JPS5841239A - Engine controlled in number of operating cylinders - Google Patents

Engine controlled in number of operating cylinders

Info

Publication number
JPS5841239A
JPS5841239A JP13910181A JP13910181A JPS5841239A JP S5841239 A JPS5841239 A JP S5841239A JP 13910181 A JP13910181 A JP 13910181A JP 13910181 A JP13910181 A JP 13910181A JP S5841239 A JPS5841239 A JP S5841239A
Authority
JP
Japan
Prior art keywords
cylinders
engine
circuit
switching
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13910181A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
敬士 藤井
Shizuo Ishizawa
石澤 静雄
Hisamoto Aihara
相原 久元
Shigeru Kamegaya
亀ケ谷 茂
Kazuhiro Nakatsuru
中津留 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13910181A priority Critical patent/JPS5841239A/en
Publication of JPS5841239A publication Critical patent/JPS5841239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent previously misfire caused upon switching and engine stall, by a method wherein a means, deciding that the revolution number of an engine is lower than a predetermined revolution number and stopping the switching of the number of operating cylinders is provided, when the number of operating cylinders is switched in accordance with the load of the engine. CONSTITUTION:Even if an operating condition such as the load or the like is deviated from a partial cylinders operation zone, it is limited that the partial cylinders operation is returned to an all cylinders operation only when the revolution number N is higher than a preset revolution number N3, while, in the other cases, the partial cylinders operation is continued and the switching of the number of operating cylinders is not effected even if the output of an AND circuit 31 which is the set input of a flip flop 33, is switched from H to L. On the contrary, when the all cylinders operation is shifted to the partial cylinders operation, if the other conditions for the partial cylinders operation are satisfied, the switching of the cylinder number is never effected since the output of the AND circuit 31 which is the set input of the flip flop 33 is always on the L level in the zone in which the engine revolution number N is lower than the preset revolution number N3.

Description

【発明の詳細な説明】 本発明はエンジン軽負荷域で一部気筒に対する燃料供給
t−迩断して部分気筒這転會行う気筒数制御エンジンに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylinder number control engine that performs partial cylinder rotation by cutting off fuel supply to some cylinders in a light engine load range.

一般にエンジンを高い負荷状態で運転すると燃費が良好
になる傾向がア)、そこで多気筒エンジンにおいてエン
ジン負荷の小さいときに一部気筒に対する燃料と新気の
供給をカットして作動管休止させ、その分だけ残シの稼
動側気筒の負荷を相対的に高め、全体として軽負荷域で
の燃費管改善するようにし九気筒数制御二/ジンが考え
られた。
In general, when an engine is operated under a high load condition, fuel efficiency tends to improve (a). Therefore, in a multi-cylinder engine, when the engine load is low, the supply of fuel and fresh air to some cylinders is cut and the operating pipes are stopped. By increasing the load on the remaining operating cylinders by that much, the overall fuel efficiency in the light load range was improved, and nine cylinder number control systems were devised.

hl、本出原人が先に出願したこの種のエンジンを第1
11に示すと、吸気通路1は紋弁2の下流で気筒す1〜
φ3に対する稼動11吸気通路3と、気筒φ4〜φ6に
対する休止lII吸気通路4とに途中から分岐している
hl, the first engine of this type that Honde Honjin applied for first.
11, the intake passage 1 is downstream of the crest valve 2 and connects the cylinders 1 to 1.
It branches midway into an active 11 intake passage 3 for φ3 and a rest 11 intake passage 4 for cylinders φ4 to φ6.

気筒φ1〜φ3はその吸気ボートに取付は曳燃料噴射弁
a−Cかも常時燃料が供給されて作動を継続する稼動側
気筒で、これに対して気筒す4〜◆60同じく燃料噴射
弁d−fはエンジン軽負荷域で制御回路15によp噴射
を停止し、休止側気筒を構成する。
The cylinders φ1 to φ3 are installed on the intake boat, and the fuel injection valves a-C are the active cylinders that are constantly supplied with fuel and continue to operate. The control circuit 15 stops the p-injection in the engine light load range, forming a cylinder on the idle side.

そして、この休止側吸気通路4の上流には、この作動体
止時に新気O流入も遮断する新気遮断弁5が設けられる
A fresh air cutoff valve 5 is provided upstream of this idle-side intake passage 4, which also blocks the inflow of fresh air O when the operating body is stopped.

一方、排気通路も気筒φl〜す3に接続する稼勤惰排気
通路7と、気筒φ4〜φ6に接続する休止側排気通路S
とに途中壕で分割し、その合流排気通路6に排気中O酸
素濃度などを検出する空燃比センサ13と、その下流に
三元触媒14が取付けられ、空燃比センサ13の信号は
前述の制御回路15にフィードバックされ、各気筒φ1
〜φ6Kfiぼ理論空燃比の混合気管供給するように補
正する。
On the other hand, the exhaust passages are also an active inertial exhaust passage 7 connected to cylinders φ1 to 3, and an inactive exhaust passage S connected to cylinders φ4 to φ6.
The air-fuel ratio sensor 13 is installed in the merging exhaust passage 6 to detect the oxygen concentration in the exhaust gas, and the three-way catalyst 14 is installed downstream of the air-fuel ratio sensor 13. It is fed back to the circuit 15, and each cylinder φ1
~φ6Kfi is corrected so that the mixture is supplied to the air-fuel ratio at the stoichiometric air-fuel ratio.

休止側排気通路8の途中からは遮断弁SOT流の休止側
吸気通路4に接続する排気循環通路9が分岐し、とOw
I環通路9には三方向電磁弁100切換えに伴い導入さ
れる負圧に応動するダイヤフラム装置11に連動した排
気循環弁12が介@される。
An exhaust circulation passage 9 that connects to the idle side intake passage 4 of the shutoff valve SOT flow branches from the middle of the idle side exhaust passage 8.
An exhaust circulation valve 12 is interposed in the I-ring passage 9 and is linked to a diaphragm device 11 that responds to the negative pressure introduced when the three-way solenoid valve 100 is switched.

そして、前記制御回路15はエアフローメータ16から
の吸入空気量信号並びにクランク角センサ17からOエ
ンジン回転数信号を基本として、前述のフィードバック
信号にもとづき燃料噴射弁a −fかも噴射される燃料
量を理論空燃比の混合気が得られるように制御し、これ
に4とづいて工浄化効率會最東に錐持する。
Based on the intake air amount signal from the air flow meter 16 and the O engine rotation speed signal from the crank angle sensor 17, the control circuit 15 also controls the amount of fuel to be injected from the fuel injection valves a to f based on the feedback signal described above. The air-fuel mixture is controlled to have a stoichiometric air-fuel ratio, and based on this, the air-fuel mixture is maintained at the easternmost point in the purification efficiency.

そして、エンジン軽負荷域では、例えば吸入空気量信号
などから判断して、気筒φ4〜φ6の燃料噴射弁d−f
O作動を停止させ、同時に新気遮断弁5を全閉するとと
もに#P気循環弁12を全開させるように制御回路15
は指令を出力し、これKより気筒φ1〜Φ30みKよる
運転に移行する。
In the engine light load range, judging from the intake air amount signal, for example, the fuel injection valves df of cylinders φ4 to φ6 are
The control circuit 15 is configured to stop the O operation, simultaneously fully close the fresh air cutoff valve 5, and fully open the #P air circulation valve 12.
outputs a command, and from this point, cylinders φ1 to φ30 are operated by K.

ζO場合、遮断弁5を閉じることで、絞弁2を通過した
新気の全量は稼動側気筒す1〜す3に吸入されることに
なり、そO直前に比べて単位気筒の吸気量が2倍となる
ため、これに対応して燃料噴射弁1〜Cからの噴射量も
2倍となるように1制御回路15は噴射定数を切換える
のであplこOようにして稼動儒O負荷を相対的に増大
(2倍)することによ〕、燃燃費率のすぐれた運転領域
で気筒φ1〜φ”3を作動させるのである。
In the case of ζO, by closing the shutoff valve 5, the entire amount of fresh air that has passed through the throttle valve 2 will be sucked into the working cylinders 1 to 3, and the intake air amount of each cylinder will be lower than immediately before ζO. Since the amount of fuel is doubled, the control circuit 15 switches the injection constant so that the amount of injection from the fuel injection valves 1 to C also doubles. By relatively increasing (doubling)], the cylinders φ1 to φ”3 are operated in an operating range with excellent fuel efficiency.

一方、休止側気筒φ4P−φ6については、燃料ととも
に新気の流入も鐘断されるが、排気循環通路9が開通す
るので、休止側排気通路8に#出された排気がほぼ七り
〈〕その11休止側吸気通路4に吸入され、これKより
休止儒気筒φ4〜φ6の吸入負圧をほぼ大気圧に保って
いる。
On the other hand, for the cylinders φ4P-φ6 on the idle side, the inflow of fresh air as well as fuel is cut off, but since the exhaust circulation passage 9 is opened, the exhaust gas discharged into the exhaust passage 8 on the idle side is almost 7. The intake air is drawn into the intake passage 4 on the idle side 11, and from this K, the intake negative pressure of the idle cylinders φ4 to φ6 is maintained at approximately atmospheric pressure.

し九がって、休止側気筒φ4〜φ60@気行程ではほぼ
大気圧の循環ガスを吸入する九め、いわゆるボンピング
ロスがきわめて小さく抑えられ、休止側気前φ4〜す6
の駆動に費される仕事を滅してなお一層O燃費改善をは
かる=方で、休止儒気筒φ4〜す6から未燃焼の空気が
合流排気通路6KRれ込む0を防いで、空燃比セン?1
Bの検出機能ostta避しかつ三元触媒140浄化効
率の低下を紡出している。
Therefore, during the idle stroke of the cylinders φ4 to 60 on the idle side, the so-called pumping loss, which sucks circulating gas at almost atmospheric pressure, is kept extremely small, and the cylinders on the idle side φ4~φ6
In order to further improve fuel efficiency by eliminating the work spent on driving the engine, it also prevents unburned air from flowing into the combined exhaust passage 6KR from the idle cylinders φ4 to 6, thereby increasing the air-fuel ratio. 1
B's detection function ostta is avoided and the three-way catalyst 140 purification efficiency decreases.

ところで、この装置では部分気筒運転を具体的には、籐
2図に示す制御回路によシ行っている。
By the way, in this device, partial cylinder operation is specifically performed by a control circuit shown in Figure 2.

20は燃料噴射信号のパルス巾pl予め設定した壕負荷
に対応するパルス巾P、と比較するコンパレータ、21
は同じくパルス周波数から得られるエンジン回転数Nt
予め設定した低回転数Nと比較するコンパレータであ〕
、両コンパレータ20.21が共にオンとなるパルス巾
がP、以下でかつエンジン回転数が凡以上のとlkKア
ンド回路22からオワ回路23を介して、燃料噴射値断
回路25、燃料噴射定数切換囲路26、新気遮断弁及び
排気循濃弁O駆動回路27を同時に作動させている。
20 is a comparator that compares the pulse width PL of the fuel injection signal with the pulse width P corresponding to a preset groove load; 21;
is the engine rotation speed Nt, which is also obtained from the pulse frequency
This is a comparator that compares with a preset low rotation speed N.]
, when the pulse width at which both comparators 20 and 21 are turned on is less than or equal to P and the engine speed is greater than or equal to approximately The enclosure 26, the fresh air cutoff valve, and the exhaust gas circulation valve O drive circuit 27 are operated at the same time.

なお、24tiアイドルスイツチであルエンジンアイド
ル簡転時に%オワ回路23に出力して、上記と同様に部
分気筒運転を行うようKしている。
It should be noted that the 24ti idle switch outputs an output to the % off circuit 23 during full engine idle switching to perform partial cylinder operation in the same manner as above.

この結果、夷Sに社第3図に示すようにして、全気筒(
6気筒)運転領域と部分気筒運転領域(3気筒)運転領
域が設定されることになる。
As a result, all cylinders (
A 6 cylinder) operating range and a partial cylinder operating range (3 cylinders) are set.

を九、同時Kll!示しない工ンジ/冷却水温竜ンナの
出力にもとづ龜、エンジン冷却水温の低いときはアイド
ル囲板での部分気筒運転を停止するようにしている。
Nine, simultaneous Kll! Based on the output of the engine/cooling water temperature sensor (not shown), when the engine cooling water temperature is low, partial cylinder operation at the idle plate is stopped.

ところが、このようにして部分気筒と全気筒連転の制御
t@換える場合、とくにエンジン低回転域で0気筒数切
換時に空燃地中点火タイミングあるいは排気還流率など
が瞬間的に適正でなくなると、稼動気筒が失火を起こし
中すく、これによ〕とくに低負荷低回転域ではニンジン
の慣性が小さいこともあってエンジンストールを生じる
ことがあった。
However, when changing the control between partial cylinders and all cylinders in this way, especially when changing the number of cylinders to 0 in the low engine speed range, the air-fuel-ground ignition timing or the exhaust gas recirculation rate may momentarily become inappropriate. In this case, the operating cylinders would misfire, resulting in engine stall, especially in the low-load, low-speed range, partly because the inertia of the engine was small.

本発明はかかる問題を解消するために、エンジン負荷及
び回転数を検知して、低速低負荷域では気筒数の切換制
御を停止するようKし意気筒数制御エンジンを提供する
ことを目的とする。
In order to solve this problem, it is an object of the present invention to provide an engine that controls the number of cylinders by detecting the engine load and rotation speed and stopping switching control of the number of cylinders in the low speed and low load range. .

以下、本発明の実施例を図@にもとづいて説明する。Hereinafter, embodiments of the present invention will be described based on the drawings.

第4図は本発明の要部をあられすブロック図であシ、第
2図に比べて、新たに1工ンジ゛ン回転数Nt設定値N
、と比較し、それ以上のときに’HIレベルの信号を出
力するコンパレータ30と、2つのアンド回路31,3
2、アンド回路31,32からの信号によ〕セット・リ
セットされるスリップフロップ33、オワ回路23の出
力を反転するインバータ34とが設けられ、7リツグ7
0ツブ33の出力にもとづいて燃料噴射層断回路25、
燃料噴射定数切換回路26及び新気遮断弁、排気循環弁
駆動回路27とが切換制御されるよ5になっている。
Fig. 4 is a block diagram showing the main parts of the present invention, and compared to Fig. 2, there is a new setting value Nt for the number of revolutions per engine.
, a comparator 30 that outputs a HI level signal when the value is higher than that, and two AND circuits 31 and 3.
2, a slip-flop 33 that is set and reset by signals from the AND circuits 31 and 32, and an inverter 34 that inverts the output of the AND circuit 23.
Based on the output of the 0 knob 33, the fuel injection layer disconnection circuit 25;
The fuel injection constant switching circuit 26, the fresh air cutoff valve, and the exhaust circulation valve drive circuit 27 are switched and controlled.

アンド回路31はコンパレータ30とオワ回路230出
力が共VC’HIのときに%HIレベルの信号を出力し
、これによシフリップフロップ33がセットされその出
力が%Hlレベルに切換わる。
The AND circuit 31 outputs a signal at the %HI level when both the outputs of the comparator 30 and the outputs of the OVER circuit 230 are VC'HI, which sets the shift flip-flop 33 and switches its output to the %HI level.

したがって、オワ回路23が%HfKなるのはアイドル
時かもしくは回転数N> Nlの部分気筒運転時であ夛
、コンパレータ30が同じくゝH1になるのは、回転数
NがN > Nsとなるときであ夛、これらKより、燃
料噴射層断回路25、燃料噴射定数切換回路26及び新
気遮断弁、排気還流弁駆動回路27が同時に作動して、
部分気筒運転を行う。
Therefore, the O/O circuit 23 becomes %HfK during idle or during partial cylinder operation when the rotation speed N>Nl, and the comparator 30 becomes %HfK when the rotation speed N becomes N>Ns. In addition, from these K, the fuel injection layer disconnection circuit 25, the fuel injection constant switching circuit 26, the fresh air cutoff valve, and the exhaust recirculation valve drive circuit 27 operate simultaneously,
Perform partial cylinder operation.

そして、この部分気筒運転は次に79ツブ7aツグ33
にリセット入力があるまで継続されるのであるが、りセ
ット入力端子に接続するアンド回路32は、コンパレー
タ30の出力とオワ回路23のインバータ34を介して
の反転出力をみるため、回転aNがNsよシも大きく、
かつオワ回路23の出力が%Lルベルのと亀に始めてリ
セット入力が%HIK切換わp1全気筒這転Kp:bC
)である。
Then, this partial cylinder operation is performed as follows:
However, since the AND circuit 32 connected to the reset input terminal sees the output of the comparator 30 and the inverted output via the inverter 34 of the O/R circuit 23, the rotation aN is Ns. Yoshi is also big,
And when the output of the output circuit 23 reaches %L level, the reset input changes to %HIK p1 All cylinders rotate Kp:bC
).

ここでオワ回路23の出力が%LIになるのは、回転数
NがN (N、となるか、パルス巾PがP > P。
Here, the output of the output circuit 23 becomes %LI when the rotational speed N is N (N) or when the pulse width P is P > P.

となるが、アイドルスイッチ24がオフとなる非アイド
ル時であり、したがってこのよう忙して部分気筒運転領
域(第5図の3気筒域)から、運転条件が外れ九として
も、全気筒運転に戻るのけ回転数NがN、よりも大きい
ときに@られるのであり、それ以外では仮に7リツプフ
ロツプ33のセット入力であるアンド回路31の出力が
’HlからQ L 1に切換わったとしても、そのt″
!!部分気筒運転が継続し、気筒数切換先は行われない
This is a non-idling time when the idle switch 24 is turned off. Therefore, even if the operating condition deviates from the partial cylinder operation region (3 cylinder region in Figure 5) due to busy conditions, the engine returns to full cylinder operation. It is @ when the displacement rotation speed N is larger than N, and in other cases, even if the output of the AND circuit 31, which is the set input of the 7-lip flop 33, switches from 'Hl to QL1, the t″
! ! Partial cylinder operation continues and the number of cylinders is not switched.

また、逆に全気筒運転から部分気筒運転へ移行する際、
ニンジン回転数NがN、よりも低い領域では、7リツプ
70ツグ380セツト入力となるアンド回路31の出力
が必らず箋Llレベルのため、その他の部分気筒運転の
条件を満九しても、気筒数O切換えは′行われないので
ある。
Conversely, when transitioning from full cylinder operation to partial cylinder operation,
In the region where the carrot rotational speed N is lower than N, the output of the AND circuit 31, which is the 7-rip, 70-tug, 380-set input, is always at the Ll level, so even if all other partial cylinder operation conditions are met, , the number of cylinders O is not changed.

以上のようにして本発明ではエンジン低回転数域(上記
実施例のN < Ns)では、部分気筒から全気筒、あ
るいは全気筒から部分気筒運転への切換えを停止するよ
うにしたので、低(9)転載での気筒数切換時に生じる
空燃比や点火タイiングの変動による失火を防いで、エ
ンジンストールを未然に防止できるという効果がある。
As described above, in the present invention, switching from partial cylinder to all cylinders or from all cylinders to partial cylinder operation is stopped in the low engine speed range (N < Ns in the above embodiment), so that low ( 9) It is effective in preventing engine stalls by preventing misfires due to fluctuations in air-fuel ratio and ignition timing that occur when changing the number of cylinders during reloading.

なお、上記実施例では低回転域での限界回転数Nsを一
律に設定したが、全気筒から部分気筒に切換わると自と
、部分気筒から全気筒に切換わるときで差tもたせても
よいし、また気筒数制御エンジンとしては、第1mK示
すものの他、部分気筒運転時に体止気Wに新気を吸入さ
せ、その排出空気を七つく)稼動気筒に吸入させる方式
のものであってもよいこと祉明白であろう。
In the above embodiment, the limit rotation speed Ns in the low rotation range is set uniformly, but there may be a difference t between when switching from all cylinders to partial cylinders and when switching from partial cylinders to all cylinders. However, in addition to the 1st mK engine, there are also engines with cylinder number control that suck fresh air into the body stop air W during partial cylinder operation, and suck the discharged air into the active cylinders. The good news is that this is clearly a good thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置O概略構成図、第2図は同じく制御回
路ブロック図、#lE3図はその作動特性説Jj11W
J、第4111は不発−の制御回路ブロック図、第5図
はその作動特性説明図である。 2・・・絞弁、3・・・稼動側吸気通路、4・・・休止
側吸気通路、6・−新気遮断弁、9・・・排気循環通路
、12・・・排気循環弁、15・・・制御囲路、24・
・・スpットルスイツf−120,21,80・・・コ
ンバレー/。 22.31.32・・・アンド回路、25・・・燃料噴
射量遮断回路、26・・・燃料噴射定数切換回路、27
・・・駆動回路、33・・・フリップフロツブ特許出願
人 日産自動車株式会社 第1回 第2図 2ら ゛) 4 第3図 1ゝ41 工)ンソ回東(欠r1 第4図 0 4 第5図 エン’、’yrrn自l(N 210−
Figure 1 is a schematic diagram of the conventional device O, Figure 2 is a control circuit block diagram, and Figure #lE3 is its operating characteristic theory Jj11W.
J, No. 4111 is a block diagram of the control circuit of the misfire, and FIG. 5 is a diagram explaining its operating characteristics. 2... Throttle valve, 3... Working side intake passage, 4... Inactive side intake passage, 6... Fresh air cutoff valve, 9... Exhaust circulation passage, 12... Exhaust circulation valve, 15 ...Control enclosure, 24.
... Sputtleswiss f-120, 21, 80... Combaret/. 22.31.32...AND circuit, 25...Fuel injection amount cutoff circuit, 26...Fuel injection constant switching circuit, 27
...Drive circuit, 33...Flip-flop patent applicant Nissan Motor Co., Ltd. 1st issue Fig. 2 2) 4 Fig. 3 1ゝ41 d) Nso circuit (missing r1 Fig. 4 0 4) Figure 5 En','yrrnself (N 210-

Claims (1)

【特許請求の範囲】[Claims] エンジンが所定の軽負荷でかつ回転数が所定の低回転以
上であることを判別する手段と、エンジン無負荷である
ことを判別する手段と、両判別手段からのいずれかの信
号によシ一部気筒に対する燃料の供給を遮断して作動を
休止させる手段とを備え九気筒数制御エンジンにおいて
、エンジン回転数が上記所定の低回転数よシも低い設定
回転数以下であることを判別する手段と、該判別信号に
よp気筒数切換を停止する手段とを備えたことを特徴と
する気筒数制御エンジ/。
means for determining that the engine is under a predetermined light load and the engine speed is at or above a predetermined low rotation speed; and means for determining that the engine is under no load; means for stopping the operation of the engine by cutting off the supply of fuel to the partial cylinders, and means for determining that the engine rotation speed is lower than the predetermined low rotation speed in the nine-cylinder control engine. and means for stopping switching of the number of cylinders p based on the discrimination signal.
JP13910181A 1981-09-03 1981-09-03 Engine controlled in number of operating cylinders Pending JPS5841239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13910181A JPS5841239A (en) 1981-09-03 1981-09-03 Engine controlled in number of operating cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13910181A JPS5841239A (en) 1981-09-03 1981-09-03 Engine controlled in number of operating cylinders

Publications (1)

Publication Number Publication Date
JPS5841239A true JPS5841239A (en) 1983-03-10

Family

ID=15237504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13910181A Pending JPS5841239A (en) 1981-09-03 1981-09-03 Engine controlled in number of operating cylinders

Country Status (1)

Country Link
JP (1) JPS5841239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013306A1 (en) * 1991-12-26 1993-07-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013306A1 (en) * 1991-12-26 1993-07-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine for automobile

Similar Documents

Publication Publication Date Title
JPS5853182B2 (en) Exhaust recirculation device for engine with cylinder number control
JPS5918248A (en) Fuel injection controlling method for internal combustion engine
JPH11182297A (en) Combustion switching control device for internal combustion engine
JPS5841239A (en) Engine controlled in number of operating cylinders
JPS58101234A (en) Fuel injection control device of multi-cylinder engine
JP2004176637A (en) Controller for spark ignition engine
JPH0319370B2 (en)
JPS59543A (en) Cylinder number controlled engine
JPS5825514A (en) Internal combustion engine having combustion chamber with plural intake ports
JPS5841240A (en) Engine controlled in number of operating cylinders
JPS5965531A (en) Engine speed control device for internal-combustion engine
JPH11153052A (en) Air-fuel ratio control device in idling time of internal combustion engine
JP3230387B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS58150053A (en) Cylinder quantity controlled engine
JPS63106331A (en) Fuel injection system for engine
JPS5832940A (en) Cylinder number control engine
JPS6189936A (en) Control apparatus of engine
JPS6223548A (en) Fuel control device for fuel-injection engine
JPH1089157A (en) Exhaust gas reflux quantity control device for engine
JPH0137582B2 (en)
JPH0411733B2 (en)
KR20030067856A (en) A variable charge motion valve control device for gasoline direct injection engines and control method thereof
JPS58217738A (en) Cylinder number controlling type engine
JPH0551061B2 (en)
JPS58202340A (en) Cylinder number control engine