JPS5840458A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPS5840458A
JPS5840458A JP13609181A JP13609181A JPS5840458A JP S5840458 A JPS5840458 A JP S5840458A JP 13609181 A JP13609181 A JP 13609181A JP 13609181 A JP13609181 A JP 13609181A JP S5840458 A JPS5840458 A JP S5840458A
Authority
JP
Japan
Prior art keywords
regenerator
dilute solution
temperature
solution
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13609181A
Other languages
Japanese (ja)
Inventor
栄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP13609181A priority Critical patent/JPS5840458A/en
Publication of JPS5840458A publication Critical patent/JPS5840458A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 稀溶液の循環系内の流量を負荷特性に応じて自栃的かつ
連続的に制御する二うにした吸収式冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator that automatically and continuously controls the flow rate of a dilute solution in a circulation system according to load characteristics.

吸収式冷凍機において、負荷特性に応じ入熱量を制御す
ることに一般に行なわれている。この場合、入熱量だけ
を制御して、稀溶液循環量を制御しないと、再生器への
稀溶液流入量が過大となったり又は過少となったりする
ため、冷凍機を正常な状態で運転することは困難となる
。そのため、入熱量制御に合せて稀溶液流量も制御する
ことが必要となるが、従来の稀溶液の循環流量の制@は
、固定オリフィスを用いるものであり, PNloFF
のλ段階制御又はT(1gh /Low10FFの3段
階制御が一般的であった。
In absorption refrigerators, the amount of heat input is generally controlled according to load characteristics. In this case, if only the amount of heat input is controlled and the amount of dilute solution circulated is not controlled, the amount of dilute solution flowing into the regenerator will be too large or too small, so the refrigerator should be operated under normal conditions. It becomes difficult. Therefore, it is necessary to control the flow rate of the dilute solution in accordance with the control of the amount of heat input, but the conventional method of controlling the circulation flow rate of the dilute solution is to use a fixed orifice.
λ step control or T(1gh/Low 10FF three step control) was common.

しかしながら、入熱量制御にともなう再生器の温度又は
圧力に連続的に変化するものであるから、従来のLウな
稀溶液流量を段階的に制御するものでは、冷凍機を十分
効率良く運転することは困難であった。
However, since the temperature or pressure of the regenerator changes continuously due to heat input control, the conventional method of controlling the flow rate of a dilute solution in stages cannot operate the refrigerator sufficiently efficiently. was difficult.

本発明は上記のLラな事情にもとづきなされたもので、
その目的は、入熱量制御に応じ稀溶液流量を連続的に制
御することのできる吸収式冷凍機を提供することにある
The present invention was made based on the above-mentioned circumstances,
The purpose is to provide an absorption refrigerator that can continuously control the flow rate of a dilute solution according to the control of the amount of heat input.

以下本発明の一実施例を図面を参照して詳細に説明する
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る吸収式冷凍機の一実施例を示し
た系統図である。この図において(1)は稀溶液が導入
されバーナ等で加熱する高温再生器、(2)ハ高温再生
器(11で加熱された溶液を冷媒蒸気と中間濃溶液に分
離する分離器、(3)は低温再生器であり1、分離器(
2)で分離された中間濃溶液が、高町熱交換器(4)を
経て稀溶液との熱交換に二って1降温された後導入され
、分離器(2)からの高温の冷媒蒸気で再度加熱される
。(5)°は凝縮器−であり、低温再生器(3)からの
冷媒蒸気をコイル(Sa)を流れる冷却水に:つで冷却
し凝縮させる。
FIG. 1 is a system diagram showing an embodiment of an absorption refrigerator according to the present invention. In this figure, (1) is a high-temperature regenerator into which a dilute solution is introduced and heated with a burner, (2) is a high-temperature regenerator (3) is a separator that separates the solution heated in 11 into refrigerant vapor and an intermediate concentrated solution. ) is a low temperature regenerator 1, and a separator (
The intermediate concentrated solution separated in step 2) is introduced through the Takamachi heat exchanger (4), where the temperature is lowered by 1 degree due to heat exchange with the dilute solution, and the high temperature refrigerant vapor from the separator (2) is introduced. is heated again. (5)° is a condenser which cools and condenses the refrigerant vapor from the low temperature regenerator (3) into the cooling water flowing through the coil (Sa).

低温再生器(3)で濃縮された濃溶液は、低温熱交換器
+61を経て稀溶液との熱交換に二つて降温された後吸
収器(7)のコイル(7a)上に散布される。(8)は
蒸発器であり、コイル(ga)内を図示しない負荷から
の冷水が流れている。そして凝縮器(5)で凝縮された
冷媒がコイル(ga)上に散布され、冷媒にコイル(f
fa)内の冷水から気化熱を奪って蒸発する。°そのた
め冷水は冷却され負荷へ送られる。蒸発器(8)で蒸発
した冷媒蒸気と吸収器(7)の濃溶液に吸収されて稀溶
液となり、この稀溶液は溶液循環ポンプ19)に1つて
、流量制御弁aq及び熱交換器+41. +61を経て
高温再生器(1)へ供給され、以下同様の動作を繰り返
す。
The concentrated solution concentrated in the low-temperature regenerator (3) passes through the low-temperature heat exchanger +61 and is lowered in temperature through heat exchange with the diluted solution, and then is sprayed onto the coil (7a) of the absorber (7). (8) is an evaporator, and cold water from a load (not shown) flows through the coil (ga). Then, the refrigerant condensed in the condenser (5) is sprayed onto the coil (ga), and the refrigerant is spread over the coil (f).
It evaporates by removing the heat of vaporization from the cold water in fa). °The chilled water is therefore cooled and sent to the load. The refrigerant vapor evaporated in the evaporator (8) is absorbed by the concentrated solution in the absorber (7) to form a dilute solution, and this dilute solution is passed through the solution circulation pump 19) to the flow control valve aq and the heat exchanger +41. +61 and is supplied to the high temperature regenerator (1), and the same operation is repeated thereafter.

流量制御4f叩は本発明において重要な役割をはたすも
のであり、その−例の詳細を第2図に示しである。第一
図において、管0υは溶液循環ポンプ(9)の出口側に
連結され、管α2は低温熱交換器(6)の入口側に連結
される。管a3は第1図に破線で示しであるように高温
再生器(1)に連結され、その内部圧力の伝達を受ける
ためのものである。a14trs受玉室であり、内部に
ベローズfi51に固着された受干板Oeが設けられて
いる。受圧板(IIにはシャフトαηが連結されており
、このシャフトarna管fIJ内に設けたオリフィス
08を通り弁α9に連結されている。■はスプリングで
ある。
The flow rate control 4f plays an important role in the present invention, and an example thereof is shown in detail in FIG. In Figure 1, the pipe 0υ is connected to the outlet side of the solution circulation pump (9), and the pipe α2 is connected to the inlet side of the low temperature heat exchanger (6). The pipe a3 is connected to the high-temperature regenerator (1) as shown by the broken line in FIG. 1, and is used to receive the internal pressure of the regenerator (1). This is the a14trs ball receiving chamber, and a receiving board Oe fixed to the bellows fi51 is provided inside. A shaft αη is connected to the pressure receiving plate (II), and is connected to a valve α9 through an orifice 08 provided in the shaft arna pipe fIJ. ■ is a spring.

次に流量制御弁0Iの動作を第3図を参照しながら説明
する。− 第31閑の(a) fl冷凍機の運転停止時の流量制御
弁Qlの状態を示しており、(b)は運転開始頭初の状
態を示している。このときの力のバランスId +11
式の裏うに表わされる。
Next, the operation of the flow rate control valve 0I will be explained with reference to FIG. - No. 31 (a) shows the state of the flow control valve Ql when the operation of the fl refrigerator is stopped, and (b) shows the initial state at the beginning of the operation. Balance of force at this time Id +11
It is expressed in the reverse side of the formula.

AI (PP −PGE) > F3  ・・・+11
但[2各符号の意味に次の通りである。
AI (PP-PGE) > F3...+11
However, [2] The meaning of each symbol is as follows.

A1:ベローズ(+51の有効面積 P、:溶液循環ポンプ19)の吐出圧力Paw :高温
再生器(1)の内部圧力F8:弁(19閉塞時のバネ荷
重 − (1)式において左項に弁の閉塞力で、あり、有頂は開
放力となる。運転頭初、ポンプ吐出圧P、を受け、受圧
板fll Kは弁の閉塞力、弁には開放力が働くが受圧
板面積(ベローズ有効面積)をノズル開口面積J″り大
きく取ることにより閉塞力が弁に働く。
A1: Discharge pressure of bellows (+51 effective area P,: solution circulation pump 19) Paw: Internal pressure of high temperature regenerator (1) F8: Valve (spring load when 19 is closed - In equation (1), the left term is the valve The closing force is , and the crest is the opening force.At the beginning of the operation head, the pump discharge pressure P is received, the pressure receiving plate full K is the closing force of the valve, and the opening force acts on the valve, but the area of the pressure receiving plate (bellows By making the effective area larger than the nozzle opening area J'', a closing force acts on the valve.

再生器(1)の温度の上昇に伴ない再生器子方P。F。As the temperature of the regenerator (1) increases, the regenerator P. F.

も増加する。(1)式において左項の閉塞力に減少する
。そしである再生器圧力に:り閉塞力と開放力に等しく
なる。この時の再生器圧力を決定するものは、弁閉塞時
のバネ荷重Fs  で、Fs  の選定に198271
点の再生器圧力を自由に決めることができる。この状態
:り更に再生型温度が上昇した場合、閉塞力は減少し、
(1)式は(2)式のLうになる。
will also increase. In equation (1), the occluding force is reduced to the left term. Then, the regenerator pressure becomes equal to the closing force and the opening force. What determines the regenerator pressure at this time is the spring load Fs when the valve is closed, and 198271
The regenerator pressure at a point can be freely determined. In this state: If the regenerative temperature further increases, the closing force decreases,
Equation (1) becomes L of equation (2).

、a、、(p、、 −PGE’)<FS   ”・・(
2)但しP(4”再生型温変上昇後の子方 すなわち開放力が閉塞力へり大きくなり弁09を開放方
向へ移動させ流量制御弁(IllIは第3図のfc)の
状態となる。この時の力のバランスを(3)式に示す。
,a,,(p,, -PGE')<FS''...(
2) However, P(4") after the regenerative temperature change rises, the opening force becomes larger than the closing force, and the valve 09 is moved in the opening direction to become the flow control valve (IllI is fc in FIG. 3). The balance of forces at this time is shown in equation (3).

A、 (P、−ΔP、 −P。F、’ ) ” FS−
δに@−@(31但しΔP、:弁開放Kjるポンプ吐出
圧の減少田δ lf開度 k :バネ定数 弁の開放に:り高温再生器(1)内へ稀溶液が循環され
る。再生器(1)への稀溶液循環噺と入熱量(inpu
りに↓り再生型温#(子方)は一定の値となる。再生器
王力の安定にLり弁開度も安定する。
A, (P, -ΔP, -P.F,' ) ” FS-
The dilute solution is circulated into the high-temperature regenerator (1) by the opening of the spring constant valve. Dilute solution circulation and heat input to the regenerator (1)
Rini ↓ Regeneration type temperature # (kogata) becomes a constant value. Due to the stability of the regenerator power, the L valve opening degree is also stabilized.

′負荷特性にLす、入熱量が増加した場合、再生器(1
1において入熱量(input)増となり温度(圧力〕
が増加する。この時、流量制御弁(I[I FI PG
Eの増加となり、閉塞力が減少し、119id開放方向
へ移動(第3図(dl)L、稀溶液循環量は増加する。
'If the heat input increases depending on the load characteristics, the regenerator (1
At 1, the heat input increases and the temperature (pressure)
increases. At this time, the flow control valve (I [I FI PG
E increases, the closing force decreases, and the 119id moves in the opening direction (Fig. 3 (dl) L, the dilute solution circulation amount increases.

すなわち、再生器(1ンへの入熱Q (inputン増
加により稀溶液循環量の増加がはかられ、入熱a (i
nput)と稀溶液循環量のバランスがとられる。
In other words, by increasing the heat input Q (i
nput) and the amount of dilute solution circulated.

入熱量(inpuりが減少した場合、再生器温度(干力
)は減少し、流量制御弁QOIでは閉塞力の増加(第3
図(e))となり稀溶液循環量は減少する。
When the amount of heat input (input) decreases, the regenerator temperature (dry force) decreases, and the flow control valve QOI increases the closing force (the third
As shown in Figure (e), the amount of dilute solution circulated decreases.

(31式rシ S となり、更に−=:に、 、−i!=に2. P、−Δ
P、=P0としk         k て代入すると、 δ=に1−に2Po十に2PGE1111I+(4)と
なる。ここで弁開放後の、4F開度にLるポンプ吐出圧
の変化を微小と考えて無視すると、K2P。
(Formula 31 r shi S becomes, and further −=:, , −i!= 2. P, −Δ
When P, = P0 and k k are substituted, δ=1-2Po+2PGE1111I+(4). Here, if we ignore the change in the pump discharge pressure at the 4F opening after the valve is opened, considering it to be minute, the result is K2P.

は一定となり(4)式は δ:KP  十K。 +1・−+5)   GE となり、弁開度δと再生器圧力は比別的な関係にあるこ
とが判る。
is constant and equation (4) is δ:KP 10K. +1・-+5) GE, and it can be seen that there is a comparative relationship between the valve opening degree δ and the regenerator pressure.

弁開度と流量に比例関係にあることは周知の通りであり
、従って流量と、再生器圧カも同様の関係である。
It is well known that there is a proportional relationship between the valve opening degree and the flow rate, and therefore the flow rate and the regenerator pressure have a similar relationship.

以上詳述したように本発明にIれば、負荷特性に対応・
して入熱量を制御すると、入熱量に応じて流量制御弁O
5が制御され稀溶液の循環流量が自動的に追従して制御
される。そしてs/Jf、量制御升aαの制御信号とし
て、入熱量制御のための信号を用いることなく冷凍機内
部の圧力(又は温度)変化を使用しているので入熱量制
御の方法にかかわりなく稀溶液循環量を制御することが
できる。
As detailed above, according to the present invention, it is possible to adapt to the load characteristics.
When the amount of heat input is controlled by
5 is controlled, and the circulating flow rate of the dilute solution is automatically followed and controlled. Furthermore, as the control signal for s/Jf and quantity control aα, pressure (or temperature) changes inside the refrigerator are used without using a signal for heat input control, so it is rare regardless of the heat input control method. The amount of solution circulation can be controlled.

従って本発明によれば従来のようなオリフィスに↓る段
階的な制御ではなく、冷凍機内部の子方(温度)を直接
の躯t!I源として、他に何等の補助1駆動源を要せず
に、稀溶液循環量を自動的かつ連続的に制御することが
可能となり、冷凍機の運転効率を極めて向上させること
ができる。
Therefore, according to the present invention, instead of the conventional step-by-step control using an orifice, the temperature inside the refrigerator can be controlled directly! As an I source, it is possible to automatically and continuously control the dilute solution circulation amount without requiring any other auxiliary driving source, and the operating efficiency of the refrigerator can be greatly improved.

なお本発明は二重効用吸収式冷凍機に限らず。Note that the present invention is not limited to dual-effect absorption refrigerators.

その他の吸収式冷凍機にも適用可能である。It is also applicable to other absorption refrigerators.

更に本発明に上記の様に冷凍機内部の圧力(温度)変化
を信号としているため、入熱量(input)制御だけ
でなく、冷却水特性に対しても対応可能といえる。
Furthermore, since the present invention uses pressure (temperature) changes inside the refrigerator as a signal as described above, it can be said to be applicable not only to heat input control but also to cooling water characteristics.

冷却水温が降下した場合、冷凍機内部の各部玉力(温度
)も降下するのは周知の通りである。内部圧力の降下に
Lり濃溶液濃度の上昇にLる晶析の可能性、冷媒の蒸発
器内での凍結の可能性が増大される。
It is well known that when the cooling water temperature drops, the temperature of each part inside the refrigerator also drops. As the internal pressure decreases, the possibility of crystallization and the possibility of freezing of the refrigerant in the evaporator increases as the concentration of the concentrated solution increases.

この時の稀溶液循環流量は経験的結果りり大なる変化を
生じないことが望ましいと考えられる。
Based on empirical results, it is considered desirable that the dilute solution circulation flow rate at this time does not change significantly.

固定オリアイスでの稀溶液循環制御を考えた場合、冷却
水温の降下にLす、高温再生器の田方も降下し、そのた
め溶液循環ポンプの吐出モと高温再生器の圧力との差が
大きくなり、稀溶液循環流量は増加する。しかし、本発
明の流量制御弁においては再生器圧力の降下にLり稀溶
液循環流量は常に再生器圧力に対応した流量となり、大
なる流量変化は生じない。
When considering dilute solution circulation control using a fixed orifice, as the cooling water temperature decreases, the temperature of the high temperature regenerator also decreases, which increases the difference between the pressure of the solution circulation pump and the pressure of the high temperature regenerator. The dilute solution circulation flow rate increases. However, in the flow rate control valve of the present invention, the dilute solution circulation flow rate always corresponds to the regenerator pressure, and no large change in flow rate occurs.

従って、入熱i (inpuり制御に対応した稀溶液循
環流量を自動的かつ連続的に制御するばがりでなく、吸
収式冷凍機の大きな問題点とされていた冷却水特性に対
しても、対応が可能である。
Therefore, not only can the dilute solution circulation flow rate corresponding to heat input i (inpu control) be automatically and continuously controlled, but also the cooling water characteristics, which have been a major problem with absorption chillers, can be controlled. It is possible to respond.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る吸収式冷凍機の一実施例を示す系
統図、第2図は本発明に使用されろ流量制御弁の一例を
示す断面図、第3図は本発明の各動作状態における流量
制御弁の動作を示した説明図である。 +11・・高温再生器、(2)・・分離器、(3)・・
低温再生器、(5)・・凝縮器、(7)・・吸収器、’
+81・・蒸発器、19)・・溶液循環ポンプ、00)
・・流量制御弁。 第2図
Fig. 1 is a system diagram showing one embodiment of an absorption chiller according to the present invention, Fig. 2 is a sectional view showing an example of a flow rate control valve used in the present invention, and Fig. 3 is a diagram showing each operation of the present invention. It is an explanatory view showing operation of a flow control valve in a state. +11...High temperature regenerator, (2)...Separator, (3)...
Low temperature regenerator, (5)...condenser, (7)...absorber,'
+81...Evaporator, 19)...Solution circulation pump, 00)
...Flow control valve. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸発器にて負荷水から気化熱を奪って蒸発する冷媒を、
吸収器にて吸収溶液に吸収させて稀溶液となし、この稀
溶液を再生器にて加熱することにLつで冷媒と吸収溶液
とを再生し、再生された冷媒を前記蒸発器へ供給すると
ともに、再生された吸収溶液を前記吸収器へ供給する如
く循環系を形成した吸収式冷凍機において、前記循環系
内に前記稀溶液の循環量を連続的に変化させるための前
記循環系内の圧力もしくに温度に応じて弁開度の変化す
る流量制御弁を設けたことを特徴とする吸収式冷凍機。
The refrigerant that evaporates by removing the heat of vaporization from the load water in the evaporator,
The refrigerant is absorbed into an absorption solution in an absorber to form a dilute solution, and this dilute solution is heated in a regenerator to regenerate the refrigerant and absorption solution using L, and the regenerated refrigerant is supplied to the evaporator. In addition, in an absorption refrigerating machine having a circulation system configured to supply the regenerated absorption solution to the absorber, the circulation system is configured to continuously change the circulation amount of the dilute solution within the circulation system. An absorption refrigerating machine characterized by being equipped with a flow control valve whose opening degree changes depending on pressure or temperature.
JP13609181A 1981-09-01 1981-09-01 Absorption type refrigerator Pending JPS5840458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13609181A JPS5840458A (en) 1981-09-01 1981-09-01 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13609181A JPS5840458A (en) 1981-09-01 1981-09-01 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS5840458A true JPS5840458A (en) 1983-03-09

Family

ID=15167042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13609181A Pending JPS5840458A (en) 1981-09-01 1981-09-01 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS5840458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463486A2 (en) * 1990-06-27 1992-01-02 BASF Aktiengesellschaft Process for the production of flexographic relief printing plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463486A2 (en) * 1990-06-27 1992-01-02 BASF Aktiengesellschaft Process for the production of flexographic relief printing plates

Similar Documents

Publication Publication Date Title
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
US2133961A (en) Refrigeration apparatus
JPS5840458A (en) Absorption type refrigerator
JP3444203B2 (en) Absorption refrigerator
JP2835945B2 (en) Absorption refrigerator
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP3788745B2 (en) Absorption refrigerator
JPS58127066A (en) Controller for engine waste-heat recovery absorption type refrigerator
JPH0610791Y2 (en) Frozen dessert making equipment
JPS6117319Y2 (en)
JP2768630B2 (en) Absorption refrigerator
JPS63201458A (en) Double effect air-cooled absorption type water heater and cooler
JPS6210350B2 (en)
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPS60245973A (en) Libr-water system two-stage absorption type cold and hot water device
JPH01102254A (en) Heat pump
JPS63204080A (en) Absorption refrigerator
JPS63187074A (en) Double effect absorption type refrigerator
JPS6266068A (en) Air-cooled double-effect absorption water heater and chiller
JPH0446342B2 (en)
JPS6269072A (en) Absorption type water heater and chiller
JPH11304275A (en) Absorption refrigerating machine
JPS6024904B2 (en) Dual effect water-lithium salt absorption chiller
JPS58164962A (en) Absorption type heat pump heating machine
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine