JPS5840872A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS5840872A
JPS5840872A JP56138931A JP13893181A JPS5840872A JP S5840872 A JPS5840872 A JP S5840872A JP 56138931 A JP56138931 A JP 56138931A JP 13893181 A JP13893181 A JP 13893181A JP S5840872 A JPS5840872 A JP S5840872A
Authority
JP
Japan
Prior art keywords
light
layer
junction
type
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56138931A
Other languages
Japanese (ja)
Other versions
JPS6222553B2 (en
Inventor
Tsutomu Koshimura
越村 勉
Hiroshi Suga
須賀 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56138931A priority Critical patent/JPS5840872A/en
Publication of JPS5840872A publication Critical patent/JPS5840872A/en
Publication of JPS6222553B2 publication Critical patent/JPS6222553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make external quantum efficiency extremely large by forming the light extracting region of the semiconductor light-emitting devices in stepped shape of which a corner section is rounded. CONSTITUTION:N And P epitaxial layers 2, 3 are grown continuously onto an N type GaP substrate 1, electrodes 5, 6 are attached, and a section up to a P-N junction 4 from the surface of the layer 3 is diced to shape form of which similar polygons are stacked and approximately finished in semispherical shape. The corners of stages are removed through chemical etching, and said section is brought close to a semisphere. The whole is separated into the light-emitting devices. When the P-N junction 4 is conducted in the forward direction, light emitted from the P layer passes through the semispherical layer 3 and is extracted to the surface. Since light components exceeding a critical angle are few in a spherical surface and light is hardly reflected at the inside at that time, the external quantum efficiency is improved remarkably, and brought to approximately treble or higher of a plane type.

Description

【発明の詳細な説明】 本発明は化合物半導体を用いた発光素子の構造に関する
本発明は液相成長法等により片側の特Vこ全面に発光部
を設けた場合に有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a light-emitting element using a compound semiconductor, and is effective when a light-emitting portion is provided over the entire surface of one side by a liquid phase growth method or the like.

従来、発光素子の発光面構造は選択拡散壁、全面発光型
を問わず平面構造のため、その発光源の大部分の位置は
光を取り出す側の表面に平行して一定の深さにあり、界
面へ向かう光の臨界角を越える成分は内部反射をして結
晶内部で吸収されるか、又は前記深さ分において結晶内
を進む発光光路長に対応した発光成分の吸収があること
は知られている。
Conventionally, the light-emitting surface structure of a light-emitting element is a flat structure regardless of whether it is a selective diffusion wall type or a full-emission type, so that the majority of the light source is located at a certain depth parallel to the surface from which light is extracted. It is known that the component of light that exceeds the critical angle toward the interface is internally reflected and absorbed inside the crystal, or that there is absorption of a luminescent component corresponding to the length of the luminescent optical path that travels within the crystal at the above depth. ing.

第1図はN型GaP結晶材料の上にP型GaP結晶層を
形成させて作られた従来方式による全面発光帖の発光素
子の断面図である。先ずN ffl GaP基板1の」
二にN型GaP層2とP型GaP層3を公知の液相成長
方式により連続的にエピタキシャル形成させてPN接合
4を形成する。次いで前記PN接合4のP側の一部に衣
電極5を形成し、GaP基板i ill!+に裏面電極
6を形成して更に公知のダイシング工程を経て個々の発
光素子を作る。
FIG. 1 is a cross-sectional view of a conventional full-surface light-emitting device manufactured by forming a P-type GaP crystal layer on an N-type GaP crystal material. First, the Nffl GaP substrate 1.
Second, an N-type GaP layer 2 and a P-type GaP layer 3 are successively epitaxially formed by a known liquid phase growth method to form a PN junction 4. Next, a coating electrode 5 is formed on a part of the P side of the PN junction 4, and the GaP substrate i ill! A back electrode 6 is formed on the + side, and a known dicing process is then carried out to produce individual light emitting elements.

以」二の構造の発光素子のl) N接合4に順方向に通
電するとI’ IQI 1j(j域から゛発光し、この
光は裏面並びに側面に進むものと同時に表面へ進む光7
が得られる。(以下の説、明では本発明が表面へ進む光
に関するものであるため、裏面並びに側面へ進む光は省
略する)。
When current is applied in the forward direction to the N-junction 4 of the light emitting device having the structure shown below, I'IQI 1j (light is emitted from the region j, and this light travels to the back and side surfaces as well as light 7 that travels to the front surface.
is obtained. (In the following description, since the present invention relates to light traveling toward the front surface, light traveling toward the back surface and side surfaces will be omitted.)

界面へ進む光はP型()aP 層3の表面で内部反射す
る成分と内部吸収されながら表面を通過する成分に分か
れる。これらの内部反射並びに内部吸収を皆無にするこ
とは発光部が平面構造の場合、製法上原理的に不可能で
ある。
The light traveling to the interface is divided into a component that is internally reflected at the surface of the P-type ()aP layer 3 and a component that passes through the surface while being internally absorbed. In principle, it is impossible to completely eliminate these internal reflections and internal absorptions when the light emitting section has a planar structure due to the manufacturing method.

前記不都合を解決する方策として、光を取り出す側の表
面を曲面に例えば理想的には半球状に加工して内部反射
並びに内部吸収を最小限に押さえることは理論的に又実
験的に証明されているが、生産コストや加工技術の点で
実用に供せず多くの問題が残されている。
As a measure to solve the above-mentioned disadvantages, it has been theoretically and experimentally proven that internal reflection and internal absorption can be minimized by processing the light extraction side surface into a curved surface, ideally into a hemispherical shape. However, many problems remain that make it impractical in terms of production costs and processing technology.

本発明の目的は前記欠点を大幅に改善し、実現が困難と
された半球状発光部を近似的ではあるが形成し、外部量
子効率の極めて大きい半導体発光素子を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to significantly improve the above-mentioned drawbacks, to form a hemispherical light emitting section which has been difficult to realize, albeit approximately, and to provide a semiconductor light emitting device with extremely high external quantum efficiency.

本発明によれば内部反射による外部量子効率の損失を防
ぎ、且順方向電圧特性や電流集中による発光特性の劣化
を伴うことなく製法上並びに技術的困難さを解消させた
方法である。
According to the present invention, it is a method that prevents loss of external quantum efficiency due to internal reflection and eliminates manufacturing and technical difficulties without causing deterioration of forward voltage characteristics or light emission characteristics due to current concentration.

以下図面を参照して本発明の実施し11を詳細に説明す
る。第1の実施例は従来方式と同様、N型GaP 結晶
材料の上にNl及びPlGaP 結晶層を積んで形成し
た発光素子に関して行なう。第2図が本発明方式で得た
発光素子並びに発光部からの発光光路図であり、従来方
式と同様先ずN型GaP 基板1の上にN型032層2
とP型GaP層3を公知の液相成長方式により連続的に
エピタキシャル形成させてPN接合4を形成する。更に
前記1’ N接合4のP側の一部に表電極5を形成しG
aI’基板1側に裏面電極6を形成する。次にPIjl
iGaP層3の表面からPN接合4に到る部分の深さ方
向幅の広いブレードにより方向を変えた複数の公知のダ
イシング操作によって多角形の突起面を残し、更に前記
突起面の外側下部に前記幅の広いブレードより幅のせま
いブレードで前記突起部よシ大きい相似形の多角形の突
起部を前記同様・の方向を変えた複数のダイシング操作
によって残す。この操作を順次繰く返えし、相似形の多
角柱を積み重ねたごとき型状に形成して近似的半球状に
仕上げ/)。続いて公知の化学蝕刻法によυ各段の角部
を蝕刻し更に半球状に近ずける。しかる後に全幅ダイシ
ング又はハーフダイシングによシ各発光素子に分離する
Embodiment 11 of the present invention will be described in detail below with reference to the drawings. The first embodiment is similar to the conventional method, and is performed on a light emitting element formed by stacking Nl and PlGaP crystal layers on an N-type GaP crystal material. FIG. 2 is a diagram showing the optical path of light emitted from the light emitting device and the light emitting part obtained by the method of the present invention. As in the conventional method, first, an N-type GaP substrate 1 is coated with an N-type 032 layer 2.
and P-type GaP layer 3 are successively epitaxially formed by a known liquid phase growth method to form a PN junction 4. Furthermore, a surface electrode 5 is formed on a part of the P side of the 1'N junction 4, and the G
A back electrode 6 is formed on the aI′ substrate 1 side. Next, PIjl
A polygonal protrusion surface is left by a plurality of known dicing operations in which the direction is changed using a blade having a wide width in the depth direction from the surface of the iGaP layer 3 to the PN junction 4, and the A similar polygonal protrusion larger than the protrusion is left by a plurality of dicing operations in different directions using a narrower blade than a wider blade. This operation is repeated one after another to form a shape that looks like a stack of polygonal prisms of similar shapes and is finished into an approximate hemispherical shape. Next, the corners of each step are etched using a known chemical etching method to further approximate the hemispherical shape. Thereafter, it is separated into each light emitting element by full width dicing or half dicing.

以上の構造の発光素子のPN接合4に順方向に通電する
とP型頭域から発した光は近似的半球状のP型GaP 
 層3を通過して表面へ覗り出される。
When current is applied in the forward direction to the PN junction 4 of the light-emitting element with the above structure, the light emitted from the P-type head region is approximately hemispherical P-type GaP
It passes through layer 3 and peeks out to the surface.

前記GaP層3を通過する間は従来方式と同様。The process of passing through the GaP layer 3 is the same as the conventional method.

光吸収による減衰もおこるが球面に於ける臨界角を越え
る成分が少なく、内部反射が少ないため外部量子効率は
飛躍的に向上し平面観に比し約3倍以上となる。
Although attenuation occurs due to light absorption, there are few components exceeding the critical angle on the spherical surface, and there is little internal reflection, so the external quantum efficiency is dramatically improved and is about three times or more compared to a planar view.

次に本発明のP型頭域Nu領域の向きを逆にした一般に
アップサイドダウン型と呼ばれる赤外発光素子に適用し
た第2の実施例について説明する。
Next, a second embodiment will be described in which the present invention is applied to an infrared light-emitting element generally called an upside-down type in which the direction of the P-type head region Nu region is reversed.

第3図が本発明による第2の実施例で得た赤外発光素子
並びにPN接合からの発光光路図である。
FIG. 3 is a diagram showing light emission paths from an infrared light emitting device and a PN junction obtained in a second example according to the present invention.

先ずN型GaAa基板8にN I GaAs1d 9と
P型GaAs層10を液相成長方式により連続的に形成
させてPN接合すなわち発光部4を形成する。発光素子
のN型G a A s基板8側から光を取り出せる様。
First, a N I GaAs1d 9 and a P-type GaAs layer 10 are successively formed on an N-type GaAa substrate 8 by a liquid phase growth method to form a PN junction, that is, a light emitting section 4 . Light can be extracted from the N-type GaAs substrate 8 side of the light emitting element.

P側とN側を上下逆の向きにする。次いでPN接合4O
N側であるN1GaAa基板8の一部に表電極11を形
成し、P型G a A s層10側に裏面電極5− 12を形成する。以後は本発明の前記複数回数のダイシ
ング操作並びに化学蝕刻法の組み合わせによりPN接合
のN側を近似的半球状に加工する。
Turn the P side and N side upside down. Then PN junction 4O
A front electrode 11 is formed on a part of the N1GaAa substrate 8 on the N side, and a back electrode 5-12 is formed on the P-type GaAs layer 10 side. Thereafter, the N side of the PN junction is processed into an approximately hemispherical shape by a combination of the plurality of dicing operations and chemical etching according to the present invention.

以上の構造の発光素子のPN接合4に順方向に通電する
とN側から光が取り出され、外部量子効率は前記GaP
 系同様の効果が得られる。
When the PN junction 4 of the light emitting device with the above structure is energized in the forward direction, light is extracted from the N side, and the external quantum efficiency is
Similar effects can be obtained.

尚近似的半球状罠仕上げる工程として複数回数のダイシ
ング操作を逆にして階段状の下方部分から順次仕上げて
も同様の効果が得られる。父上方。
The same effect can be obtained by reversing the dicing operation a plurality of times as a process for finishing the approximate hemispherical trap and finishing sequentially from the lower part of the stepped shape. Father above.

下方いずれの側から仕上げる場合にかかわらず複数回数
のダイシングの代りに複数回数のメサエッチング方式で
も同様の効果を得られることは記述するまでもない。
It goes without saying that the same effect can be obtained by performing mesa etching multiple times instead of dicing multiple times, regardless of which side is finishing from the bottom.

又本発明の実施例として液相成長法によシ発光領域を形
成する例について記述したが、気相成長法により発光領
域を形成した場合に於ても同様の効果が得られる。
Further, as an embodiment of the present invention, an example in which the light emitting region is formed by liquid phase epitaxy has been described, but similar effects can be obtained when the light emitting region is formed by vapor phase epitaxy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式による断面図であり、第2図。 6− 第3図は本発明の実施例による発光素子の断面図である
。第2図はGaP 系、第3図はG a A a系アッ
プサイドダウン構造である。 1・・・・・・N型GaP基板、2・・・・・・N型O
a I’層、3・・・・・・P型GaP層、4・・・・
・・PN接合、5・・・・・・GaP、系表電極、6・
・・・・・OaP系裏面電極、7・・・・・・発光光路
、8 ・・・−・・N 71 GaA s基板、9・・
・・・・N型GaAs層、10・・・・・・P型GaA
s層、11・・・・・・GaAs系表電極、12・・・
・・・G a A s系裏面電極を示す。 半 1N¥l り
FIG. 1 is a sectional view of the conventional method, and FIG. 6- FIG. 3 is a sectional view of a light emitting device according to an embodiment of the present invention. FIG. 2 shows a GaP-based structure, and FIG. 3 shows a GaA-based upside-down structure. 1...N-type GaP substrate, 2...N-type O
a I' layer, 3...P-type GaP layer, 4...
...PN junction, 5...GaP, system surface electrode, 6.
...OaP-based back electrode, 7...Emission optical path, 8...N71 GaAs s substrate, 9...
...N-type GaAs layer, 10...P-type GaA
s layer, 11...GaAs-based surface electrode, 12...
. . . indicates a GaAs-based back electrode. Half 1N¥l

Claims (1)

【特許請求の範囲】[Claims] 半導体発光素子の光を取りItlす領域が階段状でかつ
、前記階段状の各々の角部が丸味を有することを特徴と
する半導体発光素子。
1. A semiconductor light emitting device characterized in that a region of the semiconductor light emitting device that takes in light has a step shape, and each corner of the step shape has a rounded shape.
JP56138931A 1981-09-03 1981-09-03 Semiconductor light-emitting device Granted JPS5840872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56138931A JPS5840872A (en) 1981-09-03 1981-09-03 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138931A JPS5840872A (en) 1981-09-03 1981-09-03 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPS5840872A true JPS5840872A (en) 1983-03-09
JPS6222553B2 JPS6222553B2 (en) 1987-05-19

Family

ID=15233483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138931A Granted JPS5840872A (en) 1981-09-03 1981-09-03 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS5840872A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405757A2 (en) * 1989-06-27 1991-01-02 Hewlett-Packard Company High efficiency light-emitting diode
US5087949A (en) * 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
US5349211A (en) * 1992-03-26 1994-09-20 Nec Corporation Semiconductor infrared emitting device with oblique side surface with respect to the cleavage
US5665985A (en) * 1993-12-28 1997-09-09 Ricoh Company, Ltd. Light-emitting diode of edge-emitting type, light-receiving device of lateral-surface-receiving type, and arrayed light source
WO2001073859A1 (en) * 2000-03-24 2001-10-04 Nova Crystals, Inc. Enhanced-output light emitting diode and method of making the same
EP1263058A2 (en) * 2001-05-29 2002-12-04 Toyoda Gosei Co., Ltd. Light-emitting element
KR100716646B1 (en) * 2005-11-04 2007-05-09 서울옵토디바이스주식회사 Light emitting device having a sloped surface for exiting ligth and method of fabricating the same
JP2010206207A (en) * 2009-03-03 2010-09-16 Lg Innotek Co Ltd Light emitting element, light emitting element package, and lighting system with the same
EP2234182A1 (en) * 2007-12-28 2010-09-29 Nichia Corporation Semiconductor light emitting element and method for manufacturing the same
CN102201508A (en) * 2010-03-25 2011-09-28 鸿富锦精密工业(深圳)有限公司 Light emitting diode chip and fabrication method thereof
WO2016125344A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Light emitting diode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404799B2 (en) 2019-11-15 2023-12-26 株式会社リコー Carrier for electrophotographic image formation, developer for electrophotographic image formation, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405757A2 (en) * 1989-06-27 1991-01-02 Hewlett-Packard Company High efficiency light-emitting diode
US5087949A (en) * 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
US5349211A (en) * 1992-03-26 1994-09-20 Nec Corporation Semiconductor infrared emitting device with oblique side surface with respect to the cleavage
US5665985A (en) * 1993-12-28 1997-09-09 Ricoh Company, Ltd. Light-emitting diode of edge-emitting type, light-receiving device of lateral-surface-receiving type, and arrayed light source
WO2001073859A1 (en) * 2000-03-24 2001-10-04 Nova Crystals, Inc. Enhanced-output light emitting diode and method of making the same
EP1263058A2 (en) * 2001-05-29 2002-12-04 Toyoda Gosei Co., Ltd. Light-emitting element
EP1263058A3 (en) * 2001-05-29 2004-10-27 Toyoda Gosei Co., Ltd. Light-emitting element
US6946788B2 (en) 2001-05-29 2005-09-20 Toyoda Gosei Co., Ltd. Light-emitting element
EP1596443A1 (en) * 2001-05-29 2005-11-16 Toyoda Gosei Co., Ltd. Light-emitting element
KR100716646B1 (en) * 2005-11-04 2007-05-09 서울옵토디바이스주식회사 Light emitting device having a sloped surface for exiting ligth and method of fabricating the same
US9159868B2 (en) 2007-12-28 2015-10-13 Nichia Corporation Method for manufacturing semiconductor light emitting device
EP2234182A1 (en) * 2007-12-28 2010-09-29 Nichia Corporation Semiconductor light emitting element and method for manufacturing the same
EP2234182A4 (en) * 2007-12-28 2014-09-03 Nichia Corp Semiconductor light emitting element and method for manufacturing the same
US8883529B2 (en) 2007-12-28 2014-11-11 Nichia Corporation Method for manufacturing semiconductor light emitting device
JP2010206207A (en) * 2009-03-03 2010-09-16 Lg Innotek Co Ltd Light emitting element, light emitting element package, and lighting system with the same
US9705037B2 (en) 2009-03-03 2017-07-11 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system including the same
CN102201508A (en) * 2010-03-25 2011-09-28 鸿富锦精密工业(深圳)有限公司 Light emitting diode chip and fabrication method thereof
WO2016125344A1 (en) * 2015-02-03 2016-08-11 ソニー株式会社 Light emitting diode
JPWO2016125344A1 (en) * 2015-02-03 2017-11-09 ソニー株式会社 Light emitting diode
US10811562B2 (en) 2015-02-03 2020-10-20 Sony Corporation Light emitting diode

Also Published As

Publication number Publication date
JPS6222553B2 (en) 1987-05-19

Similar Documents

Publication Publication Date Title
US5739552A (en) Semiconductor light emitting diode producing visible light
JP3863569B2 (en) Method for manufacturing a semiconductor substrate having a row of MOVPE layers
US6791117B2 (en) Semiconductor light emission device and manufacturing method thereof
JP4126749B2 (en) Manufacturing method of semiconductor device
US5349211A (en) Semiconductor infrared emitting device with oblique side surface with respect to the cleavage
JPS5840872A (en) Semiconductor light-emitting device
JPH02174272A (en) Manufacture of light-emitting diode array
KR900009229B1 (en) Algaas/gaas semiconductor laser diode manufacture method
JPH03227078A (en) Light emitting diode
JP4998701B2 (en) III-V compound semiconductor light emitting diode
JPH07153993A (en) Light-emitting diode
JPS61121373A (en) Surface light-emitting element and manufacture thereof
JPH0327577A (en) Light emitting diode array
JP2000261029A (en) Optical semiconductor element
KR100287201B1 (en) Manufacturing method of laser diodes
JPH07153991A (en) Light emitting diode and its production
JPH11168239A (en) Gallium nitride compound semiconductor light emitting device
JPH04196281A (en) Visible light semiconductor laser
JPH06125111A (en) Light emitting semiconductor element
JPH05335625A (en) Semiconductor light emitting element
JPH0613650A (en) Infrared light emitting element and its manufacture
TWI550900B (en) Semiconductor device layer and fabricating method thereof
JPH05226693A (en) Infrared light emitting diode
JPS62137883A (en) Junction type semiconductor light emitting element
JPH03150877A (en) Manufacture of lens-shaped light emitting diode