JPS5840629A - Valve operating method - Google Patents
Valve operating methodInfo
- Publication number
- JPS5840629A JPS5840629A JP13783081A JP13783081A JPS5840629A JP S5840629 A JPS5840629 A JP S5840629A JP 13783081 A JP13783081 A JP 13783081A JP 13783081 A JP13783081 A JP 13783081A JP S5840629 A JPS5840629 A JP S5840629A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valves
- pressure
- piping system
- operated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/20—Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pipeline Systems (AREA)
- Control Of Non-Electrical Variables (AREA)
- Control Of Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、弁操作方法に関し、特に2台以上の弁を直列
に接続した配管系における弁操作方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve operating method, and particularly to a valve operating method in a piping system in which two or more valves are connected in series.
弁の2次圧が低く、減圧量が大きい場合、第1図に示す
ように弁l〜3を2台以上厘列に接続して減圧する方法
がとられる。この2台以上の弁l〜3を同一開度で操作
すると下流側の弁がキャビテーションを起しやすくなる
。適正な弁操作を行うためにはすべての弁のキャビテー
ション係数が等しくなるように弁を開閉させるべきであ
る。このために第1図に示すように、上流部、下流側、
−および各弁1〜30間に圧力検出器−一残を設け。When the secondary pressure of the valve is low and the amount of pressure reduction is large, a method of reducing the pressure by connecting two or more valves 1 to 3 in a series as shown in FIG. 1 is used. If these two or more valves 1 to 3 are operated at the same opening degree, the valves on the downstream side are likely to cause cavitation. In order to perform proper valve operation, the valves should be opened and closed so that the cavitation coefficients of all valves are equal. For this purpose, as shown in Figure 1, the upstream, downstream,
- and a pressure detector between each valve 1-30.
その出力信号を制御装置DK大入力て、各弁1〜302
次圧から目標弁差圧を求め、弁アクチュエータム、−A
、を作動してその差圧になるように6弁IS3の開度な
制御することが考えられるが、この方法では、圧力検出
器の数が多くなり、また6弁の差圧を独立に制御するた
め制御が不安定になる恐れがある。The output signal is inputted to the control device DK, and each valve 1 to 302
Determine the target valve differential pressure from the next pressure, and set the valve actuator to -A.
, and control the opening of the six valves IS3 to achieve that differential pressure, but this method requires a large number of pressure detectors and requires independent control of the differential pressure of the six valves. Therefore, control may become unstable.
したがって1、本発明の目的とするところは、使用する
圧力検出器の数を少なくし、しかも安定した弁制御を行
うことのできる弁操作の方法を提供するにある。Therefore, 1. An object of the present invention is to provide a valve operation method that can reduce the number of pressure detectors used and perform stable valve control.
この逢め本発明は、直列に接続された2台以上の弁を含
む配管系において、i管系上流部および下流部に圧力検
出器を設けて上流s′によび下流部の圧力を検出し、ま
た前記配管系内に含まれる弁のうち1台を外部からの操
作員の操作指令、もしくは操作信号によって動作させ、
そり開度を弁開度検出器によって検出し、それらの検出
器からの検出信号、それぞれの弁の特性、および勢キャ
ビテーション条件式を用いて、外部から操作される弁と
等しいキャビテーション係数となるよ5な6弁の弁開度
をマイクロコンピュータにより算出シ。According to the present invention, in a piping system including two or more valves connected in series, pressure detectors are provided in the upstream and downstream parts of the i-piping system to detect the pressure in the upstream s' and downstream parts. , and one of the valves included in the piping system is operated by an operation command or an operation signal from an external operator,
The warpage opening is detected by valve opening detectors, and the detection signals from these detectors, the characteristics of each valve, and the cavitation conditional expression are used to make the cavitation coefficient equal to that of an externally operated valve. Calculate the valve opening degrees of 5 and 6 valves using a microcomputer.
その情報を用いて外部から操作される弁以外の弁の開度
な操作する。The information is used to control the opening of valves other than those operated from the outside.
以下、第2図および縞3図を参照し本発明の弁操作方法
を実施した実施例を説明する。Hereinafter, an embodiment of the valve operating method of the present invention will be described with reference to FIG. 2 and FIG. 3.
第2図において、14〜に〜nは配管系に直列に設けた
6弁であり、その中の弁Kが外部からの操作信号SIに
よって開閉動作を行うようKなっている。またム1〜ム
、は6弁を作動する弁アクチェータaMIlは配管系上
流部EW&けた上流側圧力検出器、Mdは配管系下流部
に設けた下流側圧力検出器、M#は弁にの弁開度を検出
する弁開度検出器である。In FIG. 2, 14--n are six valves provided in series in the piping system, and valve K among them is designed to open and close in response to an external operation signal SI. In addition, M1 to M are the valve actuators that operate the 6 valves, aMIl is the upstream side pressure detector of the piping system EW & digits, Md is the downstream pressure detector provided at the downstream side of the piping system, and M# is the valve actuator of the valve. This is a valve opening detector that detects the opening.
またCはマイクロコンピュータで、マイクロコンピュー
タCは、圧力信号人力装酸Cい弁開度信号入力装置C3
,演算記憶装置C1、弁開度信号出力装置C4を備えて
いる。Further, C is a microcomputer, and the microcomputer C is a pressure signal human input valve opening signal input device C3.
, an arithmetic storage device C1, and a valve opening degree signal output device C4.
第2図に示すよ5に、配管系下流側から順に弁l、−q
2・・・・・弁nが直列に接続した配管系において、
配管系上流部の絶対圧力をHn 、下流部の絶対圧力な
Ho、下流側から1番目に位置する弁量り開度をθi、
損失係数を21.キャビテーション係数なViとする。As shown in Figure 2, valves 1 and -q are installed in order from the downstream side of the piping system.
2...In a piping system in which valves n are connected in series,
The absolute pressure in the upstream part of the piping system is Hn, the absolute pressure in the downstream part is Ho, the opening degree of the valve located first from the downstream side is θi,
Set the loss factor to 21. Let Vi be the cavitation coefficient.
圧力をゲージ圧力として検出する場合は、そのゲージ圧
にiイクロコンピュータCの演算記憶装置C,内に設定
した平、均大気圧を加え、近似的に絶対圧を得る。また
弁に、は−各秤弁特有の弁特性、すなわち弁開度と弁損
失係数との間の関係が定まるので、弁IK関する弁特性
をλ1=fl(ji)と表記し、この関係を関数もしく
はテーブルとしテマイクロコンピュータCの演算記憶装
置1lc1に記憶しておく、また、R−Ha/Ho
とする。When detecting pressure as a gauge pressure, the average atmospheric pressure set in the arithmetic storage device C of the i-microcomputer C is added to the gauge pressure to approximately obtain the absolute pressure. In addition, since the valve characteristic unique to each scale valve, that is, the relationship between the valve opening degree and the valve loss coefficient, is determined, the valve characteristic related to the valve IK is expressed as λ1 = fl (ji), and this relationship can be expressed as follows: The R-Ha/Ho
shall be.
次きに、外部からの操作信号8.によって動作する弁に
以外の弁のキャビテーション係数な弁にのキャビテーシ
ョン係数と尋しくするための手順を説明する。まず弁に
の開度θkを弁開度検出装置島で検出し、マイクロコン
ピュータCの弁開度信号入力装置11ctに入力するこ
とにより、弁にの損失係数λには、マイクロコンピュー
タCの演算記憶装置C,に記憶させた弁特性
λに= rk(#k) (t)
より算出される。Next, an external operation signal 8. The procedure for determining the cavitation coefficient of a valve other than the valve operated by the valve will be explained. First, the opening degree θk of the valve is detected by the valve opening degree detection device island and inputted to the valve opening degree signal input device 11ct of the microcomputer C. For the valve characteristic λ stored in device C, = rk(#k) (t)
Calculated from
λl=λk (Hn/Ho ) n =λka”
(2)なる算式を用いマイクロコンピュータCの、演
算記憶装@C3によって算出する。また対応する弁開度
θiを
θi=r+(λ+ ) (3)より
算出し、この値をマイクロコンピュータCの弁開度信号
出力装置C6を用いて出力する。この弁開度#IK一致
するように弁アクチユエータAiにより弁開度を操作す
ると、弁tのキャビテーション係数は、弁にのキャビテ
ーション係数と等しくなり、その値は
Vl z t/ (n(Rl ) (
4)となる。λl=λk (Hn/Ho) n=λka”
It is calculated by the arithmetic storage unit @C3 of the microcomputer C using the formula (2). Further, the corresponding valve opening degree θi is calculated from θi=r+(λ+) (3), and this value is output using the valve opening degree signal output device C6 of the microcomputer C. When the valve opening degree is manipulated by the valve actuator Ai so as to match this valve opening degree #IK, the cavitation coefficient of the valve t becomes equal to the cavitation coefficient of the valve, and its value is Vl z t/ (n(Rl ) (
4).
この関係は任意の1番目の弁に対して成立、するので、
(1)式、(2)式、(3)式を用いてすべての弁の開
度が求まり、その情報を用いてすべての弁をキャビテー
ション係数を等しくするように操作することが可能であ
る。This relationship holds true for any first valve, so
The opening degrees of all valves are determined using equations (1), (2), and (3), and using this information, it is possible to operate all valves to equalize the cavitation coefficients.
なお以上の式は下記の式から確認することができる。The above formula can be confirmed from the formula below.
まず速度水頭をCとすれば次式が成立する。First, if the velocity head is C, the following equation holds true.
(2)式を代入すると
とノ
(Ha −Ha ) (Hn−He)Rn最下流忙
位置する弁1f)’(ヤピテーション係数V。Substituting equation (2), Tono (Ha − Ha ) (Hn − He) Rn valve 1f)' (yapitation coefficient V).
を定儀する基礎弐忙、(2)式および(6)式を代入す
るHe(R−1) He(i−i) tま友弁鳳
(a≦魚≦鳳)のキャピテーシ曹ン係数Vld翫
Cλl CJi λl胆
となる、すなわち11弐によって算出した損失係数を用
いると、すべての弁の★ヤビテーション係数は(tg−
1)−”となり、すべての弁に対して同一の値となる。Substituting Equations (2) and (6), He(R-1) He(i-i) t Capitesi coefficient Vld of Mayubenho (a≦fish≦Feng) pole
Using the loss coefficient calculated by 112, the ★javitation coefficient of all valves is (tg-
1)-”, which is the same value for all valves.
今仮りに4つの弁に、、に、、に、およびに4を直列(
接続したものとし、下*SWの圧力をHa、弁に1と弁
に、との間の圧力をH1h弁に、と弁に、とり間の圧力
をHい弁に、と弁に、とり間の圧力なHs、上流側の圧
力なH4とし* d1* 62a dBおよびd、をそ
れぞれ。Now suppose we connect 4 valves, , , , and 4 in series (
Assuming that the connection is made, the pressure of lower SW is Ha, the pressure between 1 and 1 is connected to the valve, the pressure between 1 and 1 is connected to the valve, and the pressure between 1 and 1 is connected to the valve, and the pressure between the dam is set to 1, and the pressure between Let the pressure on the upstream side be Hs, and the upstream pressure H4 be *d1*62a dB and d, respectively.
丹前後の差圧とし、Cを速度水頭すなわち’V”727
7メートル、λを損失係数、kをキャビテーション係数
とし 、 = R(t−s)/n とする、ここで今
、弁に、を選択するものとし、前記の式(2)および1
5)から下記の表1を得る。但しHo=20メートル、
山;60メートルの場合であり、弁に、を選択したから
。The differential pressure before and after T is the velocity head, or 'V'727
7 meters, let λ be the loss coefficient and k be the cavitation coefficient, and = R(t-s)/n, where we now choose for the valve, and the above equation (2) and 1
5), the following Table 1 is obtained. However, Ho=20 meters,
Since the mountain is 60 meters, I chose the valve.
(i −1)/a (1−s)/aハ=λ、
(H7Ho) =λ、Rである。(i -1)/a (1-s)/a = λ,
(H7Ho) = λ, R.
また弁に、を選択した場合、同様に下記の表2を得る。In addition, if you select "Valve", you will obtain Table 2 below.
ここで (s−t)/4(1−1)/4 ハ=λ、 (H4/no) =λ、Rである。here (s-t)/4(1-1)/4 H = λ, (H4/no) = λ, R.
以上の表1および表意から解るように、キャビテーショ
ン係数v1を実質的に同じにすることができる。As can be seen from Table 1 and the notation above, the cavitation coefficient v1 can be made substantially the same.
また本発明によれば弁1.弁2;・・・弁nを用いて配
管系下流部の圧力Hoを定められた圧力目標値■・′に
一致させる。いわゆる圧カ一定制御を行う場合にはa
H(1はHe’にほぼ等しく維持されるので、下流側圧
力検出器Mdの検出圧力H・をiイクロコンピュータC
K入力するかわりに、圧力目標値H・′を定数としてマ
イクロコンピュータCに設定することにより前記の態様
と同郷の操作を行うことができる。According to the invention, the valve 1. Valve 2: Use valve n to make the pressure Ho in the downstream part of the piping system match the predetermined pressure target value . When performing so-called constant pressure control, a
Since H (1 is maintained approximately equal to He', the detected pressure H of the downstream pressure detector Md is
By setting the target pressure value H.' as a constant in the microcomputer C instead of inputting K, the same operation as described above can be performed.
直列El゛台の弁が接続された配管系Kmし下流側圧カ
一定制御を行った場合の実施例を第3図に示す、1gs
図において、圧カ一定制御装[G、j’!検出圧力H・
と圧力目標値■・′の偏差を小ならしめるように弁開閉
信号Slを出力し、その信号8.に応じ弁1が動作する
。この圧カ一定制御装置GK#Cよって動作させられる
弁lの一度0.に従属させて、弁2、弁3の開度を勢キ
ャビテーション条件を満足スルようにマイクロコンピュ
ータCKよって決定している。すなわちiイクロコンピ
ュータCは弁lの開度−1を弁開度検出器M−を介して
得て(1)弐にもとづき弁lの損失係数λ、を求め、つ
ぎに目標圧力設定@CSに設定された圧力目標値Ho’
および上流側圧力検出器Muを介し入力される上流部圧
力Haを用い、(2)式のかわりに算式
を用いて弁2.弁3の損失係数4.2.を求め、つぎに
(3)式によって弁開度e、および0.を求め弁開度信
号出力装置C4より出力し、弁アクチュエータム、。Figure 3 shows an example of a piping system Km in which E1 valves are connected in series and constant pressure control is performed on the downstream side.
In the figure, a constant pressure control system [G, j'! Detection pressure H・
The valve opening/closing signal Sl is outputted so as to reduce the deviation between the target pressure value 8. and the pressure target value 8. Valve 1 operates accordingly. The valve l operated by this constant pressure control device GK#C once 0. The opening degrees of valves 2 and 3 are determined by the microcomputer CK so as to satisfy the cavitation conditions. That is, the i-microcomputer C obtains the opening degree -1 of the valve l via the valve opening degree detector M-, calculates the loss coefficient λ of the valve l based on (1) 2, and then sets the target pressure setting @CS. Set pressure target value Ho'
and the upstream pressure Ha input via the upstream pressure detector Mu, and using the formula instead of formula (2), the valve 2. Loss factor of valve 3 4.2. is calculated, and then the valve opening degree e and 0. is determined and output from the valve opening signal output device C4, and the valve actuator.
ム、を介し弁!および弁3を動作させる。Mu, through the valve! and operate valve 3.
このよう九下流側圧カ一定制御を行っている場合は、下
流側圧力検出器肖の圧力検出信号をマイクロコンピュー
タCK入力する必要がなくなり。When such constant downstream pressure control is performed, there is no need to input the pressure detection signal from the downstream pressure detector to the microcomputer CK.
そのための信号伝送ラインを設ける必要がなくなる。同
様に、上流調圧カ一定制御を行っている場合は上流側圧
力検出信号をマイクロコンピュータCK伝送するための
ラインは不要となる。There is no need to provide a signal transmission line for this purpose. Similarly, when constant upstream pressure regulation control is performed, a line for transmitting the upstream pressure detection signal to the microcomputer CK is not required.
以上説明したように本発明によれば、直列に接続された
弁の台数が多くても2個以内の圧力検出器の検出信号で
すべての弁のキャビテーション係数を等しくするように
操作できる。また2個以内の圧力信号および外部からの
操作信号罠よって動作する弁にの開度情報をもとに残り
の多数台の弁開度を、弁にの開度に従属させて決定する
ので制御性も良好となる。As described above, according to the present invention, the cavitation coefficients of all the valves can be made equal using detection signals from pressure detectors of at most two valves connected in series. Also, based on the opening information of the valves operated by the pressure signal of two or less and the operation signal trap from the outside, the opening of the remaining numerous valves is determined depending on the opening of the valve, so it is controlled. The properties are also improved.
第1図は直列に接続された2台以上の弁を含む配管系に
おける従来の弁操作方法を示すブロック図である。第2
図は直列に接続された2台以上の弁を含む配管系におけ
る本発明の実施例にかかる弁操作方法のブロック図、第
3図は本操作方法を。
配管系下流部圧カ一定制御を行なっている場合に適用し
た実施例のブロック図である。
1.3〜に〜n・・・弁 ム、〜ムi・・・弁アクチ
ユエータ Md・・・下流側圧力検出器 Mm・・
・上流側圧力検出器 M#・・・弁開度検出器 C
・・・マイクロコンピュータ C1・・・圧力信号入
力装置 C3・・・弁開度信号入力装置 C1・・
・演算記憶装置 Ca・・・弁一度信号出力装置C
3・・・目標圧力設定器 G、・・・圧カ一定制御装
鐙。
特許出願人 株式会社荏原製作所FIG. 1 is a block diagram showing a conventional valve operating method in a piping system including two or more valves connected in series. Second
The figure is a block diagram of a valve operating method according to an embodiment of the present invention in a piping system including two or more valves connected in series, and FIG. 3 shows this operating method. FIG. 2 is a block diagram of an embodiment applied when constant pressure control is performed in the downstream part of the piping system. 1.3~n...valve M,~mui...valve actuator Md...downstream pressure detector Mm...
・Upstream pressure detector M#...Valve opening detector C
...Microcomputer C1...Pressure signal input device C3...Valve opening signal input device C1...
・Arithmetic storage device Ca...valve signal output device C
3...Target pressure setting device G,...Constant pressure control device stirrup. Patent applicant: Ebara Corporation
Claims (2)
において、配管系上流部および下流部に圧力検出器を設
けて上流部および下流部の圧力を検出し。 また前記配管系内に含まれる弁のうち1台を外部より操
作し、その弁開度を弁開度検出器により検出し、それら
の検出器からの検出信号、それぞれの弁の特性、および
等キャビテーション条件式を用いて、外部より操作され
る弁と実負的に尋しいキャビテーション係数となるよ5
な6弁の弁開度をマイクロコンピュータにより算出し、
その情報を用いて外部より操作される弁以外の弁の開度
な操作することを特徴とする弁操作方法。(1) In a piping system including two or more valves connected in series, pressure detectors are provided in the upstream and downstream parts of the piping system to detect the pressures in the upstream and downstream parts. In addition, one of the valves included in the piping system is operated from the outside, and the valve opening degree is detected by a valve opening degree detector, and the detection signals from those detectors, the characteristics of each valve, etc. Using the cavitation conditional formula, we can find that the cavitation coefficient is actually negative for a valve that is operated from the outside.
The valve opening degrees of the six valves are calculated by a microcomputer,
A valve operating method characterized in that the information is used to control the opening of a valve other than a valve operated from the outside.
系において、配管系上流部又は下流部に圧力検出器を般
けて上流部又は下流部のいづれかの圧力を検出し、前記
配管系内に含まれる弁のうち1台を外部より操作し、そ
の弁開度を弁開度検出器により検出し、それらの検出器
からの検出信号、それぞれの弁の特性および等キャビテ
ーション条件式を用いて外部より操作される弁と実質的
に勢しいキャビテーション係数になるような6弁の弁開
度をマイクロコンピュータにより算出し、かつ圧カ一定
制御目標値をマイクロコンピュータに定数として設定し
、その情報を用いて外部より操作される弁以外の弁の一
部を操作して圧カ一定制御をすることを特徴とする弁操
作方法。(2) i! In a piping system including two or more valves connected in a row Km, a pressure detector is installed in the upstream or downstream part of the piping system to detect the pressure in either the upstream or downstream part, and the pressure in the piping system is One of the valves is operated from the outside, and its valve opening is detected by a valve opening detector, and the detection signal from those detectors, the characteristics of each valve, and the equicavitation condition equation are used to detect the valve opening from the outside. A microcomputer calculates the valve openings of the six valves that will result in a substantially stronger cavitation coefficient than the operated valves, and a constant pressure control target value is set as a constant in the microcomputer, and this information is used to A valve operating method characterized by controlling a constant pressure by operating a part of a valve other than a valve operated from the outside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13783081A JPS5840629A (en) | 1981-09-03 | 1981-09-03 | Valve operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13783081A JPS5840629A (en) | 1981-09-03 | 1981-09-03 | Valve operating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5840629A true JPS5840629A (en) | 1983-03-09 |
JPS634202B2 JPS634202B2 (en) | 1988-01-28 |
Family
ID=15207830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13783081A Granted JPS5840629A (en) | 1981-09-03 | 1981-09-03 | Valve operating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5840629A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911416A (en) * | 1982-07-13 | 1984-01-21 | Toyo Electric Mfg Co Ltd | Water supply pressure reducing valve device |
JPS6345614A (en) * | 1986-08-12 | 1988-02-26 | Tlv Co Ltd | Pressure reducing valve |
EP0947755A3 (en) * | 1998-04-04 | 2001-07-11 | Forschungszentrum Rossendorf e.V. | Arrangement for avoiding a cavitation peak during fast closing of a pipeline for transportation of a fluid |
CN102192353A (en) * | 2010-03-04 | 2011-09-21 | 欧姆龙株式会社 | Valve control system and valve control method |
-
1981
- 1981-09-03 JP JP13783081A patent/JPS5840629A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911416A (en) * | 1982-07-13 | 1984-01-21 | Toyo Electric Mfg Co Ltd | Water supply pressure reducing valve device |
JPS6345614A (en) * | 1986-08-12 | 1988-02-26 | Tlv Co Ltd | Pressure reducing valve |
EP0947755A3 (en) * | 1998-04-04 | 2001-07-11 | Forschungszentrum Rossendorf e.V. | Arrangement for avoiding a cavitation peak during fast closing of a pipeline for transportation of a fluid |
CN102192353A (en) * | 2010-03-04 | 2011-09-21 | 欧姆龙株式会社 | Valve control system and valve control method |
JP2011186528A (en) * | 2010-03-04 | 2011-09-22 | Omron Corp | Valve control system and valve control method |
EP2365238A3 (en) * | 2010-03-04 | 2012-03-07 | Omron Corporation | Valve control system and valve control method |
US8640724B2 (en) | 2010-03-04 | 2014-02-04 | Omron Corporation | Valve control system and valve control method |
Also Published As
Publication number | Publication date |
---|---|
JPS634202B2 (en) | 1988-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5141021A (en) | Mass flow meter and mass flow controller | |
KR890001327B1 (en) | Compressor Cooling Water Control System | |
WO2000016090A1 (en) | Gas identification system | |
JPS5840629A (en) | Valve operating method | |
JPS6066099A (en) | Temperature balance control of multistage heat exchanger | |
US6843123B2 (en) | Flow rate sensor, flow rate measuring device, and flow rate control device | |
US20130327426A1 (en) | Positioner | |
WO2020230574A1 (en) | Flow rate control device, flow rate control method, control program for flow rate control device | |
US12055955B2 (en) | Flow control system for digital and mechanical redundant pressure compensation | |
JP2020107061A (en) | Mass flow controller | |
CN104214415B (en) | A kind of steam turbine high-pressure cylinder enters steam control valve opening amount signal flexible measurement method | |
SU987193A1 (en) | Method of controlling centrifugal compressor | |
SU805271A1 (en) | Pressure differential limiter | |
US2550666A (en) | Dual pneumatic controller | |
JPH04145201A (en) | Pneumatic drive unit | |
US4353215A (en) | Fluidic control system for turbines | |
JPS62207924A (en) | Differential pressure measuring instrument | |
JPS606055A (en) | Engine control unit | |
JPS5824672A (en) | Valve controlling system | |
JPH04318295A (en) | Differential pressure control device | |
JPS6039845B2 (en) | Nuclear turbine pressure control device | |
SU1656286A1 (en) | Automatic ventilation control system of stack air duct | |
US1110413A (en) | Apparatus for measuring the flow of fluids. | |
JPH08136305A (en) | Transmitter | |
JPH0552615A (en) | Throttle flow meter |