JPS5841655B2 - The best way to get started - Google Patents

The best way to get started

Info

Publication number
JPS5841655B2
JPS5841655B2 JP8116875A JP8116875A JPS5841655B2 JP S5841655 B2 JPS5841655 B2 JP S5841655B2 JP 8116875 A JP8116875 A JP 8116875A JP 8116875 A JP8116875 A JP 8116875A JP S5841655 B2 JPS5841655 B2 JP S5841655B2
Authority
JP
Japan
Prior art keywords
molecular beam
crystal
growth
substrate
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8116875A
Other languages
Japanese (ja)
Other versions
JPS524783A (en
Inventor
森雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8116875A priority Critical patent/JPS5841655B2/en
Publication of JPS524783A publication Critical patent/JPS524783A/en
Publication of JPS5841655B2 publication Critical patent/JPS5841655B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はエツチング成分を加えた分子線結晶成長方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molecular beam crystal growth method that includes an etching component.

従来の気相成長や液相成長などのエピタキシャル成長法
よりも制御性の高い分子線エビタ午シャル成長方法が新
しく開発された。
A new molecular beam epitaxial growth method has been developed that provides better control than conventional epitaxial growth methods such as vapor phase epitaxy and liquid phase epitaxy.

こい分子線法にはIOA程度の超薄膜結晶が得られるこ
と、多成分系の結晶膜が得られること、多層構造ができ
、これに周期性をもたせることができること、原子的に
平担な面が得られること、あるいは低温で結晶膜が得ら
れることなど幾多0利点があり多くの実用化が期待され
る。
The molecular beam method has the following advantages: ultra-thin crystals on the order of IOA, multi-component crystal films, multilayered structures and periodicity, and atomically flat surfaces. It has many advantages, such as the ability to obtain crystals and the ability to obtain crystalline films at low temperatures, and is expected to find many practical applications.

しかしながら、かかる利点を有する反面分子線成長方法
には結晶性が劣り、ホール移動度が低いこと、残留ガス
により不純物濃度が下げられないことなとめ本質的な欠
点があり、特にSiやGaAsなどでは結晶性の面で気
相成長方法、液相成長方法などの従来技術と比較した場
合、はるかに低品質となる不都合があった。
However, while having these advantages, the molecular beam growth method has essential drawbacks such as poor crystallinity, low hole mobility, and impurity concentration cannot be lowered due to residual gas. In terms of crystallinity, when compared with conventional techniques such as vapor phase growth method and liquid phase growth method, there is a disadvantage that the quality is much lower.

したがって、いかにして結晶性のよいものを作るかが分
子線成長方法における重要な課題となっている。
Therefore, how to produce materials with good crystallinity is an important issue in molecular beam growth methods.

本発明は従来の分子線結晶成長方法0欠点を除去した新
しい方法を提供するもので、成長すべき結晶の原料の分
子線に、これらをエツチングする働きをもつ他0分子、
線を加えて成長をおこなうことに特徴が存在する。
The present invention provides a new method that eliminates the drawbacks of the conventional molecular beam crystal growth method.
Its characteristic lies in the fact that it grows by adding lines.

従来の分子線成長方法は、一方での構成元素の蒸発と他
方での析出といういわゆる真空蒸着の方式であり、基板
上では飛来粒子の堆積がおこるにすぎない。
The conventional molecular beam growth method is a so-called vacuum evaporation method in which constituent elements are evaporated on one side and precipitated on the other side, and only flying particles are deposited on the substrate.

なお、分子線成長は高真空中で扱われるが、それでも分
子線および基板は残留ガスによる酸化や汚染をまぬがれ
ることができず、これが基板上で堆積する際Q)単結晶
化の妨げになる。
Although molecular beam growth is performed in a high vacuum, the molecular beam and the substrate are still unable to avoid oxidation and contamination by residual gas, which hinders Q) single crystallization when deposited on the substrate.

換言すれば、分子線結晶成長方法においては成長の過程
が一方的であり、雰囲気の汚染を受けやすいために、結
晶性に限界があるともいえる。
In other words, in the molecular beam crystal growth method, the growth process is one-sided and is susceptible to atmospheric contamination, so it can be said that there is a limit to crystallinity.

本発明は、かかる問題点に鑑みてなされたもめで、発生
した分子線を汚染されることなく基板に到達させ、かつ
清浄な基板上で成長をおこさせるために、戒長ずべき結
晶の原料め分子線と結晶に対してエツチング作用をもつ
分子線を基板表面へ加えるものであって、従来の分子線
成長0膜厚制御性をそこなうことなく、結晶性0)大幅
な改善をはかることができるのみならず、従来は不可能
とされていたシリコン結晶の成長を可能にし、しかも結
晶品質も気相成長方法など他の方法とくらべて同等また
はそれ以上となるもQ)である。
The present invention was developed in view of these problems, and is a method for making crystal raw materials that must be carefully prepared in order to allow generated molecular beams to reach a substrate without being contaminated and to cause growth on a clean substrate. This method applies molecular beams that have an etching effect on crystals to the substrate surface, and can significantly improve crystallinity without impairing the controllability of conventional molecular beam growth film thickness. Not only is it possible, but it also makes it possible to grow silicon crystals, which was previously considered impossible, and the crystal quality is equal to or better than that of other methods such as vapor phase growth.

ところで、本発明の方法で用いられるエツチング作用を
もつ分子線源には、H(J?、SF6. CA2゜l2
fa’どQつハロゲンおよびその化合物が適している。
By the way, the molecular beam source with etching action used in the method of the present invention includes H(J?, SF6. CA2゜l2
Suitable are halogens and their compounds.

さらに成長させる元素のハロゲン化物を用いることもで
き、例えばGaAsの成長にはAsCl3を利用するこ
とができる。
Furthermore, a halide of the element to be grown can also be used; for example, AsCl3 can be used to grow GaAs.

以下実例によって本発明の方法について説明する。The method of the present invention will be explained below using examples.

実施例 I Siの場合 真空度が10−9Torrに保たれた分子線結晶成長装
置内のSiの基板を1100°Cに加熱し、この状態を
1時間にわたり保持したQ)ち、次いで81基板温度を
900’Cに下け、HClの分子線を基板面あたり10
13/i・secの到達速度で導入する。
Example I In the case of Si, a Si substrate in a molecular beam crystal growth apparatus kept at a vacuum level of 10-9 Torr was heated to 1100°C, and this state was maintained for 1 hour. was lowered to 900'C, and HCl molecular beam was applied at 10°C per substrate surface.
It is introduced at an arrival speed of 13/i·sec.

次にHC1分子線を導入しなからSiの分子線を101
5/C11t−secの速度で導入する。
Next, 1 molecular beam of HC is introduced, and then 101 molecular beam of Si is introduced.
5/C11t-sec.

この方法によm=)でSiの成長速度として約0.5λ
/5eCO)4゜長速度が得られる。
With this method, the growth rate of Si is approximately 0.5λ at m=)
/5eCO) 4° long velocity is obtained.

なおHCJ?分子線はSiの分子線に対して1150〜
11500が適当である。
Furthermore, HCJ? The molecular beam is 1150 ~
11500 is appropriate.

HC1分子線がこれより少ないとエツチング効果が少な
く、逆に多すぎるとSiの成長速度が著しく小さくなる
If the number of HC1 molecular beams is less than this, the etching effect will be small, and if it is too large, the growth rate of Si will be significantly reduced.

不純物のドープなしに本発明の方法で得られるn型Si
のキャリア濃度は1015crrL−3程度、またホー
ル移動度は室温で1500crit−/■・secで通
常の気相エピタキシャル成長で得たものを同程度Qつ高
品質を示した。
n-type Si obtained by the method of the present invention without doping with impurities
The carrier concentration was about 1015 crrL-3, and the hole mobility was 1500 crit-/■·sec at room temperature, showing Q times higher quality than that obtained by normal vapor phase epitaxial growth.

なお、HClの分子線の導入をシャッタを用いて5秒間
隔で1秒間にわたり行う間欠的な方法でも効果があった
Note that an intermittent method in which the HCl molecular beam was introduced for 1 second at 5-second intervals using a shutter was also effective.

実施例 2 GaAsの場合 10’Torr以上の高真空に保たれた分子線結晶成長
装置内のG a A s基板を500〜700℃に加熱
した0ち、このGaAs基板上にGaとGaAsの分子
線を導入するとともに併せてHC1分子線を基板上に衝
突させる。
Example 2 In the case of GaAs, a GaAs substrate was heated to 500 to 700°C in a molecular beam crystal growth apparatus maintained at a high vacuum of 10' Torr or higher, and Ga and GaAs molecules were deposited on the GaAs substrate. At the same time, a single HC molecular beam is caused to collide with the substrate.

Ga 、As2.HCIJ の分子線の到達速度をそれ
ぞれ1014/ffl・sec 。
Ga, As2. The arrival speed of the HCIJ molecular beam is 1014/ffl·sec.

1012/−−secに調節することにより、G a
A s O)成長速度は0.1〜10 A /secと
なる。
By adjusting to 1012/--sec, Ga
A s O) The growth rate is 0.1 to 10 A/sec.

Gaの濃度に対してA、sは10倍、HCl0)濃度は
1/100倍程度が適当である。
Appropriately, A and s are 10 times the concentration of Ga, and the HCl concentration is approximately 1/100 times.

結晶O)電気的、光学的性質は液相成長のものよりもす
ぐれており、不純物を添加しない場合の室温での不純物
濃度は1014〜1015CrrL−3テホ−/L/移
動度は1o、oOo〜20.00 om/v −5ec
であった。
Crystal O) Electrical and optical properties are superior to those grown in a liquid phase, and when no impurities are added, the impurity concentration at room temperature is 1014~1015CrrL-3 Teho/L/Mobility is 1o, oOo~ 20.00 om/v -5ec
Met.

Gap)かわりにGa(CH3)aを、Asのかわりに
AsH3を、HClのかわりにAsC73とすべてガス
原料を用いても同様の好結果が得られた。
Similar good results were obtained even when all gas raw materials were used: Ga(CH3)a instead of Gap), AsH3 instead of As, and AsC73 instead of HCl.

実施例 3 CuGaS2の場合 10−9Torr以上の高真空に保たれた分子線結晶装
置内に配置したCuGaS2結晶基板を700℃に加熱
したのち、装置内にCu、Ga、S、I2の分子線を同
時に導入して、基板上にCu Ga S 2結晶をエピ
タキシャル成長させた。
Example 3 In the case of CuGaS2, a CuGaS2 crystal substrate placed in a molecular beam crystallization device maintained at a high vacuum of 10-9 Torr or higher was heated to 700°C, and then molecular beams of Cu, Ga, S, and I2 were introduced into the device. At the same time, CuGaS2 crystal was epitaxially grown on the substrate.

Cu 、Ga −S 、I2の分子線0濃度はそれぞれ
10”/i・sec。
The molecular beam zero concentration of Cu, Ga-S, and I2 is each 10''/i·sec.

1014/i・sec、 1015/air−8ec
、 1012/に77i・SeCが好適であり、また
基板温度は600〜9000Cが適当であった。
1014/i・sec, 1015/air-8ec
, 77i.SeC was suitable for 1012/, and a substrate temperature of 600 to 9000C was suitable.

基板結晶の結晶面はC面または(112)面のときが結
晶性がよく表面の平滑度がすぐれていた。
When the crystal plane of the substrate crystal was the C plane or the (112) plane, the crystallinity was good and the surface smoothness was excellent.

以上の実施例かられかるように、エツチング成分を分子
線成長に導入することにより、飛来分子線の残留ガスに
よる酸化や汚染が防止でき、さらに基板表面も清浄化さ
れるQつで分子線成長の結晶性を大幅に改善できた。
As can be seen from the above examples, by introducing an etching component into molecular beam growth, it is possible to prevent oxidation and contamination due to residual gas from the incoming molecular beam, and also to clean the substrate surface. We were able to significantly improve the crystallinity of .

この方式は例示した半導体結晶にかぎらず、LiNbO
3のような誘導体やガドリウム・ガリウム・ガーネット
いような磁性体やTi、Wのような金属などの高融点結
晶の成長にも適用できる。
This method is applicable not only to the exemplified semiconductor crystal but also to LiNbO
It can also be applied to the growth of high melting point crystals such as derivatives such as No. 3, magnetic materials such as gadolinium, gallium, and garnet, and metals such as Ti and W.

勿論へテロ接合を形成する結晶成長にも適用できる。Of course, it can also be applied to crystal growth that forms a heterojunction.

以上説明してきたように、本発明0方法は既知0分子結
晶成長方法の利点を伺等損うことなく、その欠点を除去
しうるものであって、分子線結晶成長方法により得られ
る結晶の品質を大幅に高めうる効果を奏するもQつであ
る。
As explained above, the 0 method of the present invention can eliminate the disadvantages of the known 0-molecular crystal growth method without sacrificing its advantages, and improves the quality of crystals obtained by the molecular beam crystal growth method. It is also Q that has the effect of significantly increasing the

Claims (1)

【特許請求の範囲】[Claims] 1 成長すべき結晶の原料の分子線と、前記原料Qつ分
子線のうちの前記成長の速度を決める分子線の50分の
1ないし500分の1の量で前記結晶に対してエツチン
グの働きを有する化学成分をもつ分子線とを、真空中に
て同時に基板表面に導入し、前記基板表面に結晶成長を
行なうことを特徴とする分子線結晶成長方法。
1. Etching effect on the crystal using the molecular beam of the raw material of the crystal to be grown and the amount of 1/50 to 1/500 of the molecular beam that determines the growth rate among the Q molecular beams of the raw material. 1. A molecular beam crystal growth method characterized by simultaneously introducing a molecular beam having a chemical component having a chemical component into a substrate surface in a vacuum to grow a crystal on the substrate surface.
JP8116875A 1975-06-30 1975-06-30 The best way to get started Expired JPS5841655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8116875A JPS5841655B2 (en) 1975-06-30 1975-06-30 The best way to get started

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8116875A JPS5841655B2 (en) 1975-06-30 1975-06-30 The best way to get started

Publications (2)

Publication Number Publication Date
JPS524783A JPS524783A (en) 1977-01-14
JPS5841655B2 true JPS5841655B2 (en) 1983-09-13

Family

ID=13738917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8116875A Expired JPS5841655B2 (en) 1975-06-30 1975-06-30 The best way to get started

Country Status (1)

Country Link
JP (1) JPS5841655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286991A (en) * 1988-05-13 1989-11-17 Fujitsu Ltd Method for molecular-beam epitaxial growth and apparatus therefor

Also Published As

Publication number Publication date
JPS524783A (en) 1977-01-14

Similar Documents

Publication Publication Date Title
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JPH0562911A (en) Manufacture of semiconductor superlattice
JP3007971B1 (en) Method of forming single crystal thin film
JPS5841655B2 (en) The best way to get started
Clawson Bulk-like InSb films by hot-wire zone crystallization
JPS589796B2 (en) Molecular beam crystal growth method
JPS589795B2 (en) Molecular beam crystal growth method
Schalla et al. Effect of the Temperature of Formation on the Crystallinity and Electrical Properties of Germanium Films on Fluorite
Baltz Influence of vacuum conditions on epitaxially grown permalloy films
JPH11233440A (en) Semiconductor device
JPS58156598A (en) Method for crystal growth
JPS62219614A (en) Method for growth of compound semiconductor
JPH0443413B2 (en)
JPS6263419A (en) Formation of polycrystalline silicon thin film
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
JPH025512A (en) Molecular beam epitaxial growth method and device thereof
JPH04290423A (en) Manufacture of semiconductor substrate and semiconductor device
JPS6117491A (en) Production of thin film of single crystal
JPH01143235A (en) Crystal substrate for epitaxial growth
JP3167350B2 (en) Device manufacturing method
JPH01161822A (en) Element and manufacture thereof
JPH04299525A (en) Manufacture of element
JPS62189719A (en) Method for growing compound semiconductor
JPS61291489A (en) Method of heteroepitaxial crystal growth of semiconductor