JPS5841301A - Configuration measuring device - Google Patents

Configuration measuring device

Info

Publication number
JPS5841301A
JPS5841301A JP13975181A JP13975181A JPS5841301A JP S5841301 A JPS5841301 A JP S5841301A JP 13975181 A JP13975181 A JP 13975181A JP 13975181 A JP13975181 A JP 13975181A JP S5841301 A JPS5841301 A JP S5841301A
Authority
JP
Japan
Prior art keywords
spindle
displaced
axial direction
displacement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13975181A
Other languages
Japanese (ja)
Inventor
Masahiko Kato
正彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP13975181A priority Critical patent/JPS5841301A/en
Publication of JPS5841301A publication Critical patent/JPS5841301A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PURPOSE:To perform highly accurate measurement, by a method wherein a supporting means which can elastically displace a spindle in an axial direction is supported by a supporting means which can be likewise displaced, and the first supporting means are displaced so that the measured pressure becomes a desired value in response to the displaced quantity of the spindle. CONSTITUTION:A spindle 11 is attached to a holding tool 13 through two parallel springs 12a and 12b so that it can be displaced in the axial direction of the spindle 11. The holding tool 13 is attached to a fixing member 15 through two parallel springs 14a and 14b so that it can be displaced in the axial direction of the spindle 11. A fixed plate spring 16 is provided at the intermediate part of the holding tool 13. The spindle 11 is displaced in the axial direction by the driving of a motor 19 through a rod 17 and the plate spring 16. The rotary angle of an encoder 20 is detected and the displaced quantity of the rod 17 is detected. Therefore the highly accurate measurement can be performed over a wide range without making the measuring pressure excessively large.

Description

【発明の詳細な説明】 を測定する形状測定器に関するものである。[Detailed description of the invention] The present invention relates to a shape measuring instrument for measuring.

かかる形状測定器は従来種々公知であり、例えば第1図
に示すような測定子を用いるものがある。
Various such shape measuring instruments are conventionally known, and for example, there is one using a measuring head as shown in FIG.

この測定子は電気マイクロとして一般に用いられている
ものであり、被測定物(図示せず)に当接させるスピン
ドル/を二枚の平行はね2a 、 xbを介して測定器
本体に固定した保持具3に取付け、このスピンドルlの
被測定物の表面形状に応じた変位量を、スピンドル/に
固着した可動電極亭とこの可動電極lに離間対向して固
定部材(図示せず)に設けた固定部[!!との間の容量
変化に基く発振周波数の変化から検出して被測定物の表
面形状を測定するものである。
This probe is generally used as an electric micro, and consists of a spindle that is brought into contact with an object to be measured (not shown) and is fixed to the main body of the instrument via two parallel springs 2a and xb. A fixed member (not shown) is attached to the fixture 3, and the movable electrode holder fixed to the spindle 1 and the movable electrode 1 are provided in a fixed member (not shown) to have a displacement according to the surface shape of the object to be measured. Fixed part[! ! The surface shape of the object to be measured is measured by detecting changes in the oscillation frequency based on changes in capacitance between the two.

しかし、第1図に示す測定子を用いる形状測定器におい
ては、スピンドル/の変位量が例えば±IOμmと小さ
いときは、スピンドルlの被測定物に与える測定圧は比
較的小さいが、変位量がlIIIaを越えるようになる
と測定圧はかなり大きくなり、被測定物を損傷する場合
がある。このような不具合を解決する方法として、平行
ばねJa 、 、zbの寸法を大きくするか、あるいは
そのばね定数を小さくすることが考えられるが、前者の
場合には測定器全体が大形となり、また後者の場合には
測定子の機械的応答性が悪くなる不具合がある。すなわ
ち機械的応答性を表わす測定子の固有振動数ν。
However, in the shape measuring instrument using the measuring head shown in Fig. 1, when the displacement of the spindle / is small, for example ±IO μm, the measurement pressure applied to the object by the spindle l is relatively small, but the displacement is small. When it exceeds lIIIa, the measurement pressure becomes considerably large and may damage the object to be measured. One possible way to solve this problem is to increase the dimensions of the parallel springs Ja, , and zb, or to decrease their spring constants, but in the former case, the entire measuring instrument would be large, and In the latter case, there is a problem that the mechanical response of the probe becomes poor. In other words, the natural frequency ν of the probe represents the mechanical response.

は、スピンドルlの重量をW=mg(m :質量、g:
重力の加速度)、平行ばねJa 、 2bのばね定数を
kとすると、 ・=上、圧 O!!π で与えられる。ここでスピンドルlの変位量を2篩まで
とり、測定圧を3g以下に押えるには、ばね定数kをk
 = 5970.g C1l中245oodyVcIW
とする必要があるが、このようにすると固有振動数ν。
is the weight of spindle l, W = mg (m: mass, g:
acceleration of gravity), parallel spring Ja, and the spring constant of 2b is k, then ・=Up, pressure O! ! It is given by π. Here, in order to take the displacement amount of the spindle l up to 2 sieves and to suppress the measurement pressure to 3g or less, the spring constant k is set to k
= 5970. g 245oodyVcIW in C1l
However, in this way, the natural frequency ν.

は’W=109でν。中a Hzとなり機械的応答性が
極めて悪くなる。
is 'W=109 and ν. The frequency becomes medium Hz, and the mechanical response becomes extremely poor.

以上のように、スピンドルlの最大変位量すなわち作動
距離を長くすることあるいは測定圧を低く保つことと機
械的応答性を良くすることとは相反する性格をもってい
る。このため、第1gJに示したようにスピンドルlを
二枚の平行ばねJa 。
As described above, increasing the maximum displacement amount of the spindle l, that is, increasing the working distance or keeping the measured pressure low, and improving mechanical response have contradictory characteristics. Therefore, as shown in the first gJ, the spindle l is connected to two parallel springs Ja.

コbを介して測定器本体に固定された保持具3に支持す
るようにした測定子においては、一方ではスピンドル/
の傾きやがたを極めて小キ<できるが、他方ではその作
動距離を天きくとれない不具合がある。
In the measuring head supported on the holder 3 fixed to the measuring instrument body via the rod b, on the one hand the spindle/
Although it is possible to minimize the inclination and wobbling of the motor, there is also the problem that the working distance cannot be maintained completely.

本発明の目的は上述した種々の不具合を解決し、機械的
応答性が良く、シかも所望の測定圧で作動距離を大きく
とれ、高精度の測定ができるよう適切に構成した形状測
定器を提供しようとするものである。
The purpose of the present invention is to solve the various problems mentioned above, and to provide a shape measuring instrument that has good mechanical response, can have a large working distance at a desired measurement pressure, and is appropriately configured to enable high-precision measurement. This is what I am trying to do.

本発明は、スピンドルの先端を被測定物に当接させて両
者を相対的に移動し、前記スピンドルの軸線方向の変位
量を検出手段により検出して前記被測定物の形状を測定
するようにした形状測定器において、前記スピンドルを
前記被測定物の形状変化に応じて軸線方向に変位可能に
弾性的に支持する第1の支持手段と、この第1の支持手
段を前記スピンドルの軸線方向に変位可能に固定部材に
弾性的に支持する第2の支持手段と、この第2の支持手
段を前記スピンドルの軸線方向に変位させる駆動手段と
を具え、前記検出手段により検出される前記スピンドル
の軸線方向の変位量に基いて、前記スピンドルの前記被
測定物に対する測定圧が所望の値となるように、前記駆
動手段を介して前記第一の支持手段を変位させるよう構
成したことを特費とするものである。
The present invention provides a method for measuring the shape of the object by bringing the tip of the spindle into contact with the object to be measured, moving the two relative to each other, and detecting the amount of displacement of the spindle in the axial direction by a detection means. In the shape measuring instrument, the first supporting means elastically supports the spindle so as to be displaceable in the axial direction according to changes in the shape of the object to be measured, and the first supporting means is moved in the axial direction of the spindle. a second support means displaceably supported elastically on the fixed member; and a drive means for displacing the second support means in the axial direction of the spindle, the axis of the spindle being detected by the detection means. The first support means may be configured to be displaced via the drive means based on the amount of displacement in the direction so that the measurement pressure of the spindle against the object to be measured becomes a desired value. It is something to do.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

m2図は本発明の形状測定器の要部の構成を示す線図で
ある。スピンドルl/は二枚の平行ばねlJa 、 /
2bを介して軸線方向に変位可能に保持具13に取付け
る。平行ばねlλa、/コbの形状は例えは円形とし、
その中心部をスピンドルl/に固着し、局縁部を保持具
t3に固着する。保持具13は二枚の平行ばね/lIa
 、 /4(bを介してスピンドル//の軸線方向に変
位可能に固定部材tSに取付ける。これら平行ばね/l
l5L 、 /4(bはスピンドル//を保持A /J
に支持する平行ばね/Ja 、 /2bよりも充分強い
ばね定数を有する例えば矩形の板ばねを用いると共に、
はネ/IIaと/Ilbとの間隔はばね/2aとlコb
との間隔よりも充分長くする。ばね/4’aとlりbと
の間のはホ中間には一端部を保持具13に固定してばね
/lI& 、 /44bと平行に板ばね16を延在して
設け、この板ばねl≦の他端部にロッド17の先端を当
接させる。ロッド17は図示しない固定部材に取付けた
支持具/Iに、スピンドル/lの軸線方向に変位可能に
螺合して設けると共に、その後端部は図示しない固定部
材に取付けたモータ/’/の出力軸に連結し、モータl
テの駆動によりロッド17および板ばね/Jを介して保
持具t3をスピンドルl/の軸線方向に変位させるよう
#jt成する。また、モータlりの出力軸にはロータリ
ーエンコーダ〃を連結し、これによりモータ19の回転
角を検出してロッド17の変位量を検出するよう構成す
る。
Figure m2 is a diagram showing the configuration of the main parts of the shape measuring instrument of the present invention. The spindle l/ has two parallel springs lJa, /
2b, it is attached to the holder 13 so as to be displaceable in the axial direction. For example, the shape of the parallel springs lλa and /b is circular,
Its center part is fixed to the spindle l/, and its peripheral part is fixed to the holder t3. The holder 13 is made up of two parallel springs/lIa
, /4 (b) is attached to the fixed member tS so as to be displaceable in the axial direction of the spindle //.These parallel springs /l
l5L, /4 (b holds spindle // A /J
For example, using a rectangular leaf spring having a sufficiently stronger spring constant than the parallel springs /Ja, /2b supported by the
The distance between /IIa and /Ilb is spring /2a and lcob
Make the distance sufficiently longer than the distance between A leaf spring 16 is provided in the middle between the spring /4'a and the spring b, with one end fixed to the holder 13 and extending parallel to the springs /4'a and /44b. The tip of the rod 17 is brought into contact with the other end of l≦. The rod 17 is screwed onto a support /I attached to a fixing member (not shown) so as to be displaceable in the axial direction of the spindle/l, and its rear end is connected to the output of a motor /'/ attached to a fixing member (not shown). Connected to the shaft and motor l
#jt is formed so that the holder t3 is displaced in the axial direction of the spindle l/ via the rod 17 and the leaf spring /J by driving the te. Further, a rotary encoder is connected to the output shaft of the motor 1 to detect the rotation angle of the motor 19 and the amount of displacement of the rod 17.

スピンドル//の軸線方向の変位量を検出する手段は、
第1図に示したようにスピンドルの変位に基く容量変化
による発振周波数の変化から検出する電気的な検出手段
を用いることもできるが、本例では従来公知のマイケル
ソン干渉計や特公昭!! −2334/号公報において
提案された測長用干渉計を用いて変位量を光学的に検出
する。このため、スピンドルl/の後端にマイケルソン
干渉計や測長用干渉計を構成する可動鏡1を取付ける。
The means for detecting the amount of displacement in the axial direction of the spindle // is
As shown in FIG. 1, it is also possible to use an electrical detection means that detects the change in oscillation frequency due to a change in capacitance based on the displacement of the spindle, but in this example, a conventionally known Michelson interferometer or a Tokko Sho! ! The amount of displacement is optically detected using the length measuring interferometer proposed in Publication No. -2334/. For this purpose, a movable mirror 1 constituting a Michelson interferometer or a length measuring interferometer is attached to the rear end of the spindle l/.

本例ではスピンドル/の先端を被測定物n1例えば回転
対称の非球面レンズの表面に当接させ、この非球面レン
ズnをその光軸を中心としてα方向に回転させると共に
、近似曲率中心を中心とする鉛直軸からβ方向に回転さ
せる。したがって、この場合にはスピンドル//は非球
面レンズnの完全な球面からのずれあるいはセツティン
グエラーに応じて軸線方向に変位することになる。
In this example, the tip of the spindle / is brought into contact with the surface of the object to be measured n1, for example, a rotationally symmetrical aspherical lens, and this aspherical lens n is rotated in the α direction around its optical axis, and the center is centered around the approximate center of curvature. Rotate in the β direction from the vertical axis. Therefore, in this case, the spindle // will be displaced in the axial direction depending on the deviation of the aspherical lens n from a perfect spherical surface or the setting error.

第3図は第2図に示した形状測定器の駆動制御回路の一
例の構成を示すブロック図である。スピンドルl/の変
位量を示す干渉計カウンタ31の表示量をD/A変換器
3λによりアナログ量に変換して差動増幅器33の一方
の入力端子に供給する。この差動増幅器33の他方の入
力端子には基準m圧発生器3Vから後述する所定の基準
電圧を印加する。差II 増幅器33の出力はコンパレ
ータ3jの一方の入力端子に供給し、このコンパレータ
3!の他方の入力端子にはモータlデの回転角すなわち
ロッド17の変位量に対応するロータリーエンコーダ〃
の出力を供給する。コンパレータ3jの出力は七−タ駆
ah路36に供給し、これによりロータリーエンコーダ
〃の出力が差動増11器33の出力と等しくなるように
モータ19を駆動制御する。
FIG. 3 is a block diagram showing the configuration of an example of the drive control circuit of the shape measuring instrument shown in FIG. 2. The amount displayed by the interferometer counter 31 indicating the amount of displacement of the spindle l/ is converted into an analog amount by the D/A converter 3λ and is supplied to one input terminal of the differential amplifier 33. A predetermined reference voltage, which will be described later, is applied to the other input terminal of the differential amplifier 33 from the reference m-voltage generator 3V. Difference II The output of amplifier 33 is supplied to one input terminal of comparator 3j, and this comparator 3! The other input terminal of the rotary encoder corresponds to the rotation angle of the motor 1, that is, the displacement of the rod 17.
provides the output of The output of the comparator 3j is supplied to a seven-torque drive path 36, thereby driving and controlling the motor 19 so that the output of the rotary encoder becomes equal to the output of the differential multiplier 33.

以下1第コ図および第3図に示した形状測定器の一例の
動作を説明する。スピンドルl/がその軸線方向に距離
X1だけ変位するとし、平行ばね/2a。
The operation of an example of the shape measuring device shown in FIG. 1 and FIG. 3 will be described below. Suppose that the spindle l/ is displaced by a distance X1 in the direction of its axis, and the parallel spring /2a.

/2bのばね定数をに工、平行ばね/4Za 、 /4
Zbのばね定数をに2とすると、スピンドルl/はに1
x工=Pgの測定圧を被測定物nに与えると共に、保持
具t3を介して平行ばね/Qa 、 /llbにも同じ
値の力を及ぼすから、保持具(l L、たがってスピン
ドルl/は平行はね/Fa 、 /FbによりkaX2
 = Pgに相当する変位も受け、スピンドルl/の全
体の変位mxは、 1 x=x工+X2二Pg(k−+¥ )  −−−−−(
1)2 となる。
/2b spring constant, parallel spring /4Za, /4
If the spring constant of Zb is 2, then the spindle l/ha is 1
Since a measuring pressure of x = Pg is applied to the object to be measured n, and the same force is also applied to the parallel springs /Qa, /llb via the holder t3, the holder (l L, therefore the spindle l/ is kaX2 due to parallel spring /Fa, /Fb
It also receives a displacement equivalent to = Pg, and the total displacement mx of the spindle l/ is: 1 x = x engineering +
1) becomes 2.

ここで、被測定物nを損傷しない望ましい測定圧をP。Here, P is the desired measurement pressure that does not damage the object to be measured n.

ノとすると、これに対応するスピンドル//の全体の変
位1kXoは、 xo= po、 < −; + −7)  −一−−−
(2)1    2 となるから、上記(1)式と(2)式との差、すなわち
X2 =X−Xo =(P−PO)9(y ” y )
 −−−−−(”)    2 に相当する距ax2′だけ保持具13をスピンドル//
の軸線方向に変位させれば、スピンドルl/の保持具f
3に対する相対的変位量は常にX。に保持され、常にk
lXo=Po9の望ましい測定圧を被測定物nに与える
ことができる。
The corresponding total displacement of spindle // is 1kXo, xo=po, <-; + -7) -1--
(2) Since 1 2 , the difference between the above equations (1) and (2), that is, X2 = X-Xo = (P-PO)9(y '' y )
--------('') Move the holder 13 to the spindle by a distance ax2' corresponding to 2 //
If the holder f of the spindle l/ is displaced in the axial direction of
The relative displacement amount with respect to 3 is always X. and always k
A desired measurement pressure of lXo=Po9 can be applied to the object to be measured n.

そこで、本実施例では第3図に示す基準TltEIE発
生器31から差動増幅器33の他方の入力端子に上記変
位量X。に比例した基準電圧を印加して、差動増幅器3
3において基準電圧と干渉計カウンタ3/に表示された
変位量Xに比例した電圧との差を求め、この差が零とな
るようにモータ駆動回路36を介してモータ19を駆動
制御する。ただし、ロータリーエンコーダ〃は測定開始
時に零にリセットすると共に、ロッド17の変位量と保
持具t3の変位量との比例定数は適当に設定してk 2
X ’2 = k2 (X−Xo )の力をロッド17
および板ばね/≦を介して保持具13に与えられるよう
にする。
Therefore, in this embodiment, the above displacement amount X is applied from the reference TltEIE generator 31 shown in FIG. 3 to the other input terminal of the differential amplifier 33. By applying a reference voltage proportional to the differential amplifier 3
3, the difference between the reference voltage and the voltage proportional to the displacement amount X displayed on the interferometer counter 3/ is determined, and the motor 19 is driven and controlled via the motor drive circuit 36 so that this difference becomes zero. However, the rotary encoder is reset to zero at the start of measurement, and the proportionality constant between the displacement amount of the rod 17 and the displacement amount of the holder t3 is set appropriately.
The force of X'2 = k2 (X-Xo) is applied to the rod 17
and the leaf spring /≦ to the holder 13.

このようにすれば、スピンドル//の保持具13に対す
る相対的変位量を常にXoに保持することができ、した
がってスピンドルl/の被測定物nに対する測定圧を予
しめ設定した望ましいP。gに維持することができる。
In this way, the amount of relative displacement of the spindle // with respect to the holder 13 can always be maintained at Xo, and therefore the measurement pressure of the spindle l/ with respect to the object to be measured n can be set in advance to a desirable P. can be maintained at g.

また、Xoとして70μm位の小さな値を選ぶことがで
きるから、その時の測定圧を/シとすれば、平行ばね/
2a 、 /2bとしてはね定数に工が ’  = 10  :m  ”  10  (dyn/
cm)のちのを用いることができ、ν。== 160 
(H2)の固有振動数を得ることができる。したがって
、極めて良好な機械的応答性を得ることができる。
Also, since a small value of about 70 μm can be selected as Xo, if the measurement pressure at that time is /, then the parallel spring /
As 2a, /2b, the spring constant is ' = 10 : m '' 10 (dyn/
cm) later can be used, ν. == 160
The natural frequency of (H2) can be obtained. Therefore, extremely good mechanical response can be obtained.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways.

例えは、上述した実施例ではスピンドルl/の変位に応
じて保持具13を連続的に変位させるようにしたが、ス
ピンドルl/の変位量Xを幾つかの区間に分け、各々の
区間に対応して保持具13を変位量Xを越えない範囲で
段階的に変位させるようにしてもよい。このように、ス
ピンドル//の変位量を越えない範囲で保持具13を板
ばね/6を介して変位させても干渉計カウンタ3/の計
数値に1411を及ぼすことはない。すなわち、平行ば
ね/Ja 、 /jbによるスピンドルl/の変位量を
Xよ、これに伴なって生じる平行はね/l 、 /Il
bによるスピンドルl/の変位置をX2とすると、スピ
ンドル//の全体の変位jtXはx=x工+X2(X2
(Xl)となるが、ここで平行はね/≠a 、 /Qb
 したがって保持具13をXを越えないX工+X、−X
。だけ変位させると平行ばね/2a。
For example, in the above-described embodiment, the holder 13 is continuously displaced according to the displacement of the spindle l/, but the amount of displacement X of the spindle l/ is divided into several sections, and a corresponding one is assigned to each section. The holder 13 may be displaced stepwise within a range not exceeding the displacement amount X. In this way, even if the holder 13 is displaced via the leaf spring /6 within a range that does not exceed the displacement of the spindle //, 1411 will not affect the count value of the interferometer counter 3/. In other words, the amount of displacement of spindle l/ by parallel springs /Ja, /jb is X, and the accompanying parallel springs /l, /Il
If the displacement position of spindle l/ due to b is X2, the entire displacement jtX of spindle // is x=
(Xl), but here the parallel waves /≠a, /Qb
Therefore, the holder 13 should not exceed X +X, -X
. If it is displaced by , the parallel spring is /2a.

/2bの変位量はX。となり、平行ばね/2a 、 /
Jbおよび平行ばね/4!a 、 /4(bが分担する
変位量が変わるのみで全体の変位量は(x h +x 
2−xo ) +x。−X工+X2と変化しない。した
がって干渉計カウンタ31の計数値には何らの1響も及
ぼさない。このようにスピンドル//の変位量Xを幾つ
かの区間に分け、各々の区間に対応して保持具13を変
位量Xを越えない範囲で段階的に変位させる場合には、
スピンドルl/の保持具13に対する変位量も段階的に
変化し、各区間における測定圧を過大にすることなくほ
ぼ一定となるように緩和することができる。なお、この
場合にはD/&変換器32に若干の変更が必要となる。
/2b displacement amount is X. So, parallel spring /2a, /
Jb and parallel spring/4! a , /4(only the amount of displacement shared by b changes, and the total amount of displacement is (x h + x
2-xo) +x. -X engineering + X2 does not change. Therefore, the count value of the interferometer counter 31 is not affected at all. In this way, when the displacement amount X of the spindle // is divided into several sections and the holder 13 is gradually displaced in a range not exceeding the displacement amount X corresponding to each section,
The amount of displacement of the spindle l/ with respect to the holder 13 also changes stepwise, and the measured pressure in each section can be relaxed to be approximately constant without becoming excessive. Note that in this case, some changes to the D/& converter 32 are required.

また、第一図ではロッド17をモータ19の回転による
送りねじ機構により変位させ、これにより板ばねltを
介して保持具t3を変位させるようにしたが、ロッド1
7やモータ19を用いることなく、板はねlにをxi石
等による吸着の力によりたわめて保持具13を変位させ
るよう411改することもできる。更に、第2図では板
はね16を介して保持具13を変位させるようにしたが
、板ばね16の代わりに剛性を有する板状部材を用いる
こともできるし、あるいはこのような板ばねや板状部材
を用いることなく保持具13にロッド17を当接させて
直接変位させるようにしてもよい。更にまた、第2図で
は平行ばね/Ja 、 /2bとして円形ばねを用いた
が平行はね/ダa、/弘すと同様に矩形のばねを用いる
こともできるし、また平行ばね/ダミ 、 /4Zbは
平行はね/2& 、 /Jbと同様に円形ばねを用いる
こともできる。
In addition, in FIG. 1, the rod 17 is displaced by a feed screw mechanism driven by the rotation of the motor 19, and thereby the holder t3 is displaced via the leaf spring lt.
It is also possible to modify 411 to displace the holder 13 by bending the plate spring l by the force of adsorption by a stone or the like, without using 7 or the motor 19. Further, in FIG. 2, the holder 13 is displaced via the leaf spring 16, but a rigid plate-like member may be used instead of the leaf spring 16, or such a leaf spring or The rod 17 may be brought into contact with the holder 13 and directly displaced without using a plate-like member. Furthermore, in Fig. 2, circular springs are used as the parallel springs /Ja, /2b, but rectangular springs can also be used in the same way as the parallel springs /Da, /2b. For /4Zb, a parallel spring can also be used. Similarly to /2&, /Jb, a circular spring can also be used.

以上述べたように、本発明においてはスピンドルを軸線
方向に弾性的に変位可能に支持する第1の支持手段を、
第2の支持手段によりスピンドルの軸線方向に弾性的に
変位可能に支持し、第1の支持手段をスピンドルの変位
蓋に応じて測定圧が所埴の値になるように変位させるよ
うにしたから、測定圧を過大にすることなく、スピンド
ルの移動蓋を充分長く蓚保でき、しかも機械的応答性を
落すことなく精度の高い測定が可能となる。したがって
平行ばねを用いる形状測定器における作動距離か短いと
いう欠点を取除くことができ、本発明の目的を有効に達
成することができる。
As described above, in the present invention, the first support means that supports the spindle so as to be elastically displaceable in the axial direction,
The second support means supports the spindle so that it can be elastically displaced in the axial direction, and the first support means is displaced in accordance with the displacement lid of the spindle so that the measured pressure becomes a predetermined value. The movable lid of the spindle can be held for a sufficiently long time without increasing the measurement pressure, and highly accurate measurement can be performed without reducing mechanical response. Therefore, the shortcoming of short working distance in shape measuring instruments using parallel springs can be eliminated, and the object of the present invention can be effectively achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の形状測定器の要部の構成を示す線図、第
2図は本発明の形状測定器の要部の構成を示す線図、第
3図は第2図に示す形状測定器の駆動制御回路の一例の
*tを示すブロック図である。 //・・・スピンドル、/ja、/Jb・・・平行ばね
、13・・・保持具、/lI&、/4Zb・・・平行ば
ね、/3・・・固定部材、/に・・・板はね、17・・
・ロッド、/I・・・支持具、 /9・・・モータ、〃
・・・ロータリーエンコーダ、1・・・可動鏡、n・・
・被測定物、3/・・・干渉計カウンタ、3λ・・・D
/&変換器、33・・・差動増幅器、3q・・・基準電
圧発生器、3S・・・コンパレータ、36・・・モータ
駆動回路。
Figure 1 is a diagram showing the configuration of the main parts of a conventional shape measuring instrument, Figure 2 is a diagram showing the configuration of the main parts of the shape measuring instrument of the present invention, and Figure 3 is a diagram showing the shape measurement shown in Figure 2. FIG. 2 is a block diagram showing *t of an example of a drive control circuit for the device. //...Spindle, /ja, /Jb...Parallel spring, 13...Holder, /lI&, /4Zb...Parallel spring, /3...Fixing member, /Ni...Plate Spring, 17...
・Rod, /I...Support, /9...Motor,
...Rotary encoder, 1...Movable mirror, n...
・Measurement object, 3/...interferometer counter, 3λ...D
/& converter, 33... differential amplifier, 3q... reference voltage generator, 3S... comparator, 36... motor drive circuit.

Claims (1)

【特許請求の範囲】[Claims] L スピンドルの先端を被測定物に当接させて両者を相
対的に移動し、前記スピンドルの軸線方向の変位量を検
出手段により検出して前記被測定物の形状を測定するよ
うにした形状測定器において、前記スピンドルを前記被
測定物の形状変化に応じて軸線方向に変位可能に弾性的
に支持する第1の支持手段と、この第1の支持手段を前
記スピンドルの軸線方向に変位可能に固定部材に弾性的
に支持する第一の支持手段と、この第一の支持手段を前
記スピンドルの軸線方向に変位させる駆動手段とを具え
、前記検出手段により検出される前記スピンドルの軸線
方向の変位量に基、いて、前記スピンドルの前記被測定
物に対する測定圧が所望の値となるように前記駆動手段
を介して前記第一の支持手段を変位させるよう構成した
ことを特徴とする形状測定器。
L Shape measurement in which the tip of the spindle is brought into contact with the object to be measured and the two are moved relative to each other, and the amount of displacement in the axial direction of the spindle is detected by a detection means to measure the shape of the object to be measured. a first support means that elastically supports the spindle so as to be displaceable in the axial direction according to a change in the shape of the object to be measured; and a first support means that is movable in the axial direction of the spindle. a first support means elastically supported on a fixed member; and a drive means for displacing the first support means in the axial direction of the spindle, the displacement of the spindle in the axial direction detected by the detection means; The shape measuring device is characterized in that the first support means is configured to be displaced via the drive means so that the measurement pressure of the spindle against the object to be measured becomes a desired value based on the amount of measurement. .
JP13975181A 1981-09-07 1981-09-07 Configuration measuring device Pending JPS5841301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13975181A JPS5841301A (en) 1981-09-07 1981-09-07 Configuration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13975181A JPS5841301A (en) 1981-09-07 1981-09-07 Configuration measuring device

Publications (1)

Publication Number Publication Date
JPS5841301A true JPS5841301A (en) 1983-03-10

Family

ID=15252535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13975181A Pending JPS5841301A (en) 1981-09-07 1981-09-07 Configuration measuring device

Country Status (1)

Country Link
JP (1) JPS5841301A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260934A (en) * 1987-04-17 1988-10-27 Eiwa Kasei Kogyo Kk Blowing agent composition and production of foam by using same
FR2680238A1 (en) * 1991-08-05 1993-02-12 Airgiss Sa Numerical (digital) micrometer
JPH05271455A (en) * 1992-11-17 1993-10-19 Eiwa Kasei Kogyo Kk Production of thermoplastic resin foam
JP2007106421A (en) * 2005-10-11 2007-04-26 General Packer Co Ltd Packaging machine
JP2008239190A (en) * 2007-03-27 2008-10-09 General Packer Co Ltd Packaging method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260934A (en) * 1987-04-17 1988-10-27 Eiwa Kasei Kogyo Kk Blowing agent composition and production of foam by using same
JPH0528728B2 (en) * 1987-04-17 1993-04-27 Eiwa Chem Ind
FR2680238A1 (en) * 1991-08-05 1993-02-12 Airgiss Sa Numerical (digital) micrometer
JPH05271455A (en) * 1992-11-17 1993-10-19 Eiwa Kasei Kogyo Kk Production of thermoplastic resin foam
JP2007106421A (en) * 2005-10-11 2007-04-26 General Packer Co Ltd Packaging machine
JP2008239190A (en) * 2007-03-27 2008-10-09 General Packer Co Ltd Packaging method

Similar Documents

Publication Publication Date Title
Patterson et al. Design and testing of a fast tool servo for diamond turning
Peggs et al. Design for a compact high-accuracy CMM
JP3273026B2 (en) Surface tracking type measuring machine
CN100494878C (en) Multidimensional adjustable optical phase-shifting device
Kouno et al. A fast response piezoelectric actuator for servo correction of systematic errors in precision machining
US8499619B2 (en) Process and rheometer for determining the rheological properties of materials
Zhang et al. Investigation of a 3-DOF micro-positioning table for surface grinding
JP2802317B2 (en) Micro manipulator
US3786332A (en) Micro positioning apparatus
JPS6331957B2 (en)
Fitzgerald et al. Newton's gravitational constant with uncertainty less than 100 ppm
CN106291865B (en) Fast mirror based on new flexible hinge
JPS5841301A (en) Configuration measuring device
CN104819899B (en) Stiffness excitations instrument
US4319804A (en) Adjustable hollow retroflector
US3899728A (en) Apparatus for maintaining high precision in a rotating device used with optical apparatus
WO2003012520A1 (en) Focus stabilizing mechanism of microscope or the like
US2325238A (en) Microscope
JPH08233060A (en) Ball screw device equipped with mechanism of fine displacement between double nuts
Howard et al. A metrological constant force stylus profiler
CN204666448U (en) Stiffness excitations instrument
JP3614269B2 (en) Flexure stiffness measuring device for hard disk suspension
JP2714858B2 (en) Processing jig
Li A compact, dual-stage actuator with displacement sensors for the molecular measuring machine
JPH0542349Y2 (en)