JPS584013B2 - Fuhouwa Carbon Sanno Seizouhouhou - Google Patents

Fuhouwa Carbon Sanno Seizouhouhou

Info

Publication number
JPS584013B2
JPS584013B2 JP50026732A JP2673275A JPS584013B2 JP S584013 B2 JPS584013 B2 JP S584013B2 JP 50026732 A JP50026732 A JP 50026732A JP 2673275 A JP2673275 A JP 2673275A JP S584013 B2 JPS584013 B2 JP S584013B2
Authority
JP
Japan
Prior art keywords
catalyst
acid
carbon
phosphorus
seizouhouhou
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50026732A
Other languages
Japanese (ja)
Other versions
JPS51101912A (en
Inventor
小林雅夫
松沢英雄
石井啓道
大谷真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50026732A priority Critical patent/JPS584013B2/en
Priority to GB7424/76A priority patent/GB1489559A/en
Priority to FR7605885A priority patent/FR2302993A1/en
Priority to NLAANVRAGE7602138,A priority patent/NL169581C/en
Priority to DE762608583A priority patent/DE2608583C3/en
Priority to US05/663,361 priority patent/US4341900A/en
Publication of JPS51101912A publication Critical patent/JPS51101912A/en
Publication of JPS584013B2 publication Critical patent/JPS584013B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドと分子状酸素から相当する不
飽和カルボン酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing the corresponding unsaturated carboxylic acid from an unsaturated aldehyde and molecular oxygen.

不飽和アルデヒドから不飽和カルボン酸を気相酸化によ
って製造する方法は既に数多く提案されている。
Many methods have already been proposed for producing unsaturated carboxylic acids from unsaturated aldehydes by gas phase oxidation.

例えば特公昭44−12129号にはMo,V、Wおよ
びシリカからなる触媒を用いてアクロレインからアクリ
ル酸を製造する方法、特公昭38−19260号にはP
,Mo,Asからなる触媒を用いてアクリル酸を製造す
る方法等があげられる。
For example, Japanese Patent Publication No. 44-12129 describes a method for producing acrylic acid from acrolein using a catalyst consisting of Mo, V, W, and silica;
, Mo, and As.

メタクリル酸の製造法についても数多くの提案がなされ
、例えば特公昭47−6605号にはMo,Ni,Ti
からなる触媒、特公昭48−10773号にはMo、T
lを含む触媒を用いる方法、米国特許第3795703
号のP,Mo、アルカリ金属系触媒、ベルギー特許第8
17100号のP,Mo,sb系触媒等があるが、工業
化の見地からすれば、選択性、寿命の点でいずれも欠点
がある。
Many proposals have been made regarding the production method of methacrylic acid. For example, in Japanese Patent Publication No. 47-6605, Mo, Ni, Ti
Catalyst consisting of Mo, T
U.S. Pat. No. 3,795,703
No. P, Mo, alkali metal catalyst, Belgian patent No. 8
There are P, Mo, sb based catalysts such as No. 17100, but from the viewpoint of industrialization, all of them have drawbacks in terms of selectivity and life.

本発明者らはメタクロレインからメタクリル酸を製造す
るために用いる触媒について研究し、活性、選択性、寿
命共に実用性の高い触媒を見い出し、さらにこの触媒が
アクロレインからアクリル酸を製造する方法にも適用し
得ることを見い出し、本発明を完成するに至った。
The present inventors have researched catalysts used to produce methacrylic acid from methacrolein, and have discovered a catalyst with high practicality in terms of activity, selectivity, and lifespan.This catalyst can also be used in the production of acrylic acid from acrolein. They found that the invention can be applied and completed the present invention.

本発明はアクロレインまたはメタクロレインと分子状酸
素を含む混合ガスを次式で表わされる触媒 Mo12PaQbRcSdOe 但しMoはモリブデン、Pはリン、0は酸素を表わし、
さらにQは(Mg,Ca)から選ばれる1種又は2種以
上の金属、Rは(K,Rb,Cs、Tl)から選ばれる
1種又は2種以上の金属、Sは(Ta,sb,Nb,B
i)から選ばれる1種又は2種以上の金属を表わし、a
,b,c,d,eはそれぞれの原子数を表わし、a=0
.5〜6、b=0.2〜6、c=0.2〜6、d=0.
01〜6、eは酸化物を作るに要する数を示す。
The present invention uses a mixed gas containing acrolein or methacrolein and molecular oxygen as a catalyst represented by the following formula: Mo12PaQbRcSdOe, where Mo represents molybdenum, P represents phosphorus, and 0 represents oxygen.
Further, Q is one or more metals selected from (Mg, Ca), R is one or more metals selected from (K, Rb, Cs, Tl), and S is (Ta, sb, Nb,B
i) represents one or more metals selected from a);
, b, c, d, e represent the number of atoms, a=0
.. 5-6, b=0.2-6, c=0.2-6, d=0.
01-6, e indicates the number required to make an oxide.

と高温の気相で接触させることを特徴とするアクリル酸
またはメタクリル酸の製造方法である。
This is a method for producing acrylic acid or methacrylic acid, which is characterized in that it is brought into contact with acrylic acid or methacrylic acid in a high-temperature gas phase.

本発明で用いる触媒において、リン、モリン、および添
加金属の存在状態は複雑であって、厳密には明らかでな
いが、おそらくどの成分も単独の酸化物としては存在せ
ず均密に結合していると思われる。
In the catalyst used in the present invention, the state of existence of phosphorus, morin, and additional metals is complex and not strictly clear, but it is likely that none of the components exists as a single oxide but is tightly bound together. I think that the.

リンおよびモリブデンを含む触媒系がアク口レインまた
はメタクロレインの気相酸化用として有効であることは
良く知られているが、リンとモリブデンはその混合割合
熱処理の温度と雰囲気によって、きわめて複雑な化合物
を生成する。
It is well known that catalyst systems containing phosphorus and molybdenum are effective for the gas-phase oxidation of acrolein or methacrolein, but phosphorus and molybdenum are extremely complex compounds depending on their mixing ratio, heat treatment temperature and atmosphere. generate.

そのためリン、モリブデンを含む触媒系を気相酸化に用
いると通常用いられる反応温度領域で経時的に触媒構造
の変化による活性、選択性の低下が起きることが多い。
Therefore, when a catalyst system containing phosphorus and molybdenum is used for gas phase oxidation, activity and selectivity often decrease over time due to changes in the catalyst structure in the reaction temperature range normally used.

本発明の触媒では、リン、モリブデン以外の添加金属は
リン、モリブデンときわめて安定な塩を作る性質があり
、この事が活性、選択性の維持に寄与しているものと思
われる。
In the catalyst of the present invention, added metals other than phosphorus and molybdenum have the property of forming extremely stable salts with phosphorus and molybdenum, and this is thought to contribute to maintaining activity and selectivity.

触媒の製造方法としては、種々の方法を用いうる。Various methods can be used to produce the catalyst.

例えば、従来からよく知られている蒸発乾固法、沈澱法
、酸化物混合法等を用いることができる。
For example, conventionally well-known evaporation to dryness methods, precipitation methods, oxide mixing methods, etc. can be used.

例をあげて説明するとモリブデン酸アンモニウムの水溶
液に硝酸カリウムを加え、リン酸を加えた後硝酸マグネ
シウムの水溶液を加え、さらに酸化タンタルの粉末を加
えて蒸発乾固する方法、モリブデン酸、リン酸カリウム
、酸化マグネシウム、酸化アンチモンの粉末を混合する
方法、リンモリブデン酸の水溶液にリン酸、硝酸セシウ
ムの水溶液、硝酸カルシウムの水溶液を加え、さらに酸
化ニオブと酸化タンタルの粉末を加えて蒸発乾固する方
法等で得られた混合物を成型後、熱処理するか、熱処理
後成型して触媒を得る。
For example, add potassium nitrate to an aqueous solution of ammonium molybdate, add phosphoric acid, add an aqueous solution of magnesium nitrate, and then add tantalum oxide powder and evaporate to dryness. Molybdic acid, potassium phosphate, A method of mixing powders of magnesium oxide and antimony oxide, a method of adding phosphoric acid, an aqueous solution of cesium nitrate, an aqueous solution of calcium nitrate to an aqueous solution of phosphomolybdic acid, and then adding powders of niobium oxide and tantalum oxide and evaporating to dryness, etc. The mixture obtained in step 1 is molded and then heat treated, or the mixture obtained is molded after heat treatment to obtain a catalyst.

また、触媒成分をシリカ、アルミナ、シリカ、アルミナ
、シリコンカーバイト等の公知の不活性担体に担持させ
るか、希釈して用いても良い。
Further, the catalyst component may be supported on a known inert carrier such as silica, alumina, silicon carbide, or the like, or may be used after being diluted.

各元素の原料としては、例えばモリブデンは三酸化モリ
ブデン、モリブデン酸、モリブデン酸アンモン、リンモ
リブデン酸等を用いうる。
As raw materials for each element, for example, molybdenum trioxide, molybdic acid, ammonium molybdate, phosphomolybdic acid, etc. can be used for molybdenum.

リンはリン酸、五酸化リン、リンモリブデン酸、リン酸
塩等を用いつる。
Phosphorus is extracted using phosphoric acid, phosphorus pentoxide, phosphomolybdic acid, phosphates, etc.

添加金属は硝酸塩、塩化物、リン酸塩、酸化物、炭酸塩
、アンモニウム塩等を用いることができる。
As the additive metal, nitrates, chlorides, phosphates, oxides, carbonates, ammonium salts, etc. can be used.

たとえば、硝酸マグネシウム、硝酸カルシウム、苛性カ
リ、硝酸カリウム、炭酸セシウム、硝酸第一タリウム、
硝酸ビスマス、酸化ニオブ、酸化アンチモン、酸化タン
タル等である。
For example, magnesium nitrate, calcium nitrate, caustic potash, potassium nitrate, cesium carbonate, thallous nitrate,
These include bismuth nitrate, niobium oxide, antimony oxide, and tantalum oxide.

各成分の原料としては上に例示したもの以外にも熱分解
、加水分解、酸化等によって酸化物となるものも用いる
ことができる。
As raw materials for each component, in addition to those exemplified above, materials that become oxides by thermal decomposition, hydrolysis, oxidation, etc. can also be used.

熱処理の温度は300℃〜650℃と好ましくは350
℃〜600℃の範囲が良い。
The temperature of the heat treatment is 300°C to 650°C, preferably 350°C.
A range of ℃ to 600℃ is preferable.

熱処理の時間は温度によって異なるが、1時間から数十
時間までの範囲内が適当である。
The heat treatment time varies depending on the temperature, but is suitably within the range of one hour to several tens of hours.

原料の不飽和アルデヒドは水、低級飽和アルデヒド等の
不純物を少量含んでいてもよく、これらの不純物は反応
に影響しない。
The raw material unsaturated aldehyde may contain small amounts of impurities such as water and lower saturated aldehydes, but these impurities do not affect the reaction.

原料ガス中の不飽和アルデヒド濃度は広い範囲で変える
ことができるが、容量で1〜20%とくに3〜10%が
好ましい。
Although the unsaturated aldehyde concentration in the raw material gas can be varied within a wide range, it is preferably 1 to 20% by volume, particularly 3 to 10% by volume.

酸素源としては空気を用いるのが経済的であるが、必要
なら酸素で富化した空気も使用できる。
It is economical to use air as the oxygen source, but air enriched with oxygen can also be used if necessary.

原料ガス中の酸素濃度は不飽和アルデヒドに対するモル
比で規定され、このモル比は0.3〜4とくに0.4〜
2.5が好ましい。
The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this molar ratio is 0.3 to 4, particularly 0.4 to 4.
2.5 is preferred.

原料ガスを窒素、水蒸気、炭酸ガス等の不活性ガスで稀
釈してもよい。
The raw material gas may be diluted with an inert gas such as nitrogen, water vapor, or carbon dioxide.

反応圧力は常圧から数気圧までがよい。The reaction pressure is preferably from normal pressure to several atmospheres.

反応温度は240℃〜450℃の範囲で選ぶことができ
るが、とくに260℃〜400℃が好ましい。
The reaction temperature can be selected within the range of 240°C to 450°C, with 260°C to 400°C being particularly preferred.

以下実施例および比較例をあげて本発明の方法を詳細に
説明する。
The method of the present invention will be explained in detail below with reference to Examples and Comparative Examples.

以下において部は重量部を表わす。In the following, parts represent parts by weight.

不飽和カルボン酸選択率は反応した不飽和アルデヒド(
モル)の割合(%)を表わす。
The unsaturated carboxylic acid selectivity is the unsaturated aldehyde (
represents the ratio (%) of moles).

反応時間は記載した反応条件に設定した時点から測った
経過時間を表わす。
The reaction time represents the elapsed time measured from the time when the stated reaction conditions were established.

実施例 1 バラモリブデン酸アンモニウム42.4部を約60℃の
純水200部に溶解した。
Example 1 42.4 parts of ammonium rosemolybdate was dissolved in 200 parts of pure water at about 60°C.

これに硝酸カリウム4、04部、85%リン酸4.6部
を加え、さらに硝酸マグネシウム5.13部を50部の
純水に加熱溶解した液を加え、最後に五酸化タンタル4
,42部を加え、混合液を加熱し、攪拌しながら蒸発乾
固した。
To this, 4.04 parts of potassium nitrate and 4.6 parts of 85% phosphoric acid were added, and then 5.13 parts of magnesium nitrate dissolved by heating in 50 parts of pure water was added, and finally, 4.04 parts of tantalum pentoxide was added.
, 42 parts were added, and the mixture was heated and evaporated to dryness with stirring.

得られたケースを130℃で16時間乾燥後圧縮成型し
10〜20メッシュに篩別し450℃で2時間焼成し、
これを触媒とした。
The resulting case was dried at 130°C for 16 hours, compression molded, sieved to 10 to 20 mesh, and fired at 450°C for 2 hours.
This was used as a catalyst.

触媒の組成は原子比でMo12、P2、Mg1、K2、
Ta1であった。
The composition of the catalyst is Mo12, P2, Mg1, K2,
It was Ta1.

本触媒を反応器に充填し、メタクロレイン5%、酸素1
0%、水蒸気30%、窒素55%(容量%)の混合ガス
を反応温度340℃、接触時間3.6秒で通じた。
This catalyst was packed into a reactor, and 5% methacrolein and 1% oxygen were added.
A mixed gas of 0% water vapor, 30% water vapor, and 55% nitrogen (volume %) was passed through the reactor at a reaction temperature of 340° C. and a contact time of 3.6 seconds.

生成物を捕集しガスクロマトグラフィーで分析したとこ
ろメタクロレイン反応率80,0%、メタクリル酸選択
率は80.1%であった。
When the product was collected and analyzed by gas chromatography, the methacrolein reaction rate was 80.0% and the methacrylic acid selectivity was 80.1%.

この他に酢酸、炭酸ガス、一酸化炭素等が生成した。In addition, acetic acid, carbon dioxide gas, carbon monoxide, etc. were produced.

同一の条件で約1000時間反応を継続したが、メタク
ロレイン反応率79.8%、メタクリル酸選択率は80
.3%であった。
The reaction was continued for about 1000 hours under the same conditions, but the methacrolein reaction rate was 79.8% and the methacrylic acid selectivity was 80%.
.. It was 3%.

実施例 2〜11 実施例1と同様にして、次の触媒を調製じ、同一条件で
反応させ、表−1の結果を得た。
Examples 2 to 11 The following catalysts were prepared in the same manner as in Example 1 and reacted under the same conditions to obtain the results shown in Table 1.

実施例 10〜12 実施例1、7、8の触媒を用い、アク口レイン5%、酸
素10%、水蒸気30%、窒素55%の混合ガスと所定
の反応温度、触媒時間3.6秒で反応し、表−2の結果
を得た。
Examples 10 to 12 Using the catalysts of Examples 1, 7, and 8, a mixed gas of 5% aqueous rain, 10% oxygen, 30% water vapor, and 55% nitrogen was reacted at a predetermined reaction temperature and for a catalyst time of 3.6 seconds. The reaction was performed and the results shown in Table 2 were obtained.

比較例 1〜3 実施例1の方法において硝酸カリウムを除い触媒、実施
例5において硝酸カルシウムもしくは硝ミ酸カルシウム
と酸化アンチモンを除いた触媒をそれぞれ調製し、反応
温度以外は、実施例1と同一条件で反応し表3の結果を
得た。
Comparative Examples 1 to 3 A catalyst was prepared using the method of Example 1 except for potassium nitrate, and a catalyst was prepared using the method of Example 5 except for calcium nitrate or calcium nitrate and antimony oxide, and the conditions were the same as in Example 1 except for the reaction temperature. The results shown in Table 3 were obtained.

Claims (1)

【特許請求の範囲】 1アクロレインまたはメタクロレインと分子状酸素を含
む混合ガスを次式であらわされる触媒と高温の気相で接
触させることを特徴とするアクリル酸またはメタクリル
酸の製造方法。 Mo12PaQbRcSdOe 但しMoはモリブデン、Pはリン、0は酸素をあらわし
、さらにQは(Mg,Ca)から選ばれる1種又は2種
の金属、Rは(K,Rb,Cs、Tl)から選ばれる1
種又は2種以上の金属、Sは(Ta,Sb,Nb,Bi
)から選ばれる1種又は2種以上の金属、a、b、c、
d、eはそれぞれ原子数をあらわし、a=0.5〜6、
b=0.2〜6、c=0.2〜6、d=0.01〜6、
eは酸化物を作るに要する数を示す。
[Claims] 1. A method for producing acrylic acid or methacrylic acid, which comprises bringing a mixed gas containing acrolein or methacrolein and molecular oxygen into contact with a catalyst represented by the following formula in a high-temperature gas phase. Mo12PaQbRcSdOe where Mo is molybdenum, P is phosphorus, 0 is oxygen, Q is one or two metals selected from (Mg, Ca), and R is 1 selected from (K, Rb, Cs, Tl).
The species or two or more metals, S are (Ta, Sb, Nb, Bi
), one or more metals selected from a, b, c,
d and e each represent the number of atoms, a = 0.5 to 6,
b=0.2-6, c=0.2-6, d=0.01-6,
e indicates the number required to make an oxide.
JP50026732A 1975-03-03 1975-03-05 Fuhouwa Carbon Sanno Seizouhouhou Expired JPS584013B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP50026732A JPS584013B2 (en) 1975-03-05 1975-03-05 Fuhouwa Carbon Sanno Seizouhouhou
GB7424/76A GB1489559A (en) 1975-03-03 1976-02-25 Catalytic process for the preparation of acrylic acid or methacrylic acid
FR7605885A FR2302993A1 (en) 1975-03-03 1976-03-02 CATALYSIS PROCESS FOR THE PREPARATION OF AN UNSATURATED CARBOXYLIC ACID
NLAANVRAGE7602138,A NL169581C (en) 1975-03-03 1976-03-02 METHOD FOR PREPARING ACRYLIC ACID AND / OR METHACRYLIC ACID, AND METHOD FOR PREPARING A CATALYST TO BE USED THEREIN
DE762608583A DE2608583C3 (en) 1975-03-03 1976-03-02 Process for the production of methacrylic acid by the catalytic oxidation of methacrolein
US05/663,361 US4341900A (en) 1975-03-03 1976-03-03 Catalytic process for the preparation of unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50026732A JPS584013B2 (en) 1975-03-05 1975-03-05 Fuhouwa Carbon Sanno Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS51101912A JPS51101912A (en) 1976-09-08
JPS584013B2 true JPS584013B2 (en) 1983-01-24

Family

ID=12201472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50026732A Expired JPS584013B2 (en) 1975-03-03 1975-03-05 Fuhouwa Carbon Sanno Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS584013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756741B2 (en) * 1982-02-09 1995-06-14 キヤノン電子株式会社 Floppy disk cassette

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864017A (en) * 1971-12-14 1973-09-05
JPS4891009A (en) * 1972-03-07 1973-11-27
JPS5070317A (en) * 1973-10-31 1975-06-11
JPS5083321A (en) * 1973-11-26 1975-07-05
JPS5084517A (en) * 1973-12-01 1975-07-08
JPS5176217A (en) * 1974-12-27 1976-07-01 Asahi Glass Co Ltd
JPS51100020A (en) * 1975-02-28 1976-09-03 Ube Industries Metakurirusanno seizohoho

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864017A (en) * 1971-12-14 1973-09-05
JPS4891009A (en) * 1972-03-07 1973-11-27
JPS5070317A (en) * 1973-10-31 1975-06-11
JPS5083321A (en) * 1973-11-26 1975-07-05
JPS5084517A (en) * 1973-12-01 1975-07-08
JPS5176217A (en) * 1974-12-27 1976-07-01 Asahi Glass Co Ltd
JPS51100020A (en) * 1975-02-28 1976-09-03 Ube Industries Metakurirusanno seizohoho

Also Published As

Publication number Publication date
JPS51101912A (en) 1976-09-08

Similar Documents

Publication Publication Date Title
US4341900A (en) Catalytic process for the preparation of unsaturated carboxylic acid
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
JPS5826329B2 (en) Seizouhou
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
WO2004004900A1 (en) Process for producing catalysts for the production of methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
US5349092A (en) Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0791212B2 (en) Method for producing methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
EP0634210B1 (en) Method of preparing catalyst used for producing methacrylic acids
JPS584013B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPS6032608B2 (en) Method for producing unsaturated compounds
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPH0463139A (en) Catalyst for production of methacrylic acid
JPS5814417B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPS582933B2 (en) Methacrylic Sanno Seizouhouhou
JPH08183753A (en) Production of pyruvic acid
JPH03167152A (en) Production of methacrylic acid
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid
JP2003190798A (en) Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid
JPS5842176B2 (en) Fuhouwa Carbon Sanno Seizouhou