JPS5840115B2 - air cooling device - Google Patents

air cooling device

Info

Publication number
JPS5840115B2
JPS5840115B2 JP12516979A JP12516979A JPS5840115B2 JP S5840115 B2 JPS5840115 B2 JP S5840115B2 JP 12516979 A JP12516979 A JP 12516979A JP 12516979 A JP12516979 A JP 12516979A JP S5840115 B2 JPS5840115 B2 JP S5840115B2
Authority
JP
Japan
Prior art keywords
cooling system
air
air cooling
cooling device
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12516979A
Other languages
Japanese (ja)
Other versions
JPS5649882A (en
Inventor
博 金久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP12516979A priority Critical patent/JPS5840115B2/en
Publication of JPS5649882A publication Critical patent/JPS5649882A/en
Publication of JPS5840115B2 publication Critical patent/JPS5840115B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は空気冷却装置の改良に係り、特に原子炉の補助
炉心冷却系における液体金属の冷却に好適な空気冷却装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in air cooling devices, and particularly to an air cooling device suitable for cooling liquid metal in an auxiliary core cooling system of a nuclear reactor.

高速増殖炉では冷却材として液体金属、主に、液体す)
IJウムが用いられる。
In fast breeder reactors, liquid metal (mainly liquid metal) is used as a coolant.
IJum is used.

この場合、冷却系は炉心からの熱を主中間熱交換器へ導
く1次冷却系と、この熱交換器の熱を蒸気発生器に導く
2次冷却系とで構成される。
In this case, the cooling system is comprised of a primary cooling system that guides heat from the core to a main intermediate heat exchanger, and a secondary cooling system that leads heat from this heat exchanger to a steam generator.

この2次冷却系には、燃料交換時やメンテナンス時、あ
るいは電源喪失時等に釦ける炉心崩壊熱を除去するため
、補助炉心冷却系として空気冷却装置が分岐接続される
のが通例である。
To this secondary cooling system, an air cooling device is usually branched and connected as an auxiliary core cooling system in order to remove the core decay heat generated during fuel exchange, maintenance, or power loss.

第1図は空気冷却装置を用いた従来の高速増殖炉の2次
冷却系を示したものであり、同図において、1次冷却系
(図示せず)との熱交換を行なう主中間熱交換器200
2次側はホットレグ配管21とコールドレグ配管22と
の間にSG隔離弁23、過熱器24、蒸発器25、SG
隔離弁26、主循環ポンプ27を順次接続し、それらの
夫々に液体ナトリウムを充填して2次冷却系を形成して
いる。
Figure 1 shows the secondary cooling system of a conventional fast breeder reactor using an air cooling system. vessel 200
On the secondary side, between the hot leg piping 21 and the cold leg piping 22, there is an SG isolation valve 23, a superheater 24, an evaporator 25, an SG
An isolation valve 26 and a main circulation pump 27 are connected in sequence, and each of them is filled with liquid sodium to form a secondary cooling system.

当該空気冷却装置は、その液体ナトリウム導入用の配管
3をSG隔離弁23の上流側に接続され、また配管4を
流量調節弁28を介してSG隔離弁26の下流側に接続
されて、補助炉心冷却系を形成する。
The air cooling device has a piping 3 for introducing liquid sodium connected to the upstream side of the SG isolation valve 23, and a piping 4 connected to the downstream side of the SG isolation valve 26 via a flow rate control valve 28. Forms the core cooling system.

なお、補助炉心冷却系は、原子炉運転中に2次冷却系側
と切り離して、空気冷却器装置として単独に運転するこ
とはない。
Note that the auxiliary core cooling system is not separated from the secondary cooling system side and operated independently as an air cooler device during reactor operation.

すなわち、当該補助炉心冷却系は、原子炉運転中の非常
時、例えば電源喪失時や過熱器24、若しくは蒸発器2
5、の事故時等には、SG隔離弁23及び25を閉鎖し
、且つ流量調節弁28を全開とするとともに、送風機6
を起動することにより炉心冷却を行なうことになるので
、このような緊急作動に備えて2次冷却系側と切り離す
ことはない。
In other words, the auxiliary core cooling system is used in an emergency during reactor operation, such as when power is lost or when the superheater 24 or evaporator 2
5. In the event of an accident, etc., the SG isolation valves 23 and 25 are closed, the flow rate control valve 28 is fully opened, and the blower 6 is closed.
Since the reactor core will be cooled by starting the reactor, there is no need to disconnect it from the secondary cooling system in preparation for such an emergency operation.

又、メンテナンス時、例えば主循環ポンプ27の点検時
には、2次冷却系はナトリウムをドレンし、停止となる
が、プラントには第1図に示すような2次冷却系が複数
系統設置されて訟す、このようなメンテナンスを全系統
同時に行なうことはなく、少くとも一系統以上の2次冷
却系は炉心冷却運転が継続される。
Also, during maintenance, for example when inspecting the main circulation pump 27, the secondary cooling system drains sodium and is shut down. Such maintenance is not performed on all systems at the same time, and at least one or more secondary cooling systems continue core cooling operation.

この場合の補助炉心冷却系の運転は、前述の非常時の運
転と同じ状態であり、2次冷却系と切り離した運転はな
い。
The operation of the auxiliary core cooling system in this case is the same as the above-mentioned emergency operation, and there is no separate operation from the secondary cooling system.

このように設けられる空気冷却装置は第2図に例示した
ように、冷却器本体1内に1本または複数本の伝熱管2
をコイル状に配設してその両端に液体ナトリウム導入用
および排出用の配管3,4を接続すると共に、人口ダク
ト5と送風機6の間ニ人ロダンパー7を、また、出口ダ
クト9と雨仕舞10の間に出口ダンパー11を接続して
構成されてしる。
As illustrated in FIG.
is arranged in a coil shape, and piping 3 and 4 for introducing and discharging liquid sodium are connected to both ends thereof, and a two-person damper 7 is connected between the artificial duct 5 and the blower 6, and an outlet duct 9 and a rain cover are connected. 10 and an outlet damper 11 connected therebetween.

8はサクションベーンを示す。このように構成した空気
冷却装置は、補助炉心冷却系の緊危作動時に直ちに応動
できるようにすると共に、その際の熱応力条件を緩和す
るため、補助炉心冷却系の非作動時にち−いても、伝熱
管2には常時、微量の液体す) IJウムが流され、い
わゆる待機運転状態に保たれる。
8 indicates a suction vane. The air cooling system configured in this manner enables immediate response in the event of an emergency operation of the auxiliary core cooling system, and also allows for immediate response even when the auxiliary core cooling system is not in operation, in order to alleviate the thermal stress conditions at that time. A small amount of liquid (IJ) is always flowed into the heat transfer tube 2, and the tube is kept in a so-called standby operation state.

この場合、送風機6は停止され、また、ダンパー7.1
1は閉じられるのであるが、これらのダンパーは空気流
路を完全にしゃ断できないので、外気温度が異常に低下
した場合には、伝熱管2内の液体ナトリウム流量が少な
いと凍結してし1う耘それがある。
In this case, the blower 6 is stopped and the damper 7.1
1 is closed, but since these dampers cannot completely shut off the air flow path, if the outside temperature drops abnormally, the liquid sodium in the heat transfer tube 2 may freeze if the flow rate is low. There is that.

しかしながら、この液体す) IJウムの凍結は絶対に
避けなければならない。
However, freezing of this liquid must be avoided at all costs.

そうかといって、待機運転中に液体す) IJウムを空
気冷却装置側に多量に流すことは、本来蒸気加熱器に導
いて有効利用を図るべき宝珠運転中の原子炉出力を無駄
に大気中に放出する結果になるから、省エネルギーを図
る上で望1しくない。
On the other hand, flowing a large amount of liquid IJum into the air cooling system during standby operation wastes the reactor output during operation, which should have been channeled to the steam heater and used effectively. This is not desirable in terms of energy conservation.

第3図は、第1図と異る補助炉心冷却系の設置例を示し
たものである。
FIG. 3 shows an installation example of an auxiliary core cooling system different from that in FIG. 1.

第1図が2次冷却系から分岐した例であるのに対して第
3図は直接炉心を冷却する例である。
While FIG. 1 shows an example in which the system is branched from the secondary cooling system, FIG. 3 shows an example in which the core is directly cooled.

すなわち、原子炉容器31内に補助中間熱交換器32が
あり、この中間熱交換器32に接続され且つ途中に止弁
29を有する配管3と、この配管3に接続され且つ第2
図と全く同じ構成である空気冷却器装置と、この空気冷
却器装置と原子炉容器31と間を連絡し、途中に流量調
節弁30を有する配管4とからなる補助炉心冷却系であ
る。
That is, there is an auxiliary intermediate heat exchanger 32 inside the reactor vessel 31, a pipe 3 connected to this intermediate heat exchanger 32 and having a stop valve 29 in the middle, and a second pipe 3 connected to this pipe 3 and having a stop valve 29 in the middle.
This is an auxiliary core cooling system consisting of an air cooler device having exactly the same configuration as shown in the figure, and a pipe 4 that communicates between the air cooler device and the reactor vessel 31 and has a flow control valve 30 in the middle.

この場合の作用、特徴は、2次冷却系と全く独立に設け
られていることを除き、第1図および第2図の場合と全
く同様であるので説明は省略するが、この場合に於ても
常時補助炉心冷却系側に冷却材が流れており、冷却材の
凍結対策は重要な問題がある。
The functions and features in this case are completely the same as those in Figures 1 and 2, except that they are provided completely independently of the secondary cooling system, so explanations will be omitted, but in this case, However, coolant is constantly flowing into the auxiliary core cooling system, and countermeasures against freezing of the coolant are an important issue.

本発明は従来装置における上述の如き不都合を除去すべ
くなされたものである。
The present invention has been made to eliminate the above-mentioned disadvantages of conventional devices.

即ち、本発明は冷却器本体の人口本体の人口ダクトと出
口ダクトの間に空気バイパス路を設け、このバイパス路
に介挿したファンにより冷却器本体内の空気を循環させ
ることにより、伝熱管内の液体ナトリウムが凍結するこ
とを防止し、あわせて原子炉出力の浪費を防止した空気
冷却装置を提供することを目的とするものである。
That is, the present invention provides an air bypass path between the artificial duct of the artificial main body of the cooler main body and the outlet duct, and circulates the air inside the cooler main body with a fan inserted in this bypass path. The purpose of the present invention is to provide an air cooling system that prevents liquid sodium from freezing and also prevents waste of nuclear reactor power.

以下、第4図及び第5図に示す実施例につき、本発明の
詳細な説明する。
The present invention will be described in detail below with reference to the embodiments shown in FIGS. 4 and 5.

なお、第4図では、第2図に示す部材と同一の部材には
同図におけると同じ記号を付しである。
In FIG. 4, the same members as those shown in FIG. 2 are given the same symbols as in the same figure.

冷却器本体1に連接した入口ダクト5には人口ダンパー
7を介して送風機6が取付けられてむり、また出口ダク
ト9には出口ダンパー11を介して雨仕舞10が取付け
られている。
A blower 6 is attached to the inlet duct 5 connected to the cooler body 1 via an artificial damper 7, and a rain cover 10 is attached to the outlet duct 9 via an outlet damper 11.

入口ダクト5と出口ダクト9から分岐する分岐管12と
、13の間には、止弁14.15を介してバイパス配管
16.17と軸流ファン18が取付けられ、空気バイパ
ス路を形成している。
Bypass piping 16.17 and an axial fan 18 are installed between branch pipes 12 and 13 branching from the inlet duct 5 and outlet duct 9 via stop valves 14.15, forming an air bypass path. There is.

上記の各構造体にはいずれも図示を省略したが、断熱層
を被覆して熱絶縁を施しである。
Although not shown in the drawings, each of the above-mentioned structures is coated with a heat insulating layer to provide thermal insulation.

冷却器本体1内にコイル状に配設した1本寸たは複数本
(図面では1本のみを示す)の伝熱管2はその両端部に
液体す) IJウム導入用の配管3と排出用の配管4が
接続されている。
One or more heat transfer tubes 2 (only one tube is shown in the drawing) arranged in a coil shape inside the cooler body 1 have liquid at both ends. Piping 4 is connected.

′このように構成した本発明の空気冷却装
置は第5図に例示するように原子炉2次冷却系に接続さ
れ、補助炉心冷却系を形成する。
'The air cooling system of the present invention thus constructed is connected to the reactor secondary cooling system, as illustrated in FIG. 5, to form an auxiliary core cooling system.

即ち、同図において、1次冷却系(図示せず)との熱交
換を行なう主中間熱交換器20の2次側はホットレグ配
管21とコールドレグ配管22との間にSG隔離弁23
、過熱器24、蒸発器25、SG隔離弁26、主循環ポ
ンプ27を順次接続し、それらの夫々に液体す) IJ
ウムを充填して2次冷却系を形成している。
That is, in the figure, the secondary side of the main intermediate heat exchanger 20 that exchanges heat with the primary cooling system (not shown) has an SG isolation valve 23 between the hot leg piping 21 and the cold leg piping 22.
, superheater 24, evaporator 25, SG isolation valve 26, and main circulation pump 27 are connected in sequence, and liquid is supplied to each of them) IJ
A secondary cooling system is formed by filling the tank with aluminum.

本発明装置は、その液体す) IJウム導入用の配管3
をSG隔離弁23の上流側に接続され、また配管4を流
量調節弁28を介してSG隔離弁26の下流側に接続さ
れて、補助炉心冷却系を形成する。
The device of the present invention is equipped with the liquid (liquid) pipe 3 for introducing IJum.
is connected to the upstream side of the SG isolation valve 23, and the pipe 4 is connected to the downstream side of the SG isolation valve 26 via the flow rate control valve 28, thereby forming an auxiliary core cooling system.

上述のように構成した冷却系統において、燃料交換時や
メンテナンス時あ′るいは電源喪失時等において、補助
炉心冷却系を定格運転する場合には、SG隔離弁23,
26を閉じ、流量調節弁28を開いて、2次冷却系のす
) IJウムを本冷却装置の伝熱管2に流す。
In the cooling system configured as described above, when operating the auxiliary core cooling system at its rated capacity during fuel exchange, maintenance, or power loss, the SG isolation valve 23,
26 and open the flow rate control valve 28 to allow IJum to flow into the heat transfer tube 2 of the secondary cooling system.

この場合、止弁14.15は閉じ、ダンパー7.11を
所定の開度に開き、送風機6を超勤させそのサクション
ベーン8かう外気を吸込んで冷却器本体1内に送り込む
ことによって伝熱管2内を流過する液体す) IJウム
を冷却し炉心崩壊熱を除去する。
In this case, the stop valve 14.15 is closed, the damper 7.11 is opened to a predetermined opening degree, and the blower 6 is made to work overtime so that its suction vane 8 sucks in the outside air and sends it into the cooler body 1. The liquid flowing through the reactor cools the IJ and removes the core decay heat.

一方、原子炉の通常運転時には、主中間冷却器20から
出た液体ナトリウムはホットレグ配管21を通り、過熱
器24と蒸発器25から成る蒸気発生器でタービン発電
機側の水と熱交換を行なってこれを過熱蒸気とした後、
主循環ポンプ27より再び主中間熱交換器20に導入さ
れる。
On the other hand, during normal operation of the reactor, liquid sodium discharged from the main intercooler 20 passes through the hot leg piping 21 and exchanges heat with water on the turbine generator side in a steam generator consisting of a superheater 24 and an evaporator 25. After turning this into superheated steam,
It is introduced into the main intermediate heat exchanger 20 again from the main circulation pump 27 .

その場合、流量調節弁28は適度の開度に開かれている
ので、ホットレグ配管21中の液体ナトリウムの一部は
配管3を通して冷却器本体の伝熱管2に入り、冷却器本
体内の空気を加熱した後、配管4、流量調節弁28、コ
ールド配管22を経て主中間熱交換器20に戻る。
In that case, since the flow rate control valve 28 is opened to an appropriate degree, a part of the liquid sodium in the hot leg piping 21 enters the heat transfer tube 2 of the cooler main body through the piping 3, and the air inside the cooler main body is absorbed. After being heated, it returns to the main intermediate heat exchanger 20 via the pipe 4, the flow control valve 28, and the cold pipe 22.

その際、空気冷却装置では、止弁14.15が開き、軸
流ファン18が回転して、伝熱管内を流過する液体ナト
リウムで暖められた空気を出口ダンパー11と人口ダン
パー7の間で強制循環するので、外気温度がいかに低下
しでも、伝熱管2内のす) IJウムが凍結することは
な−。
At this time, in the air cooling system, the stop valves 14 and 15 are opened, and the axial fan 18 is rotated to move the air warmed by the liquid sodium flowing through the heat transfer tube between the outlet damper 11 and the artificial damper 7. Because of forced circulation, the heat exchanger tubes 2 will not freeze no matter how low the outside temperature may be.

ここで第6図は、伝熱管内のす) IJウムの温度分布
と、冷却器本体内を流れる空気の温度分布を定性的に示
すものであり、空気入口温度が異常に低下すると、伝熱
管内のす) IJウムはある部分から凍結温度以下にな
り、最初は局所的に凍結する。
Here, Figure 6 qualitatively shows the temperature distribution of IJum inside the heat transfer tube and the temperature distribution of the air flowing inside the cooler body. The temperature inside the pipe drops below the freezing temperature in a certain part, and at first it freezes locally.

この凍結が始するとナトリウムの流れが止り、最終的に
は伝熱管の全域に亘ってす) IJウムが凍結してし1
うが、本発明では冷却器本体内の空気は強制循環され、
伝熱管内の液体す) IJウムで加熱された空気が冷却
器本体の入口側に送り込1れるので前述の凍結は防止さ
れる。
When this freezing starts, the flow of sodium stops and eventually it spreads over the entire area of the heat exchanger tube).
However, in the present invention, the air inside the cooler body is forcedly circulated,
Since the air heated by the IJum is sent into the inlet side of the cooler main body, the above-mentioned freezing is prevented.

もつとも、冷却器本体内の空気温度が過度に上昇すると
伝熱管出口のナトリウム温度が上昇し、コールドレグ配
管との合流点での温度差が大きくなって、熱的問題を生
ずるので、その場合には軸流ファンを停止し、あるいは
止弁を適宜開閉して伝熱管出口のす) IJウム温度を
調節する。
However, if the air temperature inside the cooler body rises excessively, the sodium temperature at the outlet of the heat transfer tube will rise, and the temperature difference at the confluence with the cold leg pipe will become large, causing thermal problems. Adjust the temperature at the heat exchanger tube outlet by stopping the axial fan or opening and closing the stop valve as appropriate.

このように、本発明装置によれば、補助炉心冷却系の待
機運転中に、定格運転中の原子炉出力を浪費することな
く利用でき、また、外気温度の低下時に釦いてもす)
IJウムの凍結を完全に防止することができる。
As described above, according to the device of the present invention, during standby operation of the auxiliary core cooling system, the reactor output during rated operation can be used without wasting it, and it can also be turned on when the outside air temperature drops.
Freezing of IJum can be completely prevented.

また、軸流ファンによる強制循環であるから、空気冷却
器本体内の空気流に偏流が起らず、局所的な伝熱管の温
度低下も解決できる。
Furthermore, since forced circulation is performed by an axial fan, there is no deviation in the air flow within the air cooler body, and local temperature drops in the heat exchanger tubes can be resolved.

第7図は1、原子炉に直接接続される補助炉心冷却系に
、本発明による空気冷却器装置を設けた例を示す系統図
であるが、この場合でも前述の実施例と全く同じ作用、
効果が得られる。
FIG. 7 is a system diagram showing an example in which an air cooler device according to the present invention is provided in an auxiliary core cooling system directly connected to a nuclear reactor.
Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の補助炉心冷却系の系統図、第2図は従来
の空気冷却装置を示した概略図、第3図は従来の冷却系
の他の例を示した系統図、第4図は本発明の空気冷却装
置の実施例を示す概略図、第5図は本発明装置の使用例
を示す原子炉2次冷却系の系統図、第6図は空気冷却装
置における空気釦よびす) IJウムの温度分布を定性
的に示すグラフ、第7図は本発明の他の例を示した系統
図である。 1・・・・・・冷却器本体、2・・・・・・伝熱管、3
,4・・・・・・配管、5・・・・・・入口ダクト、6
・・・・・・送風機、7・・・・・・入口ダンパー、9
・・・・・・出口ダクト、11・・・・・・出口ダンパ
ー、12.13・・・・・・分岐管、14.15・・・
・・・止弁、16,17・・・・・・バイパス配管、1
8・・・・・・軸流ファン、20・・・・・・主中間熱
交換器、21・・・・・・ホットレグ配管、22・・・
・・・コールドレグ配管、24・・・・・・過熱器、2
6・・・・・・蒸発器、27・・・・・・主循環ポンプ
、28・・・・・・流量調節弁。
Fig. 1 is a system diagram of a conventional auxiliary core cooling system, Fig. 2 is a schematic diagram showing a conventional air cooling system, Fig. 3 is a system diagram showing another example of a conventional cooling system, and Fig. 4 5 is a schematic diagram showing an embodiment of the air cooling device of the present invention, FIG. 5 is a system diagram of a reactor secondary cooling system showing an example of use of the device of the present invention, and FIG. 6 is an air button in the air cooling device) A graph qualitatively showing the temperature distribution of IJum, and FIG. 7 is a system diagram showing another example of the present invention. 1... Cooler body, 2... Heat exchanger tube, 3
, 4...Piping, 5...Inlet duct, 6
...Blower, 7...Inlet damper, 9
...Exit duct, 11...Outlet damper, 12.13...Branch pipe, 14.15...
...stop valve, 16,17...bypass piping, 1
8... Axial fan, 20... Main intermediate heat exchanger, 21... Hot leg piping, 22...
... Cold leg piping, 24 ... Superheater, 2
6...Evaporator, 27...Main circulation pump, 28...Flow rate control valve.

Claims (1)

【特許請求の範囲】 1 送風源と排気口との間に冷却器本体を組込み、この
冷却器本体の入口と出口とをダンパで開閉可能にすると
共に上記冷却器本体の室内に伝熱管を組み込み、この伝
熱管内に原子炉の補助炉心冷却系内を流れる冷却材の一
部を導くようにした空気冷却装置において;上記冷却器
本体の入口と出口には本体の室内を迂回するバイパス路
を設け、この空気バイパス路中にファンを組込んだこと
を特徴とする空気冷却装置。 2 空気バイパス路には止弁が介挿されていることを特
徴とする特許請求の範囲第1項記載の空気冷却装置。 3、ノアンが軸流ファンである特許請求の範囲第1項記
載の空気冷却装置。
[Claims] 1. A cooler main body is installed between the air blow source and the exhaust port, and the inlet and outlet of the cooler main body can be opened and closed by a damper, and a heat transfer tube is installed inside the cooler main body. In this air cooling system, a part of the coolant flowing through the auxiliary core cooling system of the nuclear reactor is guided into the heat transfer tube; a bypass path is provided at the inlet and outlet of the cooler body to bypass the interior of the body. An air cooling device characterized in that the air cooling device is provided with a fan built into the air bypass path. 2. The air cooling device according to claim 1, wherein a stop valve is inserted in the air bypass path. 3. The air cooling device according to claim 1, wherein the Noan is an axial fan.
JP12516979A 1979-09-28 1979-09-28 air cooling device Expired JPS5840115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12516979A JPS5840115B2 (en) 1979-09-28 1979-09-28 air cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12516979A JPS5840115B2 (en) 1979-09-28 1979-09-28 air cooling device

Publications (2)

Publication Number Publication Date
JPS5649882A JPS5649882A (en) 1981-05-06
JPS5840115B2 true JPS5840115B2 (en) 1983-09-03

Family

ID=14903587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12516979A Expired JPS5840115B2 (en) 1979-09-28 1979-09-28 air cooling device

Country Status (1)

Country Link
JP (1) JPS5840115B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406602A (en) * 1994-04-15 1995-04-11 General Electric Company Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
JP2013195396A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Cooling device

Also Published As

Publication number Publication date
JPS5649882A (en) 1981-05-06

Similar Documents

Publication Publication Date Title
KR102046537B1 (en) Small modular reactor system and the method of rapid reaching to begining critical condition using it
KR100271891B1 (en) Drain system for a nuclar power plant
JPH031600B2 (en)
JPS5840115B2 (en) air cooling device
JPH08184691A (en) Heat valve of heat exchange controller
JPS5913719B2 (en) Residual heat removal system for fast breeder reactor
JPH0356796A (en) Oil heating device
JPS6339768B2 (en)
JP6479406B2 (en) Cooling equipment and nuclear equipment
JPS6140763Y2 (en)
JPS60147097A (en) Heat exchanger for waste heat recovery
JPH0355461A (en) Hot water tank and hot water supply facility provided with the same
JPS5965318A (en) Flow rate control method of liquid metallic sodium
JPH039373B2 (en)
JPH07209470A (en) Decay heat removing device for fast reactor
JPS6034003B2 (en) steam generator
JPH0113079B2 (en)
RU2034191C1 (en) System for taking heat off power plant
JPH036489Y2 (en)
JPS6017962B2 (en) steam generator
JP2666832B2 (en) Hot water heater
JPS5852934A (en) Water heater utilizing solar heat
JPH10142379A (en) Residual heat removal system in reactor facility
SU1560762A1 (en) Ship power plant
JPS603637B2 (en) air cooler