JPS5841854B2 - Ceramic implant components for osteosynthesis - Google Patents

Ceramic implant components for osteosynthesis

Info

Publication number
JPS5841854B2
JPS5841854B2 JP51029667A JP2966776A JPS5841854B2 JP S5841854 B2 JPS5841854 B2 JP S5841854B2 JP 51029667 A JP51029667 A JP 51029667A JP 2966776 A JP2966776 A JP 2966776A JP S5841854 B2 JPS5841854 B2 JP S5841854B2
Authority
JP
Japan
Prior art keywords
ceramic
granules
ceramic body
porous
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51029667A
Other languages
Japanese (ja)
Other versions
JPS52113092A (en
Inventor
春幸 川原
正也 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP51029667A priority Critical patent/JPS5841854B2/en
Publication of JPS52113092A publication Critical patent/JPS52113092A/en
Publication of JPS5841854B2 publication Critical patent/JPS5841854B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Description

【発明の詳細な説明】 本発明は生体骨補・線用のセラミックスインブラント部
材に関するものであり、その大略は接合せんとする骨切
断部分の外形寸法に忠実なセラミックスインブラント部
材である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic implant member for use in living bone grafts and wires, and is generally a ceramic implant member that is faithful to the outer dimensions of a cut bone portion to be joined.

本発明は圧粉成形体もしくはスリップキャストした成形
体を焼成することにより得るこれ迄の焼成セラミックス
体とは違って、既に完全焼成されたか或は準焼成したセ
ラミックス顆粒を粒界焼固させることにより得られる多
孔質セラミック体と、該多孔質セラミック体を套嵌する
緻密質セラミック製外套管とから成る骨接合用セラミッ
クスインブラント部材であり、焼成による体積寸法変化
がなく、寸法忠実性が極めて高く骨切断部に装着後も高
強度を有し、か一つその上多孔質の粒子間間隙の調整に
よって爾后造骨組織の侵入を許容してインターロッキン
グに基く強堅な部位定着性を図れることを特徴としてい
る。
Unlike conventional fired ceramic bodies obtained by firing compacted compacts or slip-cast compacts, the present invention is produced by hardening ceramic granules that have already been completely fired or semi-fired at grain boundaries. This is a ceramic implant member for osteosynthesis that consists of the resulting porous ceramic body and a dense ceramic mantle that fits the porous ceramic body, and has extremely high dimensional fidelity as there is no change in volumetric dimension due to firing. It maintains high strength even after being attached to the bone cut site, and furthermore, by adjusting the gap between the porous particles, it allows the subsequent invasion of osteogenic tissue and achieves strong site fixation based on interlocking. It is characterized by

本出願人は抜歯直后の抜歯窩に適用するセラミックス製
インブラント部材として上述顆粒焼固体よりなるものを
既に先願したが、本発明の基后の実験研究によってこの
インブラント部材は抜歯直后の抜歯窩のみならず、後述
実施例にも示すように、骨接合用インブラント部材につ
いて等しい効果を期待し得ることを知悉し、こ\に本発
明を提供せんとするものである。
The present applicant has already applied for a ceramic implant member made of the above-mentioned sintered granules as a ceramic implant member to be applied to a tooth extraction socket immediately after a tooth extraction. It is known that the same effect can be expected not only in tooth extraction sockets, but also in implant members for osteosynthesis, as shown in the Examples below, and therefore, the present invention is intended to be provided.

以下に本発明を実施例図に基いて詳細に説明するO 第1図は本発明部材を大腿骨の接合に用いた場合の要部
断面図、第2図は第1図に於ける多孔質セラミック体の
−・部拡犬模式図を夫々示しでいる。
The present invention will be explained in detail below based on the drawings. Figure 1 is a cross-sectional view of the main part when the member of the present invention is used for joining a femur, and Figure 2 is a cross-sectional view of the porous structure in Figure 1. An enlarged schematic view of the ceramic body is shown.

本発明インブラント部材■は、セラミックス顆粒1・・
・が所定のインブラント型に成形され、これが加熱によ
り接触粒界が焼固されて上記顆粒1・・・の集合体とな
って前記インブラント型と実質的に同一寸法形状の外形
、並びに新造骨組織の侵入を許容し得る粒子間間隙3・
・・を具備してなる多孔質セラミック体iとその外周部
に緻密質セラミックス製外套管りを套嵌した構造を有し
ており、大腿骨g−gの骨切断部において、大腿骨g、
gの骨折端g10g1 に多孔質セラミック体iが当接
するように、また緻密質セラミックス製外套管りが骨折
端に架橋するように接合される。
Implant member (■) of the present invention consists of ceramic granules 1...
・ is molded into a predetermined implant mold, and the contact grain boundaries are sintered by heating to form an aggregate of the above-mentioned granules 1 . Interparticle gaps that allow penetration of bone tissue 3.
It has a structure in which a porous ceramic body i comprising a porous ceramic body i and a mantle tube made of dense ceramics is fitted on the outer periphery of the porous ceramic body i.
The porous ceramic body i is joined to the fracture end g10g1 of g, and the dense ceramic mantle is joined to bridge the fracture end.

これにより大腿骨g、gからの新造骨組織は骨折端g1
As a result, the new bone tissue from the femur g and g is transferred to the fracture end g1.
.

gl から多孔質セラミック体iの粒子間間隙内に侵入
し、該新造骨のインターロッキング作用によりインブラ
ンド部材■の強堅な定着性が図られる。
gl into the interparticle spaces of the porous ceramic body i, and the interlocking action of the new bone ensures strong fixation of the in-brand member (ii).

また緻密質セラミックス製外套管りは多孔質セラミック
体の補強部材として作用し、多孔質セラミック体iへ大
腿骨g−gからの新造骨が侵入し、該多孔質セラミック
体iの大腿骨g−gへの強堅な定着が図られるまでの間
に印加される外力に対し破損することがない十分な機械
的強度を付与する。
In addition, the dense ceramic mantle acts as a reinforcing member for the porous ceramic body, and new bone formation from the femur g-g invades the porous ceramic body i, and the femur g-g of the porous ceramic body i Provides sufficient mechanical strength to prevent damage from external forces applied until firm fixation to g is achieved.

次にこのような構造を得る基本的な製造プロセスを材料
と共に説明する。
Next, the basic manufacturing process for obtaining such a structure will be explained together with materials.

本発明の1ンプラント部材((おける多孔質セラミック
体iは適用セラミックスの顆粒は、アルミナセラミック
スもしくはジルコンセラミックスの完全焼結体もしくは
準焼結体の顆粒であるのが強度を得るために望ましい。
In order to obtain strength, the ceramic granules to which the porous ceramic body i of the present invention is applied are preferably completely sintered or semi-sintered alumina ceramics or zircon ceramics.

この顆粒の粒径は後述する粒子間間隙3・・・の径を新
造骨組織の侵入を許容し得るに適1.た0、2〜0.7
mmφのものを得る意味で大部分の顆粒径を0.5〜
2.0 mmφ程度とする。
The particle size of these granules is such that the diameter of interparticle gaps 3, which will be described later, is set to allow entry of new bone tissue. 0.2~0.7
In order to obtain particles of mmφ, the diameter of most of the granules is 0.5~
The diameter should be approximately 2.0 mmφ.

この場合形成間隙の径を出来るだけ揃える意味で顆粒1
・・・の径も出来るだけ揃之る必要がある。
In this case, in order to make the diameter of the formation gap as uniform as possible, granules 1
It is necessary to make the diameters of ... as uniform as possible.

焼結体もしくは準焼結体を用いる理由はアルミナもしく
はジルコンの酸化物粉末をそのま\用いると焼結によっ
て著しく体積収縮して、実際のインブラント型に合致し
たものが得られず埋合が不能となる致命的な問題を残す
から予め焼成Cて、その体積収縮を事実上防止するため
である。
The reason for using a sintered or quasi-sintered body is that if alumina or zircon oxide powder is used as it is, the volume will shrink significantly due to sintering, making it impossible to obtain a product that matches the actual implant mold, resulting in a problem with filling. This is to prevent the volume shrinkage by pre-firing C, since this would leave a fatal problem of impossibility.

亦、成形時の粒形の保持すなわち顆粒の変形や破壊防止
、引いては適正な粒子間間隙の維持にも著効がある。
It is also extremely effective in maintaining the grain shape during molding, that is, preventing deformation and destruction of the granules, and also in maintaining appropriate interparticle gaps.

このようなセラミックス顆粒1・・・を所定のインブラ
ント形状に成形するに望ましい手法は、これら顆粒1・
・・を焼固温度以下で揮散する有機バインダ(CMC,
PVAなど)或はロウ材等を加えて粘土状可塑物となし
、所定のインブラント型に象形するか或は予めインブラ
ント型に適合した金型を製作しておきこの中に上記顆粒
とバインダーとの混合物を充填し”C加圧成形してもよ
い。
A desirable method for forming such ceramic granules 1... into a predetermined implant shape is to form these granules 1...
An organic binder (CMC,
(PVA, etc.) or waxing material, etc. to make a clay-like plastic material, and shape it into a predetermined implant mold, or make a mold compatible with the implant mold in advance and place the above granules and binder in it. It is also possible to fill the mixture with "C" and pressure mold it.

また補修すべき生体骨切断部分の印象を取り、これにも
とづいてこの骨切断部分の模型を作成上、精密鋳造用イ
ンベストメントを用いてこの模型に対応するキャビティ
を形威し、このキャビティ内に上記の顆粒材料を注型し
て、成形することも可能である。
Also, take an impression of the cut part of the biological bone to be repaired, create a model of the cut part based on this impression, form a cavity corresponding to this model using precision casting investment, and insert the above-mentioned cavity into this cavity. It is also possible to cast and shape the granular material.

次にかくして得られた成形体を粒界焼肉させるには粒界
に焼結反応が生起てる温度に加熱するのである。
Next, the thus obtained compact is heated to a temperature at which a sintering reaction occurs at the grain boundaries in order to cause grain boundary sintering.

アルミナセラミックス顆粒の場合、この加熱温度は14
00〜1600℃、ジルコンセラミックス顆粒の場合は
1300〜1400’Cの範囲であるが、この加熱温度
を出来るだけさげ、更に前記セラミックス顆粒同志を融
着し固形一体化させる意味で、加熱に入る前に上記顆粒
1・・・の各粒子表面をガラス、とりわけ使用セラミッ
クスと熱膨張係数が近似していてセラミックスの焼結温
度より低融点を有し、且つ、その融点近くで低粘域とな
る例えばアルミナセラミックス顆粒の場合は、ランダン
系ガラスの薄いコーティング(不図示)をすることが望
まれる。
In the case of alumina ceramic granules, this heating temperature is 14
In the case of zircon ceramic granules, the heating temperature is in the range of 00 to 1,600°C, and in the case of zircon ceramic granules, it is in the range of 1,300 to 1,400'C. The surface of each particle of the above-mentioned granules 1... is made of glass, especially a material whose coefficient of thermal expansion is similar to that of the ceramic used, which has a melting point lower than the sintering temperature of the ceramic, and which has a low viscosity region near the melting point. In the case of alumina ceramic granules, a thin coating of randane glass (not shown) is desired.

このランタン系ガラスコーティングによると焼固温度を
1000〜1200℃にさげられると共に融点で急激に
粘性が低下して顆粒1・・・間の接点位置にガラスが偏
寄してこの接点部分間のガラス接触面を拡げて粒子結合
力を改善出来るのである。
With this lanthanum-based glass coating, the sintering temperature can be lowered to 1,000 to 1,200°C, and the viscosity decreases rapidly at the melting point, causing the glass to be concentrated at the contact point between the granules 1. By expanding the contact surface, particle bonding force can be improved.

上記加熱により第2図に示したようにセラミックス顆粒
1・・・の粒界は焼固2・・・して顆粒の集合体よりな
り粒子間間隙3・・・がネット状に根を下した多孔質の
ものが得られるが、焼結体(完全もしくは半焼結体)セ
ラミックス顆粒1・・・の適用により焼成収縮は殆んど
みられず、従って実際の外形寸法に殆んど合致したイン
ブラント型が得られる。
As shown in Figure 2, by the heating described above, the grain boundaries of ceramic granules 1 were sintered and hardened 2 to form aggregates of granules, with interparticle gaps 3 rooted in a net shape. Porous products can be obtained, but due to the application of sintered (completely or semi-sintered) ceramic granules 1..., there is almost no shrinkage during firing, and therefore the ink that almost matches the actual external dimensions can be obtained. A blunt type is obtained.

この際上記粒子間間隙3・・・はセラミックス顆粒1・
・・の粒径の選択1こよって予め容易に推定することが
出来るが、新造骨組織の侵入に適する間隙3・・・は0
.2〜0.7 amφであるので、そのような間隙3・
・・を生む顆粒径を選択すべきである。
At this time, the interparticle gap 3... is the ceramic granule 1.
The particle size selection 1 for ... can be easily estimated in advance, but the gap 3 suitable for the invasion of new bone tissue is 0.
.. 2 to 0.7 amφ, such a gap 3.
A granule size that yields... should be selected.

この場合、間隙を形成する別の補助手段としてセラミッ
クス顆粒1・・・と共に30〜200メツシユのアクリ
ル樹脂粒子その他焼固温度で熱分解揮発して灰分を残さ
ない揮発性粒子(不図示)を容積比にしてセラミックス
顆粒1に対して0.5〜1φ含ませたものを用いると多
孔質を形成する粒子間間隙3・・・を均一に形威し易い
ことと顆粒1・・・の粒径を予め揃えることなく、且つ
、必要な粒径以下のものを用いてもよいと云う利便があ
る。
In this case, as another auxiliary means for forming gaps, 30 to 200 meshes of acrylic resin particles and other volatile particles (not shown) that are thermally decomposed and volatilized at the sintering temperature and do not leave any ash are added along with the ceramic granules 1. In comparison, when ceramic granules 1 contain 0.5 to 1φ, it is easy to form the interparticle gaps 3 that form porosity uniformly, and the particle size of granules 1... There is an advantage that particles having a particle size smaller than the required size can be used without having to prepare them in advance.

また、本発明のインブラント部材■における緻密質セラ
ミックス製外套管りはセラミックスの緻密な多結晶体あ
るいは単結晶体により管状に形成され、アルミナセラミ
ック、ジルコンセラミック等を通常の圧粉成形、スリッ
プキャスト成形をし、焼成して多結晶体化したもの、或
いは溶融L1該溶融塩より引上げて単結晶化したものが
使用されるO 本発明の、インブラント部材■は上記管状の緻密質セラ
ミックス製外套管り内に上記多孔質セラミック体iを挿
入し、これを加熱して緻密質セラミックス製外套管り内
壁面と該内壁面と接する多孔質セラミック体iの顆粒と
を焼固させ、一体化することにより得られる。
In addition, the dense ceramic mantle tube in the implant member (2) of the present invention is formed into a tubular shape from a dense polycrystalline or single crystalline ceramic, and is made of alumina ceramic, zircon ceramic, etc. by ordinary powder compacting or slip casting. A polycrystalline product formed by molding and firing, or a single crystallized product pulled from the molten salt is used. The implant member (2) of the present invention is the above-mentioned tubular dense ceramic mantle. Insert the porous ceramic body i into the pipe and heat it to sinter and harden the inner wall surface of the dense ceramic outer pipe and the granules of the porous ceramic body i in contact with the inner wall surface. It can be obtained by

以下に本発明を実施例を挙げて更に詳述する。The present invention will be explained in more detail below by giving examples.

(実施例 1) 〔多孔質セラミック体〕 (イ)顆粒・・・粒径1〜2朋φのアルミナセラミック
ス顆粒。
(Example 1) [Porous ceramic body] (a) Granules: alumina ceramic granules with a particle size of 1 to 2 mm.

(ロ)成形法・・・(イ)の顆粒80部にPVA(ポリ
ビニールアルコール)10% 水溶液20部並びにナフ
タリン粉(60〜100メツシユ) 2.0 部を夫々
混浴した粘土様可塑物を調整した。
(B) Molding method: Prepare a clay-like plastic material by mixing 80 parts of the granules in (A) with 20 parts of a 10% PVA (polyvinyl alcohol) aqueous solution and 2.0 parts of naphthalene powder (60 to 100 mesh). did.

一方、第1図に示すように骨折した大腿骨g−gの骨折
端g1 。
On the other hand, as shown in FIG. 1, the fracture end g1 of the fractured femur gg.

glの外形・寸法を予めX線によって検定してそれに見
合った外形。
The external shape and dimensions of GL have been verified in advance using X-rays, and the external shape matches that.

寸法の多孔質セラミック素体を手練りで造形した。A porous ceramic body of the same dimensions was modeled by hand kneading.

(/→ 焼固条件・・・この素体を1550℃に加熱す
ることによって粒子間間隙が0.3〜0:8朋φの多孔
質アルミナセラミック体iを得る。
(/→ Sintering conditions... By heating this element body to 1550°C, a porous alumina ceramic body i with an interparticle gap of 0.3 to 0:8 φ is obtained.

〔緻密質セラミックス製外套管〕[Dense ceramic mantle]

従来周知のアルミナセラミックス粉末を管状に圧粉成形
し、1600℃にて焼成して多結晶体の緻密質セラミッ
クス製外套管りを得た。
A conventionally well-known alumina ceramic powder was compacted into a tube shape and fired at 1600° C. to obtain a jacket tube made of polycrystalline dense ceramics.

上記多孔質アルミナセラミック体iを緻密質セラミック
ス製外套管り内に挿入り、1500’Cにて加熱して、
多孔質アルミナセラミック体iと緻密質セラミックス製
外套管りを焼結一体化し骨接合用セラミックスインブラ
ント部材■を形成シた。
The above-mentioned porous alumina ceramic body i is inserted into a dense ceramic jacket tube, heated at 1500'C,
A porous alumina ceramic body i and a dense ceramic mantle were sintered and integrated to form a ceramic implant member for osteosynthesis.

〔接合要領〕[Joining instructions]

上記骨接合用セラミックスインブラント部材■を大腿骨
g−gの骨折端g1 。
The above-mentioned osteosynthesis ceramic implant member (1) was attached to the fracture end g1 of the femur gg.

21間の突き合せ部位に多孔質セラミック体iが骨折端
g1 。
The porous ceramic body i is placed at the abutting site between the fracture ends g1.

glと当接し、かつ緻密質セラミックス製外套管りが骨
折端g1−g、に架橋するように配設してこれら接合部
位の外側に副木を当てがって数ケ月その状態を保持しそ
の后副木をはずした所、左右の大腿骨折端g1 。
gl, and the dense ceramic mantle tube is placed so as to bridge the fracture ends g1-g, and a splint is placed on the outside of these joints to maintain that state for several months. After removing the dorsal splint, the left and right femoral fracture ends g1.

glより上記多孔質セラミック体iの粒子間間隙内に新
造骨組織が侵入、インターロッキングして接合が十分に
行なわれていることを確認した。
It was confirmed from gl that the new bone tissue had invaded into the interparticle spaces of the porous ceramic body i, interlocked with each other, and that the bonding was sufficiently performed.

叙述より本発明インブラント部材はインブラント型に対
して寸法形状的に殆んど変らないセラミックス顆粒の集
合体である多孔質セラミック体を緻密質セラミック製外
套管で套嵌したものであるから、寸法的に適確なインブ
ラントが約束されると共に多孔質の粒子間隙の調整が容
易で遺骨組織のインターロッキングに基く強堅な部位定
着性を図れる優れた効果があり、更には多孔質セラミッ
ク体への新造骨組織の侵入が完了する迄の期間に於ても
該多孔質セラミック体に直接外部応力が印加されること
がなく、この外部応力印加により破損することは一切な
い。
From the description, the implant member of the present invention is made by fitting a porous ceramic body, which is an aggregate of ceramic granules that is almost the same size and shape with respect to the implant mold, in a dense ceramic jacket tube. In addition to ensuring a dimensionally accurate implant, the gap between porous particles can be easily adjusted, and it has the excellent effect of achieving strong site fixation based on the interlocking of skeletal tissues. No external stress is directly applied to the porous ceramic body until the invasion of the new bone tissue into the porous ceramic body is completed, and no damage occurs due to the application of external stress.

またこの本発明のインブラント部材の製造法は整形外科
医によって容易に実行し得る利益も兼ね備えたものであ
る。
The method of manufacturing an implant component of the present invention also has the advantage of being easily implemented by orthopedic surgeons.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明インブラント部材を大腿骨の接合に用い
た場合の要部断面図、第2図は第1図に於ける多孔質セ
ラミック体の一部拡大模式図を夫夫示している。 符号の説明、1・・・・・・セラミックス顆類、2・・
・・・・粒界焼固部、3・・・・・・粒子間間隙、i・
・・・・・多孔質セラミック体、■・・・・・・骨接合
用セラミックスインブラント部材、g・・・・・・大腿
骨、gl・・・・・・骨折端、h・・・・・・緻密質セ
ラミックス製外套管。
Fig. 1 is a sectional view of the main parts when the implant member of the present invention is used for joining the femur, and Fig. 2 is a partially enlarged schematic diagram of the porous ceramic body in Fig. 1. . Explanation of symbols, 1... Ceramic condyles, 2...
...Grain boundary sintered part, 3... Interparticle gap, i.
... Porous ceramic body, ■ ... Ceramic implant member for osteosynthesis, g ... Femur, gl ... Fracture end, h ...・A mantle tube made of dense ceramics.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミックス顆粒が所定のインブラント型に成形さ
れ、これが加熱によって接触粒界が焼固されて上記顆粒
の集合体となって前記インブラント型とほぼ同一寸法形
状の外形、並びに新造骨組織の侵入を許容し得る粒子間
間隙を夫々具備して戊る多孔質セラミック体を緻密質セ
ラミックス製外套管により套嵌して成ることを特徴とす
る骨接合用セラミックスインブラント部材。
1 Ceramic granules are molded into a predetermined implant mold, which is heated to harden the contact grain boundaries and become an aggregate of the granules, which has an external shape with approximately the same dimensions and shape as the implant mold, and the invasion of new bone tissue. 1. A ceramic implant member for osteosynthesis, characterized in that a porous ceramic body is fitted with a dense ceramic mantle tube, and a porous ceramic body is provided with interparticle gaps that allow for.
JP51029667A 1976-03-17 1976-03-17 Ceramic implant components for osteosynthesis Expired JPS5841854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51029667A JPS5841854B2 (en) 1976-03-17 1976-03-17 Ceramic implant components for osteosynthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51029667A JPS5841854B2 (en) 1976-03-17 1976-03-17 Ceramic implant components for osteosynthesis

Publications (2)

Publication Number Publication Date
JPS52113092A JPS52113092A (en) 1977-09-21
JPS5841854B2 true JPS5841854B2 (en) 1983-09-14

Family

ID=12282453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51029667A Expired JPS5841854B2 (en) 1976-03-17 1976-03-17 Ceramic implant components for osteosynthesis

Country Status (1)

Country Link
JP (1) JPS5841854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201157A (en) * 1986-02-27 1987-09-04 京セラ株式会社 Artificial bone and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109407A (en) * 1973-01-18 1974-10-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109407A (en) * 1973-01-18 1974-10-17

Also Published As

Publication number Publication date
JPS52113092A (en) 1977-09-21

Similar Documents

Publication Publication Date Title
CA1113970A (en) Ceramic composite material for producing porous surface layers of implantable bone and teeth substitutes
CN103402943B (en) The method manufacturing dental case by computer-aided design casting technique
US6106747A (en) Process for manufacturing prostetic dental reconstructions
US7011522B2 (en) Methods of producing dental restorations using CAD/CAM and manufactures thereof
US3905047A (en) Implantable ceramic bone prosthesis
JP3689146B2 (en) Elements for screw fixation to bone
EP0868890A3 (en) Abutment tooth model and method of manufacturing a prosthetic restoration to be formed thereon
EP0030850B1 (en) Dental appliance and method of manufacture
WO2007128192A1 (en) A medical strengthened-type porous bioceramics, its preparation method and application
JP2023182617A (en) Buried material composition for plaster casting
DE60027588T2 (en) PRESS FURNACE PISTON
WO2002022081A1 (en) Dental investing material and method of preparing dental mold
JPS5841854B2 (en) Ceramic implant components for osteosynthesis
CN106141188A (en) 3D prints molding self-propagating thermal explosion forming porous NiTi Artificial Intervention body technology
JP2022553878A (en) Method for manufacturing moldings, in particular dental moldings
EP0511546B1 (en) Investment material and mold for dental use and burnout thereof
JPH0751294A (en) Production of denture member of oxide ceramic
US20060125130A1 (en) Method of producing a dental mold
JP2007332401A (en) Admixture of titanium powder and paraffin
EP0876802A3 (en) Ceramic powder for artificial tooth and manufacturing method of artificial tooth
JP3490905B2 (en) Bone prosthesis molding method
JP2681762B2 (en) Implant material
JPH0753601B2 (en) Method for producing calcium phosphate ceramics
JP2011125653A (en) Composite biological material
JPS59166341A (en) Casting mold for casting titanium