JPS5841325B2 - Manufacturing method for high-strength cold-rolled steel sheets - Google Patents

Manufacturing method for high-strength cold-rolled steel sheets

Info

Publication number
JPS5841325B2
JPS5841325B2 JP863980A JP863980A JPS5841325B2 JP S5841325 B2 JPS5841325 B2 JP S5841325B2 JP 863980 A JP863980 A JP 863980A JP 863980 A JP863980 A JP 863980A JP S5841325 B2 JPS5841325 B2 JP S5841325B2
Authority
JP
Japan
Prior art keywords
temperature
cold
rolled steel
steel sheets
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP863980A
Other languages
Japanese (ja)
Other versions
JPS56119731A (en
Inventor
篤樹 岡本
政司 高橋
典昭 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP863980A priority Critical patent/JPS5841325B2/en
Publication of JPS56119731A publication Critical patent/JPS56119731A/en
Publication of JPS5841325B2 publication Critical patent/JPS5841325B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は、引張強さ:50kg/−以上の高強度を有
する冷延鋼板をコスト安く製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cold rolled steel sheet having a high tensile strength of 50 kg/- or more at low cost.

近年、自動車工業の分野における軽量化の要望に伴い、
自動車部品の薄肉化が図られるようになっており、かか
る点から、例えばバンパーの補強材やドアの補強ビーム
、さらには一般の自動車部品の製造に、60〜100k
g/m4以上の引張強さを有し、かつ板厚が0.8〜1
.6順程度の高強度冷延鋼板が広く使用されるようにな
ってきた。
In recent years, with the demand for weight reduction in the automobile industry,
Automotive parts are becoming thinner, and from this point of view, for example, the production of bumper reinforcing materials, door reinforcing beams, and even general auto parts requires 60 to 100 kg.
It has a tensile strength of g/m4 or more and a plate thickness of 0.8 to 1
.. High-strength cold-rolled steel sheets of grade 6 have come into wide use.

従来、この種の高強度冷延鋼板は、それぞれ、(a)析
出強化法、 (b)変態強化法、 (C)転位強化法、 などの方法を利用した製造法により製造されている。
Conventionally, this type of high-strength cold-rolled steel sheet has been manufactured by manufacturing methods using methods such as (a) precipitation strengthening method, (b) transformation strengthening method, and (C) dislocation strengthening method.

一般に、冷延鋼板の製造に際しては、冷延後、600℃
以上の温度での再結晶焼なましが行なわれるが、上記析
出強化法を利用した高強度冷延鋼板の製造法においては
、この再結晶焼なまし処理時に析出物が凝集粗大化しや
すくなることから、析出物の析出形態をコントロールす
ることは実質的に不可能であり、この結果熱延材や厚板
材におけるように析出強化を十分に図ることができない
という問題点がある。
Generally, when manufacturing cold rolled steel sheets, the temperature is 600℃ after cold rolling.
Recrystallization annealing is performed at the above temperature, but in the manufacturing method of high-strength cold-rolled steel sheets using the precipitation strengthening method described above, precipitates tend to aggregate and coarsen during this recrystallization annealing process. Therefore, it is virtually impossible to control the precipitation form of precipitates, and as a result, there is a problem that precipitation strengthening cannot be sufficiently achieved as in hot-rolled materials and thick plate materials.

また、上記変態強化法を利用する方法は、最近開発され
た方法で、マルテンサイトの存在によって伸びが良好な
冷延鋼板が得られる利点を有するが、α相とγ相の共存
域からの急冷処理や多量の合金元素の含有を必要とする
ことから、製造コストの面から見れば必ずしも有利な方
法とは云えない0 さらに、上記転位強化法は、歪取焼鈍あるいはreco
very annealingとして従来より高強度冷
延鋼板の製造に利用されている方法で、箱焼鈍を例にと
ると、再結晶を完全に行なわしめないために焼鈍上限温
度を約600’Cの低温とし、一方冷延組識の回復ある
いは部分的再結晶を行なわしめて伸びを冷延状態より向
上させるために焼鈍下限温度を約300℃とするのが一
般的である。
In addition, the method using the above-mentioned transformation strengthening method is a recently developed method that has the advantage of producing cold-rolled steel sheets with good elongation due to the presence of martensite. Since it requires processing and the inclusion of a large amount of alloying elements, it is not necessarily an advantageous method from the viewpoint of manufacturing costs.
Taking box annealing as an example, this is a method conventionally used in the production of high-strength cold-rolled steel sheets as very annealing.In order to prevent complete recrystallization, the upper limit annealing temperature is set at a low temperature of about 600'C. On the other hand, in order to recover or partially recrystallize the cold-rolled structure and improve the elongation compared to the cold-rolled state, the lower limit temperature for annealing is generally set at about 300°C.

この方法には、上記(a)および(b)強化法を利用し
た場合に比して合金成分が少なくても、強度のより高い
冷延鋼板が得られ、しかも焼鈍温度が低くてすむので、
省エネルギー化がはかられ、低コストとなるなどの利点
があるが、冷延鋼板の伸びが上記の他の強化法を利用し
た場合に比して悪く、特にT方向(幅方向)の伸びがL
方向(長さ方向)の伸びに比して悪いために、T方向の
伸びが重要な要因となるロールフォーミングによる成形
などには適用することが難しく、シたがって、その用途
が特殊な分野に限定されるという問題点があった。
This method allows a cold rolled steel sheet with higher strength to be obtained even if the alloy components are smaller than those using the strengthening methods (a) and (b) above, and requires a lower annealing temperature.
Although it has advantages such as energy saving and low cost, the elongation of cold-rolled steel sheets is poorer than when using the other strengthening methods mentioned above, especially the elongation in the T direction (width direction). L
Because the elongation is poor compared to the elongation in the T direction (length direction), it is difficult to apply it to molding by roll forming, where elongation in the T direction is an important factor, and therefore its application is limited to special fields. The problem was that it was limited.

この他に固溶強化法を利用する方法があるが、この方法
単独で50kg/mr?を以上の引張強さをもった高強
度冷延鋼板を製造するには、合金元素の含有量を著しく
増大させなければならないため、その製造は実質的に不
可能である。
In addition to this, there is a method using solid solution strengthening method, but this method alone can produce up to 50 kg/mr? In order to produce a high-strength cold-rolled steel sheet with a tensile strength greater than , the content of alloying elements must be significantly increased, making it virtually impossible to produce.

本発明者等は、上述のような観点から、製造コストの面
から最も有利な従来転位強化法を利用する冷延鋼板の製
造法に着目し、特にそのT方向の伸びを改善すべく研究
を行なった結果、 (a) 従来転位強化法を利用する冷延鋼板の製造法
においては、通常熱間圧延後、500〜700°Cの温
度でコイルに巻取られているために、熱延板中に層状炭
化物が粗大な状態で存在するようになり、これが冷間圧
延時に破砕されてボイドを形成することから、冷延のま
まの鋼板、あるいは冷間圧延後、歪取焼鈍を施した鋼板
の伸び、特にT方向の伸びが著しく低下するようになる
こと。
From the above-mentioned viewpoint, the present inventors focused on a method for manufacturing cold-rolled steel sheets that utilizes the conventional dislocation strengthening method, which is the most advantageous in terms of manufacturing costs, and conducted research to improve the elongation in the T direction in particular. As a result, (a) In the conventional production method of cold-rolled steel sheets using dislocation strengthening, hot-rolled steel sheets are usually wound into coils at a temperature of 500 to 700°C after hot rolling. Layered carbides now exist in a coarse state, which is crushed during cold rolling to form voids. The elongation, especially the elongation in the T direction, is markedly reduced.

(b)シたがって、熱間圧延後、極低温でコイルに巻取
れば、熱延板において炭素を固溶状態あるいは微細析出
物状態にすることができ、この状態で冷間圧延を行なえ
ば、ボイドの発生がほとんどなくなることからT方向の
伸びが著しく改善されるようになると共に、冷間圧延後
の歪取焼鈍において炭化物が微細分散した状態となるこ
とから析出強化が十分図られること。
(b) Therefore, if the hot rolled sheet is wound into a coil at an extremely low temperature, the carbon can be in a solid solution state or a fine precipitate state in the hot rolled sheet, and if cold rolling is performed in this state, , Since the generation of voids is almost eliminated, the elongation in the T direction is significantly improved, and the carbides are finely dispersed in the strain relief annealing after cold rolling, so precipitation strengthening is sufficiently achieved.

以上(a)および(b)項に示される知見を得よのであ
る。
The knowledge shown in sections (a) and (b) above has been obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、対象鋼を、重量%で、C:0.02〜0.30%、
Si:1.2%以下、Mn:0.10〜2.50%、s
o# 、A#: 0.01〜0.20%、Feおよび不
可避不純物:残りからなる組成を有する鋼に特定し、こ
の鋼の熱間圧延工程における最終仕上温度を600〜9
00℃とすると共に、特に熱間圧延後のコイルへの巻取
温度を50〜400℃の極低温とすることによって、熱
延板における炭素を固溶状態あるいは微細炭化物状態と
し、もって次工程の冷間圧延でのボイドの形成を抑制し
、ついで通常の条件下で酸洗、冷間圧延、および歪取焼
鈍、すなわち圧下率:20%以上の冷間圧延、および3
00℃以上の温度での歪取焼鈍を施して、T方向の伸び
を改善した高強度の転位強化型冷延鋼板を製造する点に
特徴を有するものである。
This invention has been made based on the above findings, and the target steel is C: 0.02 to 0.30% by weight,
Si: 1.2% or less, Mn: 0.10-2.50%, s
o#, A#: 0.01~0.20%, Fe and unavoidable impurities: The final finishing temperature in the hot rolling process of this steel is specified as 600~9.
By setting the temperature at 00°C and also at an extremely low temperature of 50 to 400°C for winding the coil after hot rolling, the carbon in the hot rolled sheet is brought into a solid solution state or a fine carbide state, which makes it difficult to prepare for the next process. 3. Suppressing the formation of voids during cold rolling, then pickling, cold rolling, and strain relief annealing under normal conditions, that is, cold rolling with a reduction ratio of 20% or more, and 3.
This method is characterized in that a high-strength dislocation-strengthened cold-rolled steel sheet with improved elongation in the T direction is produced by performing strain relief annealing at a temperature of 00° C. or higher.

つぎに、この発明の方法において、成分組成範囲、熱間
圧延時の最終仕上温度、熱間圧延後のコイル巻取温度、
冷間圧延時の圧下率、および歪取焼鈍温度をそれぞれ上
記の通りに限定した理由を説明する。
Next, in the method of this invention, the component composition range, the final finishing temperature during hot rolling, the coil winding temperature after hot rolling,
The reason why the rolling reduction during cold rolling and the stress relief annealing temperature are limited to the above values will be explained.

(a) 成分組成 ■ C その含有量が0.02%未満では、コスト高をきたし、
かつ高強度を確保することができず、一方0.3%を越
えて含有させると、溶接性が著しく劣化するようになる
ことから、その含有量を0.02〜0.30%と定めた
(a) Ingredient composition ■ C If the content is less than 0.02%, the cost will increase,
However, if the content exceeds 0.3%, the weldability will deteriorate significantly, so the content was set at 0.02 to 0.30%. .

■ 5i Si成分は、固溶強化作用をもつため、必要に応じて含
有される成分であるが、その含有量が1.2%を越える
と、熱間圧延時のスケール発生が著しくなって冷延鋼板
の肌荒れの原因となり、外観を損ねることから、1.2
%を越えて含有させてはならない。
■5i The Si component has a solid solution strengthening effect and is therefore included as necessary. However, if its content exceeds 1.2%, scale generation during hot rolling becomes significant and 1.2 Because it causes roughening of the surface of the rolled steel plate and impairs its appearance.
The content must not exceed %.

■ Mn Mn成分にはSiと同様に固溶強化作用、ならびに熱間
圧延時の赤熱脆化を防止する作用があるが、その含有量
が0.10%未満では前記作用に所望の効果が得られず
、一方2.50%を越えて含有させると、この種の鋼で
は溶製が困難となってコスト高の原因となることから、
その含有量を0.10〜2.50%と定めた。
■ Mn Like Si, the Mn component has a solid solution strengthening effect and an effect of preventing red heat embrittlement during hot rolling, but if its content is less than 0.10%, the desired effect is not achieved. On the other hand, if the content exceeds 2.50%, it becomes difficult to melt this type of steel and causes high costs.
Its content was determined to be 0.10 to 2.50%.

■ sol、Al A7には強力な脱酸作用によって鋼の清浄度を向上させ
る作用があるが、5ol−AA含有量で0.01%未満
の含有では前記作用に所望の効果が得られないため鋼特
注に大きなバラツキ力性じ、二方0.20%を越えて含
有させると、溶製時、特に鋳造時にノズルつまりが生じ
やすくなることから、その含有量を0.01〜0.20
%と定め池 (b) 最糸答イ4二上当店カニ〔 その温度が600℃未満では、熱間圧延時における鋼の
変形能が大きく変化するため一定の板厚をもった熱延板
を製造すること力林灘になり、方900℃を越えた温度
は、次工程における50〜400℃の極低温での巻取を
不可能にすることから、その温度を600〜900℃に
限定した。
■ Sol, Al A7 has the effect of improving the cleanliness of steel through its strong deoxidizing effect, but if the 5ol-AA content is less than 0.01%, the desired effect cannot be obtained. Due to large variations in the strength of custom-made steel, if the content exceeds 0.20%, nozzle clogging is likely to occur during melting, especially during casting, so the content should be reduced to 0.01 to 0.20%.
% and determined pond (b) Saito answer A 4 Nijo Our shop crab [When the temperature is less than 600℃, the deformability of steel during hot rolling changes significantly, so hot rolled sheets with a constant thickness are During manufacturing, the temperature was limited to 600 to 900 degrees Celsius, as temperatures exceeding 900 degrees Celsius would make it impossible to wind at extremely low temperatures of 50 to 400 degrees Celsius in the next process. .

(C) 巻取温度 その温度が50’C未満では、熱延板における固溶炭素
量が多くなりすぎ、冷間圧延時に動的歪時効を起すよう
になって好ましくなく、一方400°Cを越えた温度で
巻取ると、フェライト結晶粒界に層状炭化物あるいはパ
ーライトが析出するようになって、上記のように冷延、
歪取焼鈍後のT方向の伸びが著しく低下するようになる
ことから、その温度を50〜400℃と定めた。
(C) Coiling temperature If the temperature is less than 50'C, the amount of solid solute carbon in the hot rolled sheet will be too large and dynamic strain aging will occur during cold rolling, which is undesirable. If the coiling temperature exceeds that temperature, layered carbides or pearlite will precipitate at the ferrite grain boundaries, resulting in cold rolling and
Since the elongation in the T direction after strain relief annealing significantly decreases, the temperature was set at 50 to 400°C.

(d) 冷間圧延の圧下率および歪取焼鈍20%以上
の圧下率は通常の冷間圧延工程で採用されている条件で
あり、また300℃以上の温度での連続焼鈍あるいは箱
暁鈍による歪取焼鈍も、通常この種の鋼に適用されてい
るものであるが、これらの条件を満足しない場合には、
所定の高強度および高延性を確保することができないこ
とは勿論である。
(d) The rolling reduction ratio of cold rolling and the rolling reduction ratio of 20% or more in strain relief annealing are the conditions adopted in the normal cold rolling process, and the rolling reduction ratio of 20% or more in cold rolling and strain relief annealing is the condition adopted in the normal cold rolling process. Strain relief annealing is also normally applied to this type of steel, but if these conditions are not met,
Needless to say, it is not possible to ensure the predetermined high strength and high ductility.

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

それぞれ第1表に示される成分組成をもった鋼を転炉に
て溶製し、鋳造した後、同じく第1表に示される最終仕
上温度条件にて熱間圧延して板厚2.4關または2.8
間とし、ついでそれぞれ第1表に示される巻取温度にて
巻取り、酸洗後、同じく第1表に示される条件にて冷間
圧延および歪取焼鈍を行なって板厚1.2mmの冷延鋼
板を製造することからなる本発明法1〜9および比較法
a −fをそれぞれ実施した。
Steel having the composition shown in Table 1 is melted in a converter, cast, and then hot-rolled to a plate thickness of 2.4 mm under the final finishing temperature conditions also shown in Table 1. or 2.8
Then, after winding at the winding temperatures shown in Table 1, and pickling, cold rolling and strain relief annealing were performed under the conditions shown in Table 1 to obtain a cold sheet with a thickness of 1.2 mm. Inventive methods 1 to 9 and comparative methods a to f, which consist of producing rolled steel sheets, were carried out, respectively.

なお、比較法a、C,およびeは巻取温度がこの発明の
範囲から高い方に外れた場合を示し、また比較力す、d
、およびfは歪取焼鈍温度がこの発明の範囲から外れた
場合をそれぞれ示すものである。
Comparative methods a, C, and e indicate cases where the winding temperature is higher than the range of the present invention, and comparative methods, d and
, and f respectively indicate cases where the strain relief annealing temperature is out of the range of the present invention.

ついで、上記本発明法1〜9によって得られた本発明冷
延鋼板1〜9.および上記比較法a −fによって得ら
れた比較冷延鋼板a〜fのそれぞれについて、JIS5
号試1験片によるT方向およびL方向における引張特性
を測定した。
Next, cold rolled steel sheets 1 to 9 of the present invention obtained by the above-mentioned methods 1 to 9 of the present invention. And for each of the comparative cold rolled steel sheets a to f obtained by the above comparative methods a to f, JIS5
The tensile properties of the No. 1 test piece in the T direction and the L direction were measured.

この測定結果を第2表に示した。The measurement results are shown in Table 2.

第1表および第2表に示される結果から明らかなように
、この発明の範囲内の巻取温度および歪取焼鈍温度を適
用して製造した本発明冷延鋼板1〜9は、いずれも引張
強さ: 50kg/mvt以上の高強度を示し、かつT
方向およびL方向ともほぼ同じ高い伸びを示しているの
に対して、この発明の範囲から高い方に外れた巻取温度
で製造された比較冷延鋼板a、C,およびeにおいては
、本発明冷延鋼板に比して強度がやや劣ったものになっ
ており、特にT方向の伸びの低下が著しいものになって
いる。
As is clear from the results shown in Tables 1 and 2, cold rolled steel sheets 1 to 9 of the present invention manufactured by applying the coiling temperature and strain relief annealing temperature within the range of the present invention were all Strength: Shows high strength of 50 kg/mvt or more, and T
The comparative cold-rolled steel sheets a, C, and e manufactured at coiling temperatures higher than the range of the present invention show almost the same high elongation in both the direction and the L direction. The strength is slightly inferior to that of cold-rolled steel sheets, and the elongation in the T direction is particularly significantly reduced.

また、歪取焼鈍温度がこの発明の範囲から外れると、強
度は向上するものの延性の改善は全くなされないことが
示されている。
Further, it has been shown that when the strain relief annealing temperature is outside the range of the present invention, the strength is improved but the ductility is not improved at all.

上述のように、この発明の方法によれば、特に熱間圧延
後のコイル巻取温度を極低温とすることによって、高強
度を有し、かつT方向およびL方向ともほぼ同じ高い伸
び値を示す高強度の冷延鋼板を製造コスト安く製造する
ことができるのである。
As mentioned above, according to the method of the present invention, the coil winding temperature after hot rolling is set to an extremely low temperature, thereby achieving high strength and almost the same high elongation value in both the T direction and the L direction. It is possible to produce high-strength cold-rolled steel sheets at low production costs.

Claims (1)

【特許請求の範囲】 I C:0.02〜0.30%、Si:1.2%以下
。 Mn : 0.10〜2.50%、5ol−Al: 0
.01〜0.20%、Feおよび不可避不純物:残り(
以上重量%)からなる組成を有する鋼を、最終仕上温度
が600〜900’Cとなる条件にて熱間圧延した後、
50〜400℃の温度で巻取り、ついで酸洗後、圧下率
:20%以上の冷間圧延を施し、引続いて、300℃以
上の温度にて歪取焼鈍を行なうことを特徴とする高強度
冷延鋼板の製造法。
[Claims] IC: 0.02 to 0.30%, Si: 1.2% or less. Mn: 0.10-2.50%, 5ol-Al: 0
.. 01-0.20%, Fe and inevitable impurities: remainder (
After hot rolling a steel having a composition consisting of (more than 1% by weight) at a final finishing temperature of 600 to 900'C,
A high-temperature steel sheet that is characterized by being coiled at a temperature of 50 to 400°C, then pickled, cold-rolled at a rolling reduction of 20% or more, and then subjected to strain relief annealing at a temperature of 300°C or more. Manufacturing method for high-strength cold-rolled steel sheets.
JP863980A 1980-01-28 1980-01-28 Manufacturing method for high-strength cold-rolled steel sheets Expired JPS5841325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP863980A JPS5841325B2 (en) 1980-01-28 1980-01-28 Manufacturing method for high-strength cold-rolled steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP863980A JPS5841325B2 (en) 1980-01-28 1980-01-28 Manufacturing method for high-strength cold-rolled steel sheets

Publications (2)

Publication Number Publication Date
JPS56119731A JPS56119731A (en) 1981-09-19
JPS5841325B2 true JPS5841325B2 (en) 1983-09-12

Family

ID=11698514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP863980A Expired JPS5841325B2 (en) 1980-01-28 1980-01-28 Manufacturing method for high-strength cold-rolled steel sheets

Country Status (1)

Country Link
JP (1) JPS5841325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216932A (en) * 1986-07-19 1987-01-26 Toyo Soda Mfg Co Ltd Unloading block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163028B1 (en) 2010-03-05 2012-07-09 한국기계연구원 High cold-rolled steel with excellent strength and elongation, and method preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216932A (en) * 1986-07-19 1987-01-26 Toyo Soda Mfg Co Ltd Unloading block

Also Published As

Publication number Publication date
JPS56119731A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
KR20140129365A (en) Low density steel with good stamping capability
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP3716639B2 (en) Manufacturing method of bainite-based high-tensile hot-rolled steel strip
WO1982001379A1 (en) Process for manufacturing hot-rolled dual-phase high-tensile steel plate
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPS5841325B2 (en) Manufacturing method for high-strength cold-rolled steel sheets
JPH0582458B2 (en)
JP3716638B2 (en) Method for producing high-tensile hot-rolled steel strip having ferrite + bainite structure
JP3119122B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JPS6239231B2 (en)
JPS6411088B2 (en)
JPS6115929B2 (en)
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JPS5858414B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with good press formability
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP3678018B2 (en) Manufacturing method of high workability high tensile hot rolled steel sheet with excellent material uniformity
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability