JPS5840463B2 - High bacterial cell concentration culture method for yeast - Google Patents

High bacterial cell concentration culture method for yeast

Info

Publication number
JPS5840463B2
JPS5840463B2 JP52096835A JP9683577A JPS5840463B2 JP S5840463 B2 JPS5840463 B2 JP S5840463B2 JP 52096835 A JP52096835 A JP 52096835A JP 9683577 A JP9683577 A JP 9683577A JP S5840463 B2 JPS5840463 B2 JP S5840463B2
Authority
JP
Japan
Prior art keywords
culture
culture method
yeast
bacterial cell
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52096835A
Other languages
Japanese (ja)
Other versions
JPS5432687A (en
Inventor
秀樹 福田
武修 塩谷
渉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP52096835A priority Critical patent/JPS5840463B2/en
Priority to GB7831434A priority patent/GB2003177B/en
Priority to IT50679/78A priority patent/IT1105439B/en
Priority to MX10114778U priority patent/MX6939E/en
Priority to PH21465A priority patent/PH15393A/en
Priority to FR7823601A priority patent/FR2400061A1/en
Priority to BE78189838A priority patent/BE869684A/en
Publication of JPS5432687A publication Critical patent/JPS5432687A/en
Priority to PH23103A priority patent/PH20014A/en
Publication of JPS5840463B2 publication Critical patent/JPS5840463B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/22Perforated plates, discs or walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は酵母の通気培養法において、培養液を連続的も
しくは断続的に系外に抜き出し酵母菌体を菌体分離機に
て分離もしくは分離と水洗を行なった後、酵母菌体のみ
を培養槽に戻しつ亙培養し、回分培養法の場合には最終
菌体濃度が、連続培養法の場合には培養槽内の菌体濃度
が6%以上の濃度で培養する酵母の高菌体濃度培養法に
関する。
DETAILED DESCRIPTION OF THE INVENTION In the yeast aerated culture method of the present invention, the culture solution is continuously or intermittently extracted from the system, and the yeast cells are separated using a cell separator or separated and washed with water. Only the yeast cells are returned to the culture tank and cultured until the final cell concentration in the batch culture method is 6% or more, and the cell concentration in the culture tank is 6% or more in the case of the continuous culture method. This article relates to a method for culturing yeast at high bacterial cell concentration.

従来、酵母の通気培養において菌体濃度を増加させる方
法として、栄養源の供給方法や酸素供給量を増加させる
方法が主に研究されてきた。
Conventionally, methods for increasing the bacterial cell concentration in aerated yeast culture have mainly focused on methods for supplying nutrients and methods for increasing the amount of oxygen supplied.

例えば、後者に関しては、酸素供給速度の高い発酵槽の
開発、酸素を用いる方法(特公昭51−9833号)等
が挙げられる。
For example, regarding the latter, development of a fermenter with a high oxygen supply rate, a method using oxygen (Japanese Patent Publication No. 51-9833), etc. can be mentioned.

しかし、このような対策のみでは酵母菌体濃度を大巾に
増加させることは不可能である。
However, it is impossible to significantly increase the yeast cell concentration using only such measures.

即ち、一般に酵母の通気培養において菌体の増殖を停止
させる要因は次の如くに考えられる。
That is, in general, the factors that stop the growth of bacterial cells in yeast aeration culture are considered to be as follows.

■ 主炭素源及び無機塩及びその他の栄養源の不足 ■ 酸素供給不足 ■ 菌体の代謝産物の蓄積による阻害 ■ 塩類等の蓄積による阻害 従って、上記項目の内■及び■のみの解決だけでは■及
び■の項目により培養は抑制され菌体濃度が大巾に増加
させることはできないものである。
■ Lack of main carbon sources, inorganic salts, and other nutrient sources ■ Insufficient oxygen supply ■ Inhibition due to accumulation of bacterial metabolites ■ Inhibition due to accumulation of salts, etc. Therefore, it is not possible to solve only ■ and ■ of the above items ■ Due to items 1 and 2, culture is inhibited and the bacterial cell concentration cannot be increased significantly.

本発明者等は、以上4つの要因の中で就中■及び■の解
決策に着目し、種々研究の結果■及び■の解決には、培
養液を連続的あるいは断続的に培養槽外に抜き出し、酵
母菌体を分離あるいは分離と水洗を行った後、酵母菌体
のみを再度培養槽に戻しつつ培養する方法が最も効果が
あることを発見した。
Among the above four factors, the present inventors focused on solutions for ■ and ■, and as a result of various studies, in order to solve problems We have discovered that the most effective method is to extract the yeast cells, separate them, or separate them and wash them with water, and then culture them while returning only the yeast cells to the culture tank.

■について更に詳細に述べれば、代謝産物として培養液
中に蓄積してくる物質は酵母の種類、主炭素源の種類及
び培養条件等により異なった物質が代謝される。
To explain (2) in more detail, the substances that accumulate in the culture solution as metabolites vary depending on the type of yeast, the type of main carbon source, culture conditions, etc.

例えば糖源を主炭素源としてパン酵母(Sacchar
omyces cerevisiae )を培養する
と培養液中にアルコール類、有機酸類及びその他の代謝
産物が代謝され、これらが蓄積してくると酵母の増殖速
度が阻害されたり品質も低下する。
For example, baker's yeast (Sacchar) uses sugar as the main carbon source.
When yeast (omyces cerevisiae) is cultured, alcohols, organic acids, and other metabolites are metabolized in the culture solution, and when these accumulate, the growth rate of the yeast is inhibited and the quality is also reduced.

同様のことが、他の酵母属及び他の主炭素源を用いた培
養にも妥当する。
The same holds true for cultivation with other yeast genera and other primary carbon sources.

■については、例えば糖みつ糖液を主炭素源として培養
する場合、糖みつ糖液中に多くの塩類及び酵母が資化で
きない非資化性糖が含まれており、これらが培養液中に
蓄積すれば増殖等に悪影響を与える。
Regarding (2), for example, when culturing using a molasses solution as the main carbon source, the molasses solution contains many salts and non-assimilable sugars that cannot be assimilated by yeast, and these are contained in the culture solution. If it accumulates, it will have an adverse effect on proliferation, etc.

本発明法によれば■及び■による阻害を両者同時に解決
できる極めて有利な方法である。
The method of the present invention is an extremely advantageous method that can simultaneously solve the inhibition caused by (1) and (2).

従って、■のみの解決策である従来の発明特公昭51−
9833とは明らかに異なる。
Therefore, the conventional Invention Patent Publication No. 51-
It is clearly different from 9833.

本発明法において■の解決には、通気中に酸素を導入し
、高濃度な酸素含有空気を通気する方法とか発酵槽を加
圧する方法を用いてもよく、又酸素供給量の大きな発酵
槽を用いる方法等により、極めて高い酵母菌体濃度迄増
殖させることが可能となる。
In order to solve the problem (2) in the method of the present invention, a method of introducing oxygen during aeration to aerate highly concentrated oxygen-containing air, or a method of pressurizing the fermenter may be used, or a method of pressurizing the fermenter may be used. Depending on the method used, it is possible to grow yeast cells to an extremely high concentration.

このように本発明法により、製造設備の合理化、排水処
理設備の合理化等産業活動の上で大きな効果を与えるも
のである。
As described above, the method of the present invention has great effects on industrial activities such as rationalization of manufacturing equipment and wastewater treatment equipment.

本発明者等は特に、従来発表されている酵母菌体濃度よ
りも大巾に高い菌体濃度で培養すれば目的の酵母菌体以
外の菌体であるいわゆる雑菌の増殖が弱められるという
考えの基に鋭意研究し本発明を完成させた。
In particular, the present inventors have developed the idea that if the yeast cells are cultured at a much higher concentration than the yeast cell concentration previously reported, the growth of so-called miscellaneous bacteria, which are cells other than the target yeast cells, will be weakened. Based on this, the present invention was completed after intensive research.

一般に培養液中に雑菌が混入すると製品の品質をそこな
ったり、雑菌が大勢を占めたりする。
Generally, if bacteria are mixed into the culture solution, the quality of the product will be affected or the bacteria will become predominant.

又、連続培養のプロセスにおいては連続培養の稼動時間
を制限することになり雑菌の増殖の防止を考えることは
発酵工業においては極めて重要なことである。
Furthermore, in the continuous culture process, it is extremely important in the fermentation industry to consider preventing the growth of various bacteria since the operating time of the continuous culture is limited.

この雑菌の増殖を防止するという事実を確かめる為に、
本発明者等は種々研究した結果、酵母の培養について次
の実験結果を得た。
In order to confirm the fact that it prevents the growth of bacteria,
As a result of various studies, the present inventors obtained the following experimental results regarding yeast culture.

即ち、目的どする酵母菌体の濃度を増加させるに従って
、雑菌の増殖は弱められ、酵母濃度が6%(乾燥重量、
以下同じ)以上になると雑菌の増殖が極めて弱められる
ことを見出した。
That is, as the concentration of the desired yeast cells increases, the proliferation of miscellaneous bacteria is weakened, and the yeast concentration decreases to 6% (dry weight,
It has been found that when the temperature exceeds (the same applies hereinafter), the proliferation of various bacteria is extremely weakened.

種々の酵母属を単槽連続培養した結果、一般的な傾向と
して雑菌数の経時変化を顕微鏡で測定した結果を第1図
に傾向として示す。
As a result of continuous single-tank culture of various yeast genera, the general trend of changes in the number of bacteria over time was measured using a microscope, and the trends are shown in Figure 1.

第1図の横軸は培養時間でタテ軸は雑菌数である。The horizontal axis in FIG. 1 is the culture time and the vertical axis is the number of bacteria.

第1図は酵母菌体濃度を6%以上好ましくは8%以上に
すれば雑菌の防止効果が極めて大きいことを示している
FIG. 1 shows that when the yeast cell concentration is set to 6% or more, preferably 8% or more, the effect of preventing miscellaneous bacteria is extremely large.

酵母菌体濃度の上限は菌の種類、特に菌の大きさにより
一概に規定できないが、概ね20%程度である。
Although the upper limit of the yeast cell concentration cannot be absolutely defined depending on the type of bacteria, especially the size of the bacteria, it is approximately 20%.

又、本発明法を回分培養法に応用し、酵母菌体濃度を6
%程度迄増殖する場合には、一般的に低濃度で培養を完
了する場合に比べて培養時間が延長される。
In addition, the method of the present invention was applied to the batch culture method, and the yeast cell concentration was reduced to 6.
%, the culture time is generally longer than when the culture is completed at a low concentration.

この為、初発菌体濃度を低くすると、雑菌を防止する濃
度迄酵母を培養する時間が大きくなり、雑菌はその時間
増殖を行うので防止の効果がなくなる。
For this reason, if the initial bacterial cell concentration is lowered, the time required to culture yeast to a concentration that prevents harmful bacteria will increase, and the harmful bacteria will proliferate during that time, so that the prevention effect will be lost.

その為、一般的に初発菌体濃度を011%以上好ましく
は0.5%以上で培養を開始する必要がある。
Therefore, it is generally necessary to start culturing at an initial bacterial cell concentration of 0.11% or more, preferably 0.5% or more.

以上の如く、本発明法は雑菌汚染を抑制する為に酵母菌
体な大巾に増加させることが基本でありその為の手段と
して菌体の増殖を停止させる前述の要因を解除する点に
ある。
As described above, the basic method of the present invention is to increase the number of yeast cells to a large extent in order to suppress bacterial contamination, and the means for this purpose is to eliminate the aforementioned factors that stop the growth of yeast cells. .

従って、本発明法は、製品の品質の面からも利点があり
、又連続培養の稼動時間を延長できるという点は産業活
動の上で大きな利点である。
Therefore, the method of the present invention is advantageous in terms of product quality, and the ability to extend the operating time of continuous culture is a great advantage in industrial activities.

本発明法に適用できる酵母菌体としては、サツカロミセ
ス(Saccharomyces )属、キャンティダ
(Candida )属、ロードトルラ(Rhodot
orula属、トルロプシス(Torulopsis
)属、ハンゼヌラ(Hansenula )属、ビチア
(P 1chia )属、テバリオミセス(Debar
yomyces )属、チゾサ′カロミセス(S ch
izosaccharomyces )属、トリコスポ
ロン(Trichosporon )属が適用でき、グ
ルコース及び糖みつ糖液等の等類、ノルマルパラフィン
系の炭化水素類、エタノール及びメタノール等のアルコ
ール類、酢酸等の脂肪酸類、大豆油及び魚油等の油脂類
を資化できる酵母であれば上記のいづれかの酵母であっ
てもよいし、2種類以上混合して使用してもよい。
Examples of yeast cells that can be applied to the method of the present invention include Saccharomyces genus, Candida genus, Rhodotorula spp.
genus orula, Torulopsis
), Hansenula , P 1chia , Debaromyces
yomyces), Chizosa'calomyces (S ch
The genus Izosaccharomyces and the genus Trichosporon are applicable to the genus Glucose and molasses, etc., normal paraffin hydrocarbons, alcohols such as ethanol and methanol, fatty acids such as acetic acid, soybean oil and fish oil. Any of the above-mentioned yeasts may be used as long as they can assimilate fats and oils, or a mixture of two or more types may be used.

又、本発明法に適用できる主炭素源としては、糖類、炭
化水素類、アルコール類、脂肪酸類及び油脂類に適用で
き、更にこの内2種以上混合した主炭素源を用いてもよ
い。
The main carbon sources applicable to the method of the present invention include sugars, hydrocarbons, alcohols, fatty acids, and fats and oils, and a mixture of two or more of these may also be used.

又、本発明法は前述の原理から明らかなように攪拌機付
培養槽及び塔載培養槽等のあらゆる型式の培養槽に適用
できる。
Further, as is clear from the above-mentioned principle, the method of the present invention can be applied to all types of culture tanks, such as culture tanks equipped with a stirrer and tower-mounted culture tanks.

本発明のプロセスを図面により説明する。The process of the present invention will be explained with reference to the drawings.

第2図は本発明の典型的な実施態様を示すもので、1は
空気供給管、2は主炭素源及び栄養源の供給管であり、
培養槽3から培養液を管4を通じて菌体分離機5に導き
、酵母菌体を管8を通じて再び培養槽3に戻す操作を行
うことにより、培養槽内に蓄積した阻害物質を菌体分離
機5から除去できるものである。
FIG. 2 shows a typical embodiment of the present invention, in which 1 is an air supply pipe, 2 is a main carbon source and nutrient source supply pipe,
By guiding the culture solution from the culture tank 3 through the tube 4 to the bacterial cell separator 5 and returning the yeast cells to the culture tank 3 through the tube 8, the inhibitory substances accumulated in the culture tank are removed from the bacterial cell separator 5. This can be removed from 5.

空気供給管1については、発酵槽の酸素供給能力が不足
の場合に酸素を導入し高濃度酸素含有空気を通気するの
は効果的である。
Regarding the air supply pipe 1, it is effective to introduce oxygen and aerate highly concentrated oxygen-containing air when the oxygen supply capacity of the fermenter is insufficient.

但し、この場合にはいわゆる酸素前の悪影響を防ぐ為、
菌種及び主炭素源等により決定される最適な溶存酸素濃
度の範囲に制御して培養することが重要である。
However, in this case, in order to prevent the negative effects of so-called oxygen,
It is important to control and culture the dissolved oxygen concentration within the optimal range determined by the bacterial species, main carbon source, etc.

その為には普通30%以上、好ましくは30〜60%の
高濃度酸素含有空気を通気するのが好ましい又、当然、
空気と酸素とを別々の個所から発酵槽に通気して高濃度
酸素含有空気を通気した場合と同じ機能をもたらすよう
に通気してもよい。
For this purpose, it is preferable to ventilate air containing high concentration of oxygen, usually 30% or more, preferably 30 to 60%.
Air and oxygen may be vented into the fermenter from separate locations to provide the same function as aeration with highly oxygenated air.

培養槽3についても酸素供給量を増加させる目的で加圧
するのも効果がある。
It is also effective to pressurize the culture tank 3 for the purpose of increasing the amount of oxygen supplied.

この場合には普通05〜5.0kg104Gの圧力を加
えれば充分酸素供給量は補なえるが、これ以上の加圧は
発酵槽の耐圧性及び設備費さらに通気用のコンプレッサ
ーの設備費等から決して有利ではない。
In this case, applying a pressure of 0.5 to 5.0 kg and 104 G will normally provide sufficient oxygen supply, but higher pressure is never advantageous due to the pressure resistance of the fermenter, the equipment cost, and the equipment cost of the aeration compressor. isn't it.

菌体分離機5については、一般に菌体分離用に使用され
る遠心分離機を用いるのが操作も容易であり最も効果的
である。
As for the bacterial cell separator 5, it is easy to operate and most effective to use a centrifugal separator that is generally used for bacterial cell separation.

メンブレンフィルター等の膜分離機を酵母の分離に使用
すると菌体濃度が高くなるにつれ、膜の透過速度が著し
く低下する為、水洗水で希釈を行いながら分離する必要
がある。
When a membrane separator such as a membrane filter is used to separate yeast, as the bacterial cell concentration increases, the permeation rate of the membrane decreases significantly, so it is necessary to perform separation while diluting with washing water.

培養液の抜出し量及び水洗水量は、菌種及び主炭素源の
種類及び阻害物質の蓄積程度によって決定されるが、一
般的には回分式及び連続式培養法共、液抜出し量は発酵
槽に供給される主炭素源及び他の供給液のトータル液量
(以降、供給液量という)の0.3〜4倍量分が菌体分
離機5から分離される分離液量に等しくなるように抜出
せばよい。
The amount of culture fluid withdrawn and the amount of water for washing are determined by the bacterial species, the type of main carbon source, and the degree of accumulation of inhibitors, but in general, for both batch and continuous culture methods, the amount of fluid withdrawn is determined by the amount of water removed from the fermenter. 0.3 to 4 times the total amount of the main carbon source and other feed liquids (hereinafter referred to as the supply liquid amount) to be equal to the amount of separated liquid separated from the bacterial cell separator 5. Just take it out.

水洗水量は一般的には分離液量の2倍量迄で効果がある
が、上記に述べた如く膜分離機を用いる場合は2〜5倍
量程度の水洗水が必要である。
Generally, an amount of washing water up to twice the amount of separation liquid is effective, but as described above, when using a membrane separator, about 2 to 5 times the amount of washing water is required.

この場合の液抜出し方法は連続的でもよく、又断続的(
例えば1時間毎)に抜出してもよく、菌種及び主炭素源
等の種類あるいは連続培養法と回分培養法等により適宜
選択すればよい。
In this case, the liquid extraction method may be continuous or intermittent (
For example, the sample may be extracted every hour), and the selection may be made as appropriate depending on the type of bacteria, main carbon source, continuous culture method, batch culture method, etc.

又、水洗水は雑菌汚染防止を図る目的で、除菌フィルタ
ーを通過させた無菌水を用いるか、あるいは加熱殺菌等
の殺菌を施した無菌水を用いてもよい。
Furthermore, for the purpose of preventing bacterial contamination, the washing water may be sterile water that has passed through a sterilizing filter, or sterile water that has been sterilized by heat sterilization or the like.

冷却器9については、培養槽内の菌体の発熱に対する除
去を行うもので、熱交換器用に使用されるプレート式及
びチューブ式等の熱交換器を用いてもよく、又、発熱量
の大小によっては使用しなくてもよい。
The cooler 9 is used to remove the heat generated by the bacterial cells in the culture tank, and may be a plate-type or tube-type heat exchanger used for heat exchangers. In some cases, it may not be necessary to use it.

又、連続培養法に応用する場合、抜き出し管10により
、酵母製品を分離機5の前から抜き出してもよく、又分
離後に抜き出してもよい。
When applied to a continuous culture method, the yeast product may be extracted from the front of the separator 5 using the extraction tube 10, or may be extracted after separation.

又、分離機5により分離された酵母菌体が培養槽3に戻
される迄に、追加供給管2aによって主炭素源及び栄養
源を添加してもよいし、追加供給管1aにより空気を供
給して酵母菌体の活性化の劣化を防ぐ方法を用いてもよ
い。
Furthermore, before the yeast cells separated by the separator 5 are returned to the culture tank 3, the main carbon source and nutrient source may be added through the additional supply pipe 2a, or air may be supplied through the additional supply pipe 1a. A method of preventing deterioration of yeast cell activation may also be used.

次に本発明法は当然、多段式連続培養法にも適用でき、
例として2段式の場合の応用例の1部を第3図及び第4
図に示す。
Next, the method of the present invention can of course be applied to a multistage continuous culture method.
As an example, a part of the application example in the case of a two-stage type is shown in Figures 3 and 4.
As shown in the figure.

これらの場合においても、もちろん第1図に示した如く
分離された酵母菌体を培養槽に戻す際に主炭素源及び栄
養源を添加してもよく、空気を供給してもよい。
In these cases as well, of course, the main carbon source and nutrient source may be added when the separated yeast cells are returned to the culture tank as shown in FIG. 1, and air may be supplied.

又、冷却器9を組みこんでもよい。Furthermore, a cooler 9 may be incorporated.

次に、実施例を記載し本発明を更に詳細説明をする。Next, the present invention will be explained in more detail by describing examples.

実施例1及び比較例1 使用菌株 主炭素源及び栄養源 40%糖みつ糖液()1゛リピン産)を主炭素源とし、
他に窒素源として硫安及び尿素、リン源としてリン酸を
用いた。
Example 1 and Comparative Example 1 Bacteria used: Carbon source and nutrient source 40% molasses solution (produced from 1 ml) was used as the main carbon source,
In addition, ammonium sulfate and urea were used as the nitrogen source, and phosphoric acid was used as the phosphorus source.

培養条件 301容ジャーファーメンタ−を用い、温度33℃、P
H4,5〜5.0になるように10%アンモニア水でコ
ントロールシタ。
Culture conditions: Using a 301-volume jar fermentor, temperature: 33°C, P
Control with 10% ammonia water so that H4.5 to 5.0.

通気攪拌条件等 通気量は20 N 、/: 7m1yr、攪拌数は40
0ppmとした。
Aeration and stirring conditions, etc. Aeration amount is 20 N, /: 7 ml yr, number of stirring is 40
It was set to 0 ppm.

通気は酸素ボンベにて酸素分圧を増加させ培養液中の溶
存酸素濃度を常に2〜7ppmになるように管理した。
Aeration was controlled by increasing the oxygen partial pressure using an oxygen cylinder so that the dissolved oxygen concentration in the culture solution was always 2 to 7 ppm.

又この場合通気量は空気と酸素とを合わせて20 N
l: /minとした。
In this case, the ventilation amount is 20 N including air and oxygen.
l: /min.

培養方法 46%尿素溶液400m1、硫安80グ、85%リン酸
溶液60fを栄養源としていづれの場合にも培養開始前
に仕込み、いづれの場合も初発液量を101、初発菌濃
度を1%(乾燥重量測定法110℃、7hr にて測定
)に合わせた。
Cultivation method 400ml of 46% urea solution, 80g of ammonium sulfate, and 60f of 85% phosphoric acid solution were added as nutrients before starting the culture. dry weight measurement method (measured at 110°C for 7 hours).

主炭素源の添加方法は、菌の増殖に合わせて過不足なく
供給する為に、いづれの場合も培養液中のエタノール濃
度が500〜3000ppm (ガスクロマトグラフィ
ーにて測定)になるように添加した。
The main carbon source was added so that the ethanol concentration in the culture solution was 500 to 3000 ppm (measured by gas chromatography) in each case, in order to supply just the right amount according to the growth of the bacteria. .

培養時間はいづれの場合も16hr とし、回分培養
を行った。
The culture time was 16 hours in all cases, and batch culture was performed.

本例については、培養開始から8時間経時した時点から
=部培養槽から培養液を抜き出し遠心分離機(ウエスト
ファリア型式LWA205)にて菌体を20分以内に分
離した後、菌体のみを培養槽に戻しつつ培養した。
In this example, after 8 hours had elapsed from the start of culture, the culture solution was extracted from the culture tank, the bacterial cells were separated within 20 minutes using a centrifuge (Westfalia model LWA205), and only the bacterial cells were transferred to the culture tank. The cells were cultured while being returned to .

この分離する操作は一時間間隔で行いその一時間の間に
添加した主炭素源の液量外と遠心分離機で分離される菌
体を含まない分離液量とがほぼ等しくなるように操作を
最終まで行った。
This separation operation is performed at hourly intervals, and the operation is performed so that the volume of the main carbon source liquid added during that hour is approximately equal to the volume of the separated liquid that does not contain bacterial cells separated by the centrifuge. I went to the end.

比較例1は菌体分離を行なわない他は同一条件下で培養
を行った。
In Comparative Example 1, culture was performed under the same conditions except that bacterial cell isolation was not performed.

培養結果 得られた最終酵母量を下表に示す。Culture results The final yeast amount obtained is shown in the table below.

尚、酵母量は乾燥重量測定法(110℃、7hr)にて
濃度を測定しトータル量を求めた。
The total amount of yeast was determined by measuring the concentration using a dry weight measurement method (110° C., 7 hours).

収率は添加した糖量に対して生産した乾燥菌体の百分率
で示した。
The yield was expressed as the percentage of dried bacterial cells produced relative to the amount of sugar added.

実施例2及び比較例2 使用菌株 実施例1及び比較例1と同じ 主炭素源及び栄養源 実施例1及び比較例1と同じ 培養条件 実施例1及び比較例1と同じ 通気攪拌条件等 通気量は2ONl/min、攪拌数は700rpmとし
、ジャーファーメンタ−内に1kg/cstGの加圧を
行い培養を実施した。
Example 2 and Comparative Example 2 Bacterial strains used Same main carbon source and nutrient source as Example 1 and Comparative Example 1 Same culture conditions as Example 1 and Comparative Example 1 Same aeration stirring conditions, etc. Aeration amount as Example 1 and Comparative Example 1 Culture was carried out under conditions of 2 ONl/min, stirring speed of 700 rpm, and pressurization of 1 kg/cstG in a jar fermentor.

培養方法 実施例1と同じで、比較例2は菌体分離を行なわない他
は同一条件下で培養を行った。
Cultivation Method The culture was carried out in the same manner as in Example 1, and in Comparative Example 2, the culture was carried out under the same conditions except that the bacterial cells were not isolated.

培養結果 測定方法及び算出方法は実施例1及び比較例1と同じ。Culture results The measurement method and calculation method are the same as in Example 1 and Comparative Example 1.

実施例3及び比較例3 使用菌株 Candida utilis IAM 421
5主炭素源及び栄養源 30%糖みつ糖液(フィリピン産)を主炭素源とし、他
は実施例1及び比較例1と同じ 培養条件 301容ジャーファーメンタ−を用い、温度28℃、P
H4,5〜50で単槽連続培養運転を行った。
Example 3 and Comparative Example 3 Bacterial strain used Candida utilis IAM 421
5 Main carbon source and nutrient source 30% molasses liquid (produced in the Philippines) was used as the main carbon source, other culture conditions were the same as in Example 1 and Comparative Example 1, using a 301-volume jar fermenter, temperature 28°C, P
Single-tank continuous culture operation was performed from H4.5 to H50.

通気と攪拌条件等 実施例1及び比較例1と同じ 培養方法 30%糖みつ糖液に尿素0.5%、硫安0.2%、リン
酸0.2%になるように添加した供給液を3 沫培養
条件 301容ジャーファーメンタ−を用い、温度※J/Hで
連続的に供給し、ジャーファーメンタ−内の液量を20
7にコントロールした。
Aeration and stirring conditions, etc. Same culture method as Example 1 and Comparative Example 1 A feed solution containing 0.5% urea, 0.2% ammonium sulfate, and 0.2% phosphoric acid added to a 30% molasses solution. 3. Drop culture conditions: Using a 301 volume jar fermenter, feed continuously at the temperature * J/H, and reduce the liquid volume in the jar fermenter to 20
I controlled it to 7.

本発明法による分離と水洗は実施例1と同じ遠心分離機
を用い連続的に317Hなポンプで抜き出した。
Separation and water washing by the method of the present invention were carried out using the same centrifugal separator as in Example 1, with continuous extraction using a 317H pump.

この場合、遠心分離機に水洗水を連続的に3J/Hを抜
き出した培養液と混合しながら分離操作を行い分離され
た菌体のみをジャーファーメンタ−に戻した。
In this case, a separation operation was carried out while the washing water was continuously mixed with the culture solution from which 3 J/H was extracted in a centrifuge, and only the separated bacterial cells were returned to the jar fermentor.

比較例3は菌体分離を行なわない他は同一条件下で培養
を行った。
In Comparative Example 3, culture was performed under the same conditions except that bacterial cell isolation was not performed.

培養結果 比較例3及び本発明のいづれの場合も連続運転が安定し
たいわゆる定常状態になったことを確認してから、菌体
の濃度を乾燥重量測定法にて測定し、菌体の生産速度及
び収率を求めた。
In both the culture results of Comparative Example 3 and the present invention, after confirming that the continuous operation has reached a stable, so-called steady state, the concentration of bacterial cells was measured by dry weight measurement, and the production rate of bacterial cells was determined. and the yield was determined.

収率は実施例1及び比較例1の培養結果で求めた方法と
同じ。
The yield was the same as the method determined from the culture results of Example 1 and Comparative Example 1.

実施例4及び比較例4 使用菌株 実施例3及び比較例3と同じ 主炭素源及び栄養源 主炭素源は30%エタノールで他の栄養源は下表の通り 33℃、PH5,0で回分培養を行った。Example 4 and Comparative Example 4 Strain used Same as Example 3 and Comparative Example 3 Main carbon and nutrient sources The main carbon source is 30% ethanol and other nutritional sources are as shown in the table below. Batch culture was performed at 33°C and pH 5.0.

通気と攪拌条件等 実施例1及び比較例1と同じ。Aeration and stirring conditions, etc. Same as Example 1 and Comparative Example 1.

培養方法 上記栄養源を初発液量101の中に仕込み初発菌濃度を
1%(乾燥重量法)で開始した。
Cultivation method: The above-mentioned nutrient source was added to an initial volume of 101 ml of the initial solution, and the initial bacterial concentration was 1% (dry weight method).

主炭素源の添加方法は、培養液中のエタノール濃度(ガ
スクロマトグラフィーにて測定)が0.2〜0.5%に
常になるように添加した。
The main carbon source was added so that the ethanol concentration in the culture solution (measured by gas chromatography) was always 0.2 to 0.5%.

培養時間はいづれも18 hr とし、分離操作は実施
例1及び比較例1と同じ方法で実施した。
The culture time was 18 hr in each case, and the separation operation was performed in the same manner as in Example 1 and Comparative Example 1.

比較例4は菌体分離操作を行なわない他は同一条件下で
培養を行った。
In Comparative Example 4, culture was performed under the same conditions except that no bacterial cell isolation operation was performed.

培養結果 得られた最終酵母量を下表に示す。Culture results The final yeast amount obtained is shown in the table below.

測定法及び算出法は実施例1及び比較例1と同じ。The measurement method and calculation method are the same as in Example 1 and Comparative Example 1.

へlJI!IV J J /)t+’−’ j−U%J
Vすd吏用菌株 Pichia mogii IFOO607を炭素源
及び栄養源 大豆油を主炭素源とし他の栄養源は実施例4及ブ比較例
4と同じ。
HelJI! IV J J /)t+'-' j-U%J
Pichia mogii IFOO607 was used as the carbon source and nutrient source. Soybean oil was used as the main carbon source, and other nutrient sources were the same as in Example 4 and Comparative Example 4.

音饗条件 実施例4及び比較例4と同じ。Musical conditions Same as Example 4 and Comparative Example 4.

音饗方法 上記、栄養源を初発液量15Jの中に仕込み上記濃度に
なるようにし、初発菌濃度を1%で開始した。
Sound Ceremony Method As mentioned above, the nutrient source was added to the initial solution volume of 15 J to achieve the above concentration, and the initial bacterial concentration was started at 1%.

主炭素源の大豆油の添加方法は、培養液中の濃度が常に
0.2%程度になるように添加した。
Soybean oil, the main carbon source, was added so that the concentration in the culture solution was always about 0.2%.

培養時間は18hr とし、分離操作は培養開始から1
0 hr目に81抜き出し水洗水81と混合させ実施例
1及比較例1と同じ遠心分離機を用い1時間以内に分離
させ81分離液をとりのぞいた。
The culture time was 18 hours, and the separation operation was performed 1 time after the start of culture.
At 0 hr, 81 was extracted, mixed with washing water 81, and separated within 1 hour using the same centrifugal separator as in Example 1 and Comparative Example 1, and the 81 separated liquid was removed.

その後培養を続はトータル18hr培養を行った。Thereafter, the culture was continued for a total of 18 hours.

比較例5は菌体分離を行なわない他は同一条件下で培養
を行った。
In Comparative Example 5, culture was performed under the same conditions except that bacterial cell isolation was not performed.

培養結果 得られた最終酵母量を下表に示す。Culture results The final yeast amount obtained is shown in the table below.

測定法及び算出法は実施例2と同じ。The measurement method and calculation method are the same as in Example 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酵母濃度と雑菌数との関係を示すグラフで、第
2図乃至第4図は、本発明の実施態様を示すフローシー
トである。 1は空気供給管、1aは空気の追加供給管、2は炭素源
及び栄養源の供給管、2aは炭素源及び栄養源の追加供
給管、3は培養槽、4は培養液抜き出し管、5は菌体分
離機、6は水洗水供給管、7は菌体分離機により分離さ
れた阻害物質を含む分離液抜き出し管、8は菌体分離機
により分離された酵母菌体取り出し管、9は酵母菌体を
冷却する冷却器、10は連続培養を行う場合の液抜き出
し管である。
FIG. 1 is a graph showing the relationship between yeast concentration and the number of miscellaneous bacteria, and FIGS. 2 to 4 are flow sheets showing embodiments of the present invention. 1 is an air supply pipe, 1a is an additional air supply pipe, 2 is a carbon source and nutrient source supply pipe, 2a is an additional carbon source and nutrient source supply pipe, 3 is a culture tank, 4 is a culture solution extraction pipe, 5 is a bacterial cell separator, 6 is a washing water supply pipe, 7 is a tube for extracting the separated liquid containing inhibitors separated by the bacterial cell separator, 8 is a tube for removing yeast cells separated by the bacterial cell separator, and 9 is a pipe for extracting yeast cells separated by the bacterial cell separator. A cooler for cooling the yeast cells, and 10 a liquid extraction tube for continuous culture.

Claims (1)

【特許請求の範囲】 1 酵母の通気培養法において、培養液を連続的もしく
は断続的に系外に抜き出し、酵母菌体を菌体分離機にて
分離もしくは分離と水洗を行った後、酵母菌体のみを培
養槽に戻しつつ培養し、回分培養法の場合には最終菌体
濃度が、連続培養法の場合は培養槽内の菌体濃度が6%
から20%(乾燥重量)の範囲で培養する酵母の高菌体
濃度培養法。 2 回分培養の場合の最終菌体濃度もしくは連続培養の
場合の培養槽内の菌体濃度が8%以上である特許請求の
範囲第1項記載の培養法。 3 回分培養の場合の初発菌体濃度が0.1%以上であ
る特許請求の範囲第1項記載の培養法。 4 初発菌体濃度が0.5%以上である特許請求の範囲
第3項記載の培養法。 5 通気に30%以上の酸素濃度を含有する高濃度酸素
含有空気を用いる特許請求の範囲第1項記載の培養法。 6 発酵槽を0.5〜5.0に9/c4Gの加圧をして
培養を行う特許請求の範囲第1項記載の培養法。 7 菌体分離機から分離される酵母を含まない分離液量
(以降・分離液量という)が発酵槽に供給される主炭素
源及び他の供給液のトータル量の0.3〜4倍量になる
ように液抜出しを行う特許請求の範囲第1項記載の培養
法。 8 菌体分離機として遠心分離機を用い、水洗水量を分
離液量の2倍量迄の量にて水洗する特許請求の範囲第1
項記載の培養法。 9 菌体分離機として膜分離機を用い、水洗水量を分離
液量の2〜5倍量にて水洗する特許請求の範囲第1項記
載の培養法。 10 熱交換器で冷却した後、酵母菌体を培養槽に戻
す特許請求の範囲第1項記載の培養法。 11 主炭素源及び栄養源を添加した後、酵母菌体を
培養槽に戻す特許請求の範囲第1項記載の培養法。 12 通気しながら酵母菌体を培養槽に戻す特許請求
の範囲第1項記載の培養法。 13 主炭素源が糖類である特許請求の範囲第1項記
載の培養法。 14 主炭素源が炭化水素類である特許請求の範囲第
1項記載の培養法。 15 主炭素源がアルコール類である特許請求の範囲
第1項記載の培養法。 16 主炭素源が脂肪酸類である特許請求の範囲第1
項記載の培養法。 17 主炭素源が油脂類である特許請求の範囲第1項
記載の培養法。 18 酵母がサツカロミセス(Saccharomy
ces )属、キャンデイダ(Candida )属、
ロードトルラ(Rhodotorula )属、トルロ
プシス(Torulopsis )属、/Sンゼヌラ(
Hansenula)属、ピチア(P 1chia )
属、デバリオミセス(Debaryomyces )属
、チゾサソカコミセス(Schizosaccharo
myces )属、トリコスポロン(T richos
poron )属からなる群より選択される特許請求の
範囲第1項記載の培養法。
[Claims] 1. In the yeast aerated culture method, the culture solution is continuously or intermittently extracted from the system, and the yeast cells are separated using a cell separator or separated and washed with water, and then the yeast cells are separated. Culture is carried out while returning only the cells to the culture tank, and in the case of batch culture method, the final cell concentration is 6%, and in the case of continuous culture method, the cell concentration in the culture tank is 6%.
A method for culturing yeast at a high bacterial cell concentration in the range of 20% (dry weight). The culture method according to claim 1, wherein the final bacterial cell concentration in the case of two-batch culture or the bacterial cell concentration in the culture tank in the case of continuous culture is 8% or more. The culture method according to claim 1, wherein the initial bacterial cell concentration is 0.1% or more when cultured in 3 batches. 4. The culture method according to claim 3, wherein the initial bacterial cell concentration is 0.5% or more. 5. The culture method according to claim 1, wherein highly concentrated oxygen-containing air containing an oxygen concentration of 30% or more is used for aeration. 6. The culture method according to claim 1, wherein the culture is carried out by pressurizing the fermenter at a pressure of 9/c4G to 0.5 to 5.0. 7 The amount of yeast-free separated liquid separated from the bacterial cell separator (hereinafter referred to as separated liquid amount) is 0.3 to 4 times the total amount of the main carbon source and other feed liquids supplied to the fermenter. The culture method according to claim 1, wherein the liquid is extracted so that 8 Claim 1, in which a centrifugal separator is used as a bacterial cell separator, and the amount of washing water is up to twice the amount of separation liquid.
Culture method described in section. 9. The culture method according to claim 1, wherein a membrane separator is used as the bacterial cell separator, and the amount of washing water is 2 to 5 times the amount of the separation liquid. 10. The culture method according to claim 1, wherein the yeast cells are returned to the culture tank after being cooled with a heat exchanger. 11. The culture method according to claim 1, wherein the yeast cells are returned to the culture tank after adding the main carbon source and nutrient source. 12. The culture method according to claim 1, wherein the yeast cells are returned to the culture tank while being aerated. 13. The culture method according to claim 1, wherein the main carbon source is saccharide. 14. The culture method according to claim 1, wherein the main carbon source is hydrocarbons. 15. The culture method according to claim 1, wherein the main carbon source is alcohol. 16 Claim 1 in which the main carbon source is fatty acids
Culture method described in section. 17. The culture method according to claim 1, wherein the main carbon source is oil or fat. 18 Yeast is Saccharomyces
ces) genus, Candida genus,
Rhodotorula genus, Torulopsis genus, /S nzenula (
Hansenula) genus, Pichia (P 1chia)
Genus, Debaryomyces, Schizosaccharo
myces) genus, Trichosporon (Trichos)
2. The culture method according to claim 1, wherein the culturing method is selected from the group consisting of the genus Poron.
JP52096835A 1977-08-11 1977-08-11 High bacterial cell concentration culture method for yeast Expired JPS5840463B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP52096835A JPS5840463B2 (en) 1977-08-11 1977-08-11 High bacterial cell concentration culture method for yeast
GB7831434A GB2003177B (en) 1977-08-11 1978-07-27 Method and an apparatus of highly concentrated cultivation of yeasts
IT50679/78A IT1105439B (en) 1977-08-11 1978-08-09 PROCEDURE AND EQUIPMENT FOR INTENSIVE FERMENT CULTIVATION
MX10114778U MX6939E (en) 1977-08-11 1978-08-10 IMPROVED PROCEDURE TO INCREASE THE YEAST CONCENTRATION IN AEROBIC GROWING MEDIA
PH21465A PH15393A (en) 1977-08-11 1978-08-10 Apparatus for highly concentrated cultivation of yeasts
FR7823601A FR2400061A1 (en) 1977-08-11 1978-08-10 PROCESS AND APPARATUS FOR CULTIVATION AT HIGH CONCENTRATION OF YEASTS
BE78189838A BE869684A (en) 1977-08-11 1978-08-11 APPARATUS AND METHOD FOR FERMENTATION OF YEASTS
PH23103A PH20014A (en) 1977-08-11 1979-10-03 A method for highly concentrated cultivation of yeasts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52096835A JPS5840463B2 (en) 1977-08-11 1977-08-11 High bacterial cell concentration culture method for yeast

Publications (2)

Publication Number Publication Date
JPS5432687A JPS5432687A (en) 1979-03-10
JPS5840463B2 true JPS5840463B2 (en) 1983-09-06

Family

ID=14175580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52096835A Expired JPS5840463B2 (en) 1977-08-11 1977-08-11 High bacterial cell concentration culture method for yeast

Country Status (6)

Country Link
JP (1) JPS5840463B2 (en)
BE (1) BE869684A (en)
FR (1) FR2400061A1 (en)
GB (1) GB2003177B (en)
IT (1) IT1105439B (en)
PH (2) PH15393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163914A1 (en) 2016-03-25 2017-09-28 Ntn株式会社 Fixed-type constant velocity universal joint

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1149298A (en) * 1979-04-12 1983-07-05 Eugene H. Wegner Production of yeast cells at high cell densities
FR2492405A1 (en) * 1980-10-17 1982-04-23 Dumas & Inchauspe PROCESS FOR PREPARING VISCOUS WATER BY ACTION OF MICROORGANISMS AND VISCOUS WATER OBTAINED BY THIS PROCESS
JPS62134086A (en) * 1985-12-06 1987-06-17 Teijin Ltd Cultivation of animal cell
DD272182A3 (en) * 1986-12-17 1989-10-04 Leipzig Chemieanlagen METHOD FOR OBTAINING HIGH QUALITY GOODS FROM WHEY

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR670800A (en) * 1927-01-08 1929-12-04 Advanced process for the production of yeast
FR1093138A (en) * 1954-02-11 1955-05-02 Duriez & Cie J Process for manufacturing food yeasts from sugar molasses
US2967107A (en) * 1957-03-04 1961-01-03 John Labott Ltd Continuous fermentation process
FR1442276A (en) * 1964-05-25 1966-06-17 Sorice Soc Fermentation process and device therefor
FR1522271A (en) * 1966-02-03 1968-04-26 British Petroleum Co Continuous process of culturing microorganisms on straight chain hydrocarbons in two separate successive fermenters
SE347015B (en) * 1966-10-06 1972-07-24 Sanraku Ocean Co
FR1603547A (en) * 1968-12-11 1971-05-03 Micro organism bleeding method
FR1598080A (en) * 1968-12-23 1970-06-29
FR2049425A5 (en) * 1969-06-10 1971-03-26 Fermentation Whey fermented with yeast to give high - protein feedstuff
FR2122689A5 (en) * 1971-01-20 1972-09-01 Lefrancois Louis
FR2197975A1 (en) * 1972-09-04 1974-03-29 Chinese Petrole0M Corp Closed circuit fermentation system - with separate forced circulation of foam and fermentation liquor
JPS527073B2 (en) * 1973-01-29 1977-02-26
CH621363A5 (en) * 1976-05-18 1981-01-30 Mueller Hans Dr Ing Fa
JPS5329985A (en) * 1976-08-27 1978-03-20 Kanegafuchi Chem Ind Co Ltd High concentration culturing of yeast
JPS5347583A (en) * 1976-10-08 1978-04-28 Kanegafuchi Chem Ind Co Ltd Concentrated cultivation of yeast

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163914A1 (en) 2016-03-25 2017-09-28 Ntn株式会社 Fixed-type constant velocity universal joint
US11053986B2 (en) 2016-03-25 2021-07-06 Ntn Corporation Fixed type constant velocity universal joint

Also Published As

Publication number Publication date
GB2003177B (en) 1982-08-04
GB2003177A (en) 1979-03-07
JPS5432687A (en) 1979-03-10
FR2400061A1 (en) 1979-03-09
IT1105439B (en) 1985-11-04
PH15393A (en) 1982-12-23
PH20014A (en) 1986-08-28
IT7850679A0 (en) 1978-08-09
BE869684A (en) 1979-02-12
FR2400061B1 (en) 1983-04-01

Similar Documents

Publication Publication Date Title
JPH04131087A (en) Fermentation of amino acid and apparatus therefor
CN101861394A (en) Method and device for microbial production of a certain product and methane
WO2011099595A1 (en) Method for industrially producing (s)-1,1,1-trifluoro-2-propanol
JPS5840463B2 (en) High bacterial cell concentration culture method for yeast
KR860000893B1 (en) Production of yeast cells at high cell densities
CN108026502A (en) Method for the cell suspension for concentrating the cement biomass comprising oleaginous yeast
Reusser Continuous fermentation of novobiocin
RU2044773C1 (en) Method for fermentation of carbohydrate-containing mediums with the help of bacteria which produce butanol, acetone, ethanol and/or isopropanol and device for its realization
US4845033A (en) Process for a continuous fermentative production of low aliphatic alcohols or organic solvents
JPS62278989A (en) Production of acetone and butanol
DE4403391A1 (en) Process for the production of hydrogen and carboxylic acids from biomass hydrolyzate
US4284724A (en) Method of highly concentrated cultivation of yeasts
Ingledew Continuous fermentation in the fuel alcohol industry: how does the technology affect yeast
DK158362B (en) PROCEDURE FOR THE PREPARATION OF ETHANOL
US4018593A (en) Process for recovering useful substances from culture media
JPH05137585A (en) Method for continuously culturing erythritol
Porges et al. Gluconic acid production
CN104487583A (en) Method for producing organic acid
EP0136804A2 (en) Industrial-scale process for the production of polyols by fermentation of sugars
GB2091761A (en) Process for the production of alcohol by fermentation
Taniguchi et al. Continuous ethanol production by cell-holding culture of yeasts
CA1212055A (en) Process for producing ethanol from fermentable sugar solutions
SU1643606A1 (en) Process for producing biomass of fodder yeast
GB2065699A (en) Ethanol production
CN115369133A (en) Method for producing DHA grease by fermenting schizovibrio based on linseed oil