphere). ), it was found that a stable pattern could be maintained and the thermal reliability was excellent.Furthermore, in the above implementation, a positive photoresist was used as a shielding material on the heat-resistant AlIf resin. Film formability of T5 concave and convex pattern using negative thought F resist, Butter 2/
There was no effect on the performance. Furthermore, the resolving power of the concavo-convex pattern of the obtained heat-resistant resin is not dependent on its thickness, but is affected by the resolving power of the photoresist used. Pwa? It was possible to easily obtain a concavo-convex pattern with a thickness of 8 μm and an aspect ratio (main width/film thickness) of 4. Furthermore, in the above embodiment, an 8it substrate was used as the substrate, but any substrate can be used as long as the flatness is good. At best, there are no special restrictions on glass, ceramics, etc., and on these substrates there may be Cr, its oxides, Ni, F, metals, etc.
Other examples of photoresists include, for example, group *r.
+e Pe5ltiv*Nezistist 809 (product name, made by Kodak, USA), oFPIL-IC product name, Tokyo Ohka Co., Ltd. IIiKMR747 (product name, made by Kodatsuri, USA) e Way Coat I C-Seal (product name) There is a corresponding developer.

さらに耐熱性樹脂としてもPIQ(商品名9日立化成社
製)、PYLALIN(商品名、米国DuP@nt社製
〕などのボリイ建ド樹脂とか、Hl−600(商品名9
目立化成社11)などのポリアミド樹脂。
Furthermore, heat-resistant resins such as PIQ (product name 9, manufactured by Hitachi Chemical Co., Ltd.), PYLALIN (product name, manufactured by DuP@nt, USA), and HL-600 (product name 9
Polyamide resins such as Tachi Kasei Co., Ltd.11).

ポリアミドイミド樹脂がある。There is polyamideimide resin.

以上詳述したようにこ0発明方法によれと1耐熱性に優
れ、微細かつ高精度で、しかもホトレジストパターンと
の寸法ずれ01に%/′h11脂の凹凸パターンを形成
できると共に、従来のホトリソグラフィ技wt−そのま
\利用できるために、電子線とかx!Iを用いる技術よ
りも、よ夕効果的に生産現場に導入し易く、脣に半導体
素子などの製造上に大きく寄与でき、新良に設備投資を
必要とせず、しかも得られる凹凸パターンが耐熱性に優
れているために耐1ラズマ性が良好で、適用される半導
体素子、電子部品0範囲を拡大し得るX&どの特長會有
するものである。
As detailed above, the method of the present invention has excellent heat resistance, is fine and highly accurate, and can form an uneven pattern with a dimensional deviation of 01%/'h11 compared to the conventional photoresist pattern. Lithography technique wt- Because it can be used as is, electron beam etc! It is easier to introduce into production sites more effectively than the technology using I, it can greatly contribute to the production of semiconductor devices, etc., it does not require any capital investment, and the resulting uneven pattern is heat resistant. It has good lasma resistance and can expand the range of semiconductor devices and electronic components to which it can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

菖1図および第2図は従来の凹凸パターン形成方法を工
程順に示す断面図、薦3図はこの発明の一実施例による
樹脂の凹凸パターン形成方法を工程順に示す断面図、第
4図は耐熱性樹脂としてのポリイミドとホトレジストと
のエツチング速度のベーキング温度依存性を示す説明図
である。 (4・・・・シリコン基板、(ω・−・・金属薄膜、(
6)・・・・耐熱性樹脂層、σ)・拳・・ホトレジスト
層。 代理人 葛 野信−(外1名) 第1図       第2図 第3図 第4図 荊人浬51皮(0C)
Figures 1 and 2 are cross-sectional views showing a conventional method for forming a concavo-convex pattern in the order of steps, Figure 3 is a cross-sectional view showing a method for forming a concavo-convex pattern on a resin in the order of steps according to an embodiment of the present invention, and Figure 4 is a heat-resistant FIG. 2 is an explanatory diagram showing the baking temperature dependence of the etching rate of polyimide as a polymeric resin and photoresist. (4... Silicon substrate, (ω... Metal thin film, (
6)... Heat-resistant resin layer, σ) Fist... Photoresist layer. Agent: Nobu Kuzu (1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Jing Renpun 51 Pi (0C)

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に耐熱性樹脂層を形成する工程と、この耐
熱性樹脂層上にホトレジスト層を形成する工程と、この
ホトレジスト層を所定パターンにパターニングする工程
と、パターニングされたレジストパターンをマスタにし
て前記耐熱性樹脂層を選a)耐熱性樹脂層の形成硬化温
度を選択し、乾式蝕刻の速度を制御させて、耐熱性樹脂
層の選択蝕刻終了と共に、レジストパターンを蝕刻除去
するようKしえことを特徴とする特許請求の範a嬉1項
記−の凹凸パターンの形成方法。 C)耐熱性樹11にボ11ド樹脂を使用し、乾式蝕刻に
平行平*iiドライエツチング装置を利用することを特
徴とする特許請求の範囲第1項また紘第2項記零の凹凸
パI−ンoh威方法。
(1) A process of forming a heat-resistant resin layer on a substrate, a process of forming a photoresist layer on this heat-resistant resin layer, a process of patterning this photoresist layer into a predetermined pattern, and a process of mastering the patterned resist pattern. a) Select the formation curing temperature of the heat-resistant resin layer, control the speed of dry etching, and remove the resist pattern by etching when the selective etching of the heat-resistant resin layer is completed. A method for forming a concavo-convex pattern according to claim 1, characterized in that the concave-convex pattern is characterized by: C) The heat-resistant wood 11 is made of board resin, and the dry etching is performed using a parallel flat*ii dry etching device. I-n-oh-we-do.
JP14061181A 1981-09-07 1981-09-07 Formation of irregular pattern Pending JPS5842237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061181A JPS5842237A (en) 1981-09-07 1981-09-07 Formation of irregular pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061181A JPS5842237A (en) 1981-09-07 1981-09-07 Formation of irregular pattern

Publications (1)

Publication Number Publication Date
JPS5842237A true JPS5842237A (en) 1983-03-11

Family

ID=15272728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061181A Pending JPS5842237A (en) 1981-09-07 1981-09-07 Formation of irregular pattern

Country Status (1)

Country Link
JP (1) JPS5842237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175761A (en) * 1983-03-26 1984-10-04 Mitsubishi Electric Corp Manufacture of solid-state image pickup element with color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175761A (en) * 1983-03-26 1984-10-04 Mitsubishi Electric Corp Manufacture of solid-state image pickup element with color filter

Similar Documents

Publication Publication Date Title
JP2919004B2 (en) Pattern formation method
JP3568514B2 (en) Method of improving uniformity of in-plane dimensional difference
JPS6323657B2 (en)
JPS5851412B2 (en) Microfabrication method for semiconductor devices
JPH0210362A (en) Fine pattern forming method
JPS5842237A (en) Formation of irregular pattern
JPH02156244A (en) Pattern forming method
US3951659A (en) Method for resist coating of a glass substrate
JPH0544169B2 (en)
JPS589944B2 (en) photo mask
JP2586383B2 (en) Method of forming reflection and interference prevention resin film
JPH03283418A (en) Resist pattern forming method
JPH0363734B2 (en)
Tan et al. Evaluation of DNQ/novolac resists for 130 nm device maskmaking
JPH01154060A (en) Production of photomask
JPH0281048A (en) Method and material for forming pattern
JPS60182093A (en) Production of magnetic bubble memory element
JPH01304457A (en) Pattern forming method
JPS625241A (en) Production of photomask
JPS6281027A (en) Fine pattern forming method
JPH03104113A (en) Formation of resist pattern
JPS6140099B2 (en)
JPS5968744A (en) Manufacture of photomask
JPS6114721A (en) Manufacture of mask
JPH04225353A (en) Production of photomask with phase shift layer