JPH08136305A - Transmitter - Google Patents

Transmitter

Info

Publication number
JPH08136305A
JPH08136305A JP27627494A JP27627494A JPH08136305A JP H08136305 A JPH08136305 A JP H08136305A JP 27627494 A JP27627494 A JP 27627494A JP 27627494 A JP27627494 A JP 27627494A JP H08136305 A JPH08136305 A JP H08136305A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
transmitter
signal
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27627494A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
浩之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27627494A priority Critical patent/JPH08136305A/en
Publication of JPH08136305A publication Critical patent/JPH08136305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To compensate pressure and temperature as well as the differential pressure and pressure of a fluid circulating in a plant pipe using one transmitter. CONSTITUTION: In a transmitter for measuring the differential pressure/pressure of a process fluid circulating in a process pipe and for converting them to flow-rate signals and then transmitting them to an upper equipment, a differential signal conversion part 61 for measuring the differential pressure of fluid obtained from differential pressure take-out ports across a fluid differential pressure generator in the plant pipe, a pressure signal conversion part 62 for measuring the pressure of the fluid in the plant pipe, a compensation processing part 63 for compensating pressure and temperature using temperature signals from the output of the signal conversion part and a temperature sensor, and a square-root operation means 64 for converting the compensated signal to a flow-rate signal are included in one transmitter body 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプロセス流体の差圧や圧
力を測定する伝送器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved transmitter for measuring a differential pressure of a process fluid or a pressure.

【0002】[0002]

【従来の技術】一般に、プロセス配管内を流通する気
体,液体等のプロセス流体の圧力は、その流体の位置と
エネルギーとにより決まるので流量などと密接な関係を
もっている。従って、流体の圧力を測定することによ
り、流体の流量を測定することができる。そこで、流量
検出端の多くは圧力検出素子で構成され、圧力の測定精
度ないし圧力計測技術の向上は、プラント計装上,重要
な意義をもっている。
2. Description of the Related Art Generally, the pressure of a process fluid such as gas or liquid flowing in a process pipe is closely related to the flow rate because it is determined by the position and energy of the fluid. Therefore, the flow rate of the fluid can be measured by measuring the pressure of the fluid. Therefore, most of the flow rate detection ends are composed of pressure detection elements, and improvement of pressure measurement accuracy or pressure measurement technology is important for plant instrumentation.

【0003】ところで、従来、プロセス配管内を流通す
るプロセス流体の差圧・圧力を測定する場合、プロセス
配管上に差圧伝送器と圧力伝送器とを個別に設置し、こ
れら伝送器でそれぞれ測定された信号からプロセス流体
の流量信号を求めた後、コントローラに伝送する構成と
なっている。
By the way, conventionally, when measuring the differential pressure / pressure of the process fluid flowing through the process pipe, a differential pressure transmitter and a pressure transmitter are separately installed on the process pipe, and these transmitters respectively measure. The flow rate signal of the process fluid is obtained from the generated signal and then transmitted to the controller.

【0004】また、これら差圧伝送器や圧力伝送器で
は、ダイヤフラムを保持する受圧部本体の静圧,温度な
どによる変形その他の要因から測定誤差が生ずることか
ら温度補正や圧力補正を行っているが、これら補正処理
は専らソフトウェア的に行っている。
Further, in these differential pressure transmitters and pressure transmitters, temperature correction and pressure correction are carried out because measurement errors occur due to static pressure of the pressure-receiving body holding the diaphragm, deformation due to temperature, and other factors. However, these correction processes are performed exclusively by software.

【0005】[0005]

【発明が解決しようとする課題】従って、以上のような
差圧・圧力測定は、差圧測定用と圧力測定用の2台の伝
送器を据え付ける必要があり、それに伴って伝送器2台
分のコストと取り付けスペースが必要となり、この種の
伝送器をプラントの各所に多数設置することおよび取り
付け工数等を考えれば、莫大な設備費用がかかり、また
伝送器の取り付け作業が煩雑となる問題がある。
Therefore, in the above-described differential pressure / pressure measurement, it is necessary to install two transmitters for differential pressure measurement and pressure measurement, and accordingly, two transmitters are required. Cost and installation space are required. Considering the large number of installations of this type of transmitter at various places in the plant and the number of installation steps, enormous equipment cost is required and the installation work of the transmitter becomes complicated. is there.

【0006】また、温度および圧力の補正には、それぞ
れ個別に温度補正用、圧力補正用のプログラムを組み込
まなければならない。本発明は上記実情に鑑みてなされ
たもので、一台で流体の差圧と圧力とを測定し、かつ、
圧力補正および温度補正等を行う伝送器を提供すること
を目的とする。
Further, for temperature and pressure correction, programs for temperature correction and pressure correction must be individually incorporated. The present invention has been made in view of the above circumstances, by measuring the differential pressure and pressure of the fluid in one, and,
It is an object to provide a transmitter that performs pressure correction, temperature correction, and the like.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、プロセス配管を流通す
るプロセス流体の差圧・圧力を測定し、上位機器に伝送
する伝送器において、前記プロセス配管内に設けた流体
差圧発生体の前後の差圧取出口よりそれぞれ取り込む流
体の差圧を測定する差圧信号変換部と、前記プロセス配
管内の流体の圧力を測定する圧力信号変換部と、これら
信号変換部の出力および前記プロセス配管に設置される
温度センサからの温度信号を用いて圧力および温度の補
正を行う補正処理部とを、圧力受圧部である1つの伝送
器本体にハードウェア的に内装してなる伝送器である。
In order to solve the above-mentioned problems, the invention corresponding to claim 1 is a transmitter for measuring a differential pressure / pressure of a process fluid flowing through a process pipe and transmitting it to a host device. A differential pressure signal converter for measuring the differential pressure of the fluid taken in from the differential pressure outlets before and after the fluid differential pressure generator provided in the process pipe, and a pressure signal for measuring the pressure of the fluid in the process pipe. One transmitter main body, which is a pressure receiving unit, includes a conversion unit and a correction processing unit that corrects pressure and temperature using outputs of these signal conversion units and a temperature signal from a temperature sensor installed in the process pipe. It is a transmitter that is built into the hardware.

【0008】次に、請求項2に対応する発明は、プロセ
ス配管を流通するプロセス流体の差圧・圧力を測定し、
流量信号に変換して上位機器に伝送する伝送器におい
て、前記プロセス配管内に設けた流体差圧発生体の前後
の差圧取出口よりそれぞれ取り込む流体の差圧を測定す
る差圧信号変換部と、前記プロセス配管内の流体の圧力
を測定する圧力信号変換部と、これら信号変換部の出力
および前記プロセス配管に設置される温度センサからの
温度信号を用いて圧力および温度の補正を行う補正処理
部と、この補正処理部によって補正処理された信号を流
量信号に変換する開平演算処理部とを、圧力受圧部であ
る1つの伝送器本体にハードウェア的に内装してなる伝
送器である。
Next, the invention according to claim 2 measures the differential pressure / pressure of the process fluid flowing through the process pipe,
In a transmitter for converting into a flow rate signal and transmitting it to a higher-level device, a differential pressure signal conversion unit for measuring the differential pressure of the fluids respectively taken in from the differential pressure outlets before and after the fluid differential pressure generator provided in the process pipe. A pressure signal conversion unit that measures the pressure of the fluid in the process pipe, and a correction process that corrects the pressure and temperature using the output of these signal conversion units and the temperature signal from the temperature sensor installed in the process pipe. A transmitter and a square root calculation processing unit for converting the signal corrected by the correction processing unit into a flow rate signal in one transmitter main body which is a pressure receiving unit in terms of hardware.

【0009】[0009]

【作用】従って、請求項1に対応する発明は、以上のよ
うな手段を講じたことにより、プロセス配管内に設けた
流体差圧発生体の前後の差圧取出口からそれぞれ取り込
んだ流体を伝送器本体の差圧信号変換部に導入して差圧
を測定し、同様にプロセス配管内の流体を伝送器本体の
圧力信号変換部に導入して圧力を測定し、さらにプロセ
ス配管に温度センサを設置し、この温度センサの検出信
号を温度信号変換器で温度信号に変換した後、前記伝送
器本体の補正処理部に導入する。ここで、この伝送器本
体の補正処理部では、各信号変換部の出力および温度信
号を取り込んで圧力および温度の補正を行うので、1台
の伝送器本体を用いて差圧および圧力の測定の他、圧力
および温度の補正を行うことができ、据え付け作業が容
易となり、コストおよび取り付けスペースの低減化に大
きく貢献する。また、伝送器本体内にハードウェア的な
温度・圧力の補正回路をコンパクトに収納できる。
Therefore, according to the invention corresponding to claim 1, by taking the above-mentioned means, the fluids respectively taken in from the differential pressure outlets before and after the fluid differential pressure generator provided in the process pipe are transmitted. Introduced into the differential pressure signal converter of the main unit to measure the differential pressure, similarly introduce the fluid in the process pipe into the pressure signal converter of the transmitter main unit to measure the pressure, and also install a temperature sensor in the process pipe. After being installed, the detection signal of the temperature sensor is converted into a temperature signal by a temperature signal converter and then introduced into the correction processing unit of the transmitter body. Here, since the correction processing unit of the transmitter main body captures the output and temperature signal of each signal conversion unit and corrects the pressure and temperature, it is possible to measure the differential pressure and the pressure using one transmitter main body. Besides, the pressure and temperature can be corrected, the installation work becomes easy, and the cost and the installation space are greatly reduced. In addition, a hardware temperature / pressure correction circuit can be compactly stored in the transmitter body.

【0010】さらに、請求項2に対応する発明は、請求
項1に対応する発明の構成要素の他に、伝送器本体内に
開平演算処理部を内装すれば、請求項1に対応する発明
の作用の他に、流量信号に変換して上位機器に伝送でき
る。
Further, the invention according to claim 2 is the same as that of the invention according to claim 1 if a square root operation processing unit is provided in the transmitter body in addition to the components of the invention according to claim 1. In addition to the function, it can be converted into a flow rate signal and transmitted to a host device.

【0011】[0011]

【実施例】以下、本発明に係わる伝送器の実施例につい
て図面を参照して説明する。図1は伝送器の全体構成
図、図2は伝送器を構成する伝送器本体の機能構成図、
図3は伝送器のハードウェアとソフトウェアの範囲を区
別する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a transmitter according to the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of a transmitter, FIG. 2 is a functional configuration diagram of a transmitter main body which constitutes the transmitter,
FIG. 3 is a diagram for distinguishing the hardware and software ranges of the transmitter.

【0012】この伝送器は、プロセス配管1の適宜な個
所の管内部に高低圧差を発生するためのオリフィスその
他の流体の抵抗機能を有する流体差圧発生体2が取り付
けられ、この流体差圧発生体2の前後の差圧取出口のう
ち、上流側の差圧取出口には高圧側元弁3、下流側の差
圧取出口には低圧側元弁4がそれぞれ設けられている。
In this transmitter, a fluid pressure difference generator 2 having a function of resistance to fluid such as an orifice for generating a high / low pressure difference is attached inside the pipe at an appropriate position of the process pipe 1, and the fluid pressure difference generation is generated. Among the differential pressure outlets before and after the body 2, the high pressure side main valve 3 is provided at the upstream side differential pressure outlet, and the low pressure side main valve 4 is provided at the downstream side differential pressure outlet.

【0013】これら高圧側元弁3および低圧側元弁4の
出力側にはマニホールドバルブ5を介して受圧部本体を
もつ伝送器本体6が取り付けられ、流体抵抗発生体2前
後の差圧取出口の流体の差圧を検出する構成となってい
る。
On the output side of the high-pressure side main valve 3 and the low-pressure side main valve 4, a transmitter main body 6 having a pressure receiving main body is attached via a manifold valve 5, and a differential pressure outlet before and after the fluid resistance generator 2 is attached. The differential pressure of the fluid is detected.

【0014】また、この差圧取出口の流体の流れによる
影響を受けない位置、例えば差圧取出口から上流側の適
宜なプロセス配管1の位置に圧力取出口が設けられ、こ
の圧力取出口から導圧管7を導いて前記伝送器本体6に
接続され、プロセス配管1内の流体の圧力を取り込む構
成となっている。8は流体の圧力を取り込む側の元弁で
ある。
Further, a pressure outlet is provided at a position which is not affected by the fluid flow at the differential pressure outlet, for example, at a position of the appropriate process pipe 1 upstream from the differential pressure outlet, and the pressure outlet is provided. The pressure guiding pipe 7 is guided to be connected to the transmitter body 6, and the pressure of the fluid in the process pipe 1 is taken in. Reference numeral 8 is a main valve on the side for taking in the fluid pressure.

【0015】さらに、プロセス配管1の例えば圧力取出
口よりも上流側にはプロセス配管1内の流体の温度を計
測する温度センサ9と、この温度センサ9による検出信
号を温度信号に変換する温度信号変換器10とが設けら
れ、ここで信号変換された温度信号は伝送器本体6に導
入され、差圧の温度補正処理を行うようになっている。
Further, a temperature sensor 9 for measuring the temperature of the fluid in the process pipe 1 is provided upstream of, for example, the pressure outlet of the process pipe 1, and a temperature signal for converting a detection signal from the temperature sensor 9 into a temperature signal. A converter 10 is provided, and the temperature signal subjected to signal conversion here is introduced into the transmitter main body 6 to perform temperature correction processing of the differential pressure.

【0016】ゆえに、この伝送器本体6は、図2に示す
ようにプロセス配管1内を流通する流体の高圧と低圧と
の差圧によって変位する従来周知の差圧検出用ダイヤフ
ラムおよびこのダイヤフラムの変位から差圧を検出する
静電容量式・半導体式その他の差圧検出部を有する差圧
信号変換部61と、導圧管7を通ってくる流体の圧力に
よって変位する圧力検出用ダイヤフラムおよびこの圧力
検出用ダイヤフラムの変位から圧力を検出する同じく静
電容量式・半導体式その他の圧力検出部を有する圧力信
号変換部62と、これら差圧信号変換部61、圧力信号
変換部62および温度信号変換器10からの信号を用い
て圧力補正および温度補正を行う補正処理部63と、こ
の補正処理後の信号を開平演算して流量信号を取り出す
開平演算処理部64とが設けられている。
Therefore, as shown in FIG. 2, the transmitter main body 6 is displaced by a differential pressure detecting diaphragm known in the prior art which is displaced by a differential pressure between a high pressure and a low pressure of a fluid flowing in the process pipe 1 and the displacement of this diaphragm. The differential pressure signal conversion unit 61 having a capacitance type / semiconductor type differential pressure detection unit for detecting the differential pressure from the pressure detection diaphragm, the pressure detection diaphragm displaced by the pressure of the fluid passing through the pressure guiding tube 7, and the pressure detection. A pressure signal conversion unit 62 having a pressure detection unit of the same capacitance type, a semiconductor type, or the like, which detects pressure from the displacement of the diaphragm for use, and the differential pressure signal conversion unit 61, the pressure signal conversion unit 62, and the temperature signal converter 10. A correction processing unit 63 for performing pressure correction and temperature correction using a signal from the sensor, and a square root calculation processing unit 6 for square root calculation of the signal after the correction processing to extract a flow rate signal Door is provided.

【0017】次に、図3はハードウェア構成をもつ伝送
器と、この伝送器から伝送されてくる信号に基づいて所
定の演算処理を実行するソフトウェア構成をもつ上位機
器であるコントローラ20との関係を示す図である。
Next, FIG. 3 shows a relationship between a transmitter having a hardware configuration and a controller 20 which is a host device having a software configuration for executing a predetermined arithmetic processing based on a signal transmitted from the transmitter. FIG.

【0018】このコントローラ20は、伝送器本体6か
ら伝送されてくる流量信号に対し、流体差圧発生体2に
よる圧力損失等に基づくα補正を実行するα補正手段2
1と、適宜な目標値SVを可変設定する目標値設定部2
2と、前記α補正手段21によるα補正後のプロセス入
力値(例えば流量信号)PVと前記目標値設定部22に
設定される目標値SVとの偏差に基づいて例えばPI
(P:比例、I:積分)またはPID(D:微分)調節
演算を実行し操作出力MVを求める調節手段23とによ
って構成されている。
The controller 20 performs α correction on the flow rate signal transmitted from the transmitter main body 6 based on pressure loss due to the fluid pressure difference generator 2 or the like.
1 and a target value setting unit 2 for variably setting an appropriate target value SV
2 and PI based on the deviation between the process input value (for example, the flow rate signal) PV after α correction by the α correction means 21 and the target value SV set in the target value setting unit 22.
(P: Proportional, I: Integral) or PID (D: Derivative) adjusting operation is performed to obtain the operation output MV.

【0019】24は調節手段23からの操作出力MVに
基づいてプラント配管内の流量を制御する操作端であ
る。次に、以上のように構成された装置の動作について
説明する。
Reference numeral 24 is an operation end for controlling the flow rate in the plant piping based on the operation output MV from the adjusting means 23. Next, the operation of the apparatus configured as described above will be described.

【0020】差圧・圧力の測定時、例えば上位機器であ
るコントローラ20等から開制御信号を送出し、各元弁
3,4,8およびマニホールドパルブ5を構成する複数
のバルブの中の必要とするバルブを開弁し、プロセス配
管1内から差圧検出用流体および圧力検出用流体をそれ
ぞれ個別に取り込んで伝送器本体6に導入する。
At the time of measuring the differential pressure / pressure, for example, an open control signal is sent from the controller 20 or the like which is a higher-level device, and it is necessary to select one of the plural valves constituting each of the main valves 3, 4, 8 and the manifold valve 5. Then, the differential pressure detection fluid and the pressure detection fluid are individually taken from the process pipe 1 and introduced into the transmitter body 6.

【0021】この伝送器本体6では、差圧検出用ダイヤ
フラムおよび差圧検出部と、圧力検出用ダイヤフラムお
よび圧力検出部とをそれぞれ個別に備えているので、差
圧検出部により流体の差圧信号Aを検出して補正処理部
63に送出し、また圧力検出部によって流体の圧力信号
Bを検出して同様に補正処理部63に送出する。
Since the transmitter main body 6 is provided with a differential pressure detecting diaphragm and a differential pressure detecting section, and a pressure detecting diaphragm and a pressure detecting section, respectively, the differential pressure detecting section detects a differential pressure signal of the fluid. A is detected and sent to the correction processing unit 63, and the pressure signal B of the fluid is detected by the pressure detection unit and similarly sent to the correction processing unit 63.

【0022】さらに、プロセス配管内の流体の温度は、
温度センサ9で検出し、温度信号変換器10で温度信号
Cに変換し、伝送器本体6の補正処理部63に送出され
る。ここで、補正処理部63は、入力される信号A〜C
を用いて、例えば(A・B)/Cなる演算を行って圧力
および温度の補正処理を行った後、この補正後の信号D
について開平演算処理部64で開平演算処理を実行し、
プラント配管1内を流通する流体の流量に比例する信号
Fを取り出し、上位機器のコントローラ20に伝送す
る。
Further, the temperature of the fluid in the process pipe is
It is detected by the temperature sensor 9, converted into a temperature signal C by the temperature signal converter 10, and sent to the correction processing unit 63 of the transmitter body 6. Here, the correction processing unit 63 receives the input signals A to C.
Using, for example, the calculation of (A · B) / C is performed to correct the pressure and temperature, and then the corrected signal D
The square root calculation processing unit 64 executes square root calculation processing for
A signal F proportional to the flow rate of the fluid flowing through the plant pipe 1 is taken out and transmitted to the controller 20 of the host device.

【0023】従って、以上のような実施例の構成によれ
ば、伝送器本体6内に差圧検出機能と圧力検出機能とを
内装することにより、従来のようにプロセス配管上に差
圧伝送器と圧力伝送器とを個別に設置する必要がなくな
り、コストの低減化、据付け作業の簡素化および取り付
けスペースの大幅な削減化を図ることができる。
Therefore, according to the configuration of the above embodiment, the differential pressure detecting function and the pressure detecting function are internally provided in the transmitter main body 6, so that the differential pressure transmitter is provided on the process pipe as in the conventional case. Since it is not necessary to separately install the pressure transmitter and the pressure transmitter, the cost can be reduced, the installation work can be simplified, and the installation space can be significantly reduced.

【0024】しかも、伝送器本体6内に差圧検出機能お
よび圧力検出機能を内装しているので、伝送器本体6内
部に補正処理部63が内装可能となり、伝送器本体6内
で圧力および温度の補正処理を行うことができ、伝送器
全体のコンパクト化に大きく貢献する。
Moreover, since the transmitter main body 6 is internally provided with the differential pressure detection function and the pressure detection function, the correction processing unit 63 can be provided inside the transmitter main body 6, and the pressure and temperature in the transmitter main body 6 can be provided. Can be corrected, which greatly contributes to downsizing of the entire transmitter.

【0025】さらに、伝送器本体6内に差圧検出機能、
圧力検出機能および補正処理機能の他、開平演算処理部
64を内装すれば、さらにコンパクトな構造体となり、
差圧・圧力の測定値からプラント配管内を流通する流体
の流量を測定できる。
Further, a differential pressure detecting function is provided in the transmitter body 6,
In addition to the pressure detection function and the correction processing function, if the square root calculation processing unit 64 is incorporated, a more compact structure can be obtained.
The flow rate of the fluid flowing through the plant piping can be measured from the measured values of the differential pressure and pressure.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、一
台の伝送器を用いて、プラント配管内を流通する流体の
差圧および圧力の他、圧力および温度の補正を行うこと
ができ、コストの低減化、据付け作業の簡素化および取
り付けスペースの大幅な削減化を図ることができる。
As described above, according to the present invention, it is possible to correct not only the differential pressure and pressure of the fluid flowing through the plant piping but also the pressure and temperature using one transmitter. The cost can be reduced, the installation work can be simplified, and the installation space can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わる伝送器の一実施例を示す全体
構成図。
FIG. 1 is an overall configuration diagram showing an embodiment of a transmitter according to the present invention.

【図2】 伝送器の一部である伝送器本体の機能構成を
示す図。
FIG. 2 is a diagram showing a functional configuration of a transmitter main body which is a part of the transmitter.

【図3】 ハードウェア構成の伝送器とソフトウェア構
成のコントローラとの関係を示す図。
FIG. 3 is a diagram showing a relationship between a transmitter having a hardware configuration and a controller having a software configuration.

【符号の説明】[Explanation of symbols]

1…プラント配管、2…流体差圧発生体、6…伝送器本
体、9…温度センサ、10…温度信号変換器、61…差
圧信号変換部、62…圧力信号変換部、63…補正処理
部、64…開平演算処理部。
1 ... Plant piping, 2 ... Fluid differential pressure generator, 6 ... Transmitter main body, 9 ... Temperature sensor, 10 ... Temperature signal converter, 61 ... Differential pressure signal converter, 62 ... Pressure signal converter, 63 ... Correction processing Part, 64 ... Kaihei calculation processing part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プロセス配管を流通するプロセス流体の
差圧・圧力を測定し、上位機器に伝送する伝送器におい
て、 前記プロセス配管内に設けた流体差圧発生体の前後の差
圧取出口よりそれぞれ取り込む流体の差圧を測定する差
圧信号変換部と、前記プロセス配管内の流体の圧力を測
定する圧力信号変換部と、これら信号変換部の出力およ
び前記プロセス配管に設置される温度センサからの温度
信号を用いて圧力および温度の補正を行う補正処理部と
を、圧力受圧部である1つの伝送器本体にハードウェア
的に内装してなることを特徴とする伝送器。
1. A transmitter for measuring a differential pressure / pressure of a process fluid flowing through a process pipe and transmitting it to a host device, from a differential pressure outlet before and after a fluid differential pressure generator provided in the process pipe. From a differential pressure signal converter that measures the differential pressure of the fluid to be taken in, a pressure signal converter that measures the pressure of the fluid in the process pipe, and the output of these signal converters and a temperature sensor installed in the process pipe. And a correction processing unit that corrects pressure and temperature using the temperature signal of 1. in a transmitter main body that is a pressure receiving unit in terms of hardware.
【請求項2】 プロセス配管を流通するプロセス流体の
差圧・圧力を測定し、流量信号に変換して上位機器に伝
送する伝送器において、 前記プロセス配管内に設けた流体差圧体の前後の差圧取
出口よりそれぞれ取り込む流体の差圧を測定する差圧信
号変換部と、前記プロセス配管内の流体の圧力を測定す
る圧力信号変換部と、これら信号変換部の出力および前
記プロセス配管に設置される温度センサからの温度信号
を用いて圧力および温度の補正を行う補正処理部と、こ
の補正処理部によって補正処理された信号を流量信号に
変換する開平演算処理部とを、圧力受圧部である1つの
伝送器本体にハードウェア的に内装してなることを特徴
とする伝送器。
2. A transmitter for measuring a differential pressure / pressure of a process fluid flowing through a process pipe, converting it into a flow rate signal, and transmitting it to a higher-level device. A differential pressure signal converter that measures the differential pressure of the fluids respectively taken in from the differential pressure outlets, a pressure signal converter that measures the pressure of the fluid in the process piping, and the outputs of these signal converters and the process piping. The pressure receiving unit includes a correction processing unit that corrects pressure and temperature using the temperature signal from the temperature sensor and a square root calculation processing unit that converts the signal corrected by the correction processing unit into a flow rate signal. A transmitter characterized by being built into one transmitter main body in terms of hardware.
JP27627494A 1994-11-10 1994-11-10 Transmitter Pending JPH08136305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27627494A JPH08136305A (en) 1994-11-10 1994-11-10 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27627494A JPH08136305A (en) 1994-11-10 1994-11-10 Transmitter

Publications (1)

Publication Number Publication Date
JPH08136305A true JPH08136305A (en) 1996-05-31

Family

ID=17567164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27627494A Pending JPH08136305A (en) 1994-11-10 1994-11-10 Transmitter

Country Status (1)

Country Link
JP (1) JPH08136305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132696A (en) * 2014-08-01 2014-11-05 淮南润成科技股份有限公司 Portable pore plate measuring instrument
CN104316115A (en) * 2014-11-11 2015-01-28 国家电网公司 Method for measuring pipeline flow by use of pipeline pressure drop
JP2019020244A (en) * 2017-07-14 2019-02-07 株式会社堀場エステック Fluid measuring device, fluid control system, and control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132696A (en) * 2014-08-01 2014-11-05 淮南润成科技股份有限公司 Portable pore plate measuring instrument
CN104316115A (en) * 2014-11-11 2015-01-28 国家电网公司 Method for measuring pipeline flow by use of pipeline pressure drop
JP2019020244A (en) * 2017-07-14 2019-02-07 株式会社堀場エステック Fluid measuring device, fluid control system, and control program

Similar Documents

Publication Publication Date Title
US9870006B2 (en) Pressure type flow control system with flow monitoring
KR20010052885A (en) Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
KR101544648B1 (en) Flow calculation apparatus and flow control apparatus
JP6754648B2 (en) Inspection method of gas supply system, calibration method of flow controller, and calibration method of secondary reference device
JP2009526995A (en) Multiphase overreading correction in process variable transmitters
CN102768049A (en) Intelligent differential pressure type flow rate sensing device and design method of intelligent differential pressure type flow rate sensing device
EP1668333A1 (en) Calibration of a process pressure sensor
JP2008506116A (en) Method and system for flow measurement and mass flow regulator validation
CN111103020B (en) Flow detection device, flow control system and flow detection method
CN117109671B (en) High-precision differential pressure type gas flow measurement system and use method thereof
JPH08136305A (en) Transmitter
JP2012237733A (en) Diagnostic device and flow rate controller including the same
JP2000283810A (en) Differential pressure type flowmeter
KR102101426B1 (en) Pressure-type flow rate control device and flow rate control method using thereof
CN214277284U (en) Differential pressure sensor calibration device
JPH0268108A (en) Automatic airflow monitoring device in dust collector
US6959610B1 (en) Manual purge system for instrumentation flow element tubing
SU909410A1 (en) Apparatus for measuring dryness degree of wet steam
US11959788B2 (en) Wide range flow measuring device having two Coriolis meters arranged in series and a bypass line to bypass the second Coriolis meter
SU1000749A1 (en) Pneumatic device for checking linear dimensions
US4271673A (en) Steam turbine plant
JPH10197300A (en) Flowmeter utilizing differential pressure
KR101639249B1 (en) Calibration apparatus for gas flow rate measuring device
SU934268A1 (en) Method and apparatus for determining dynamic characteristic of vacuum measurement system at fluid-tightness testing of articles
JPH08189872A (en) Pressure measuring device for gas meter and correcting method for it