JPS5838601B2 - Blades for high temperature rotating bodies - Google Patents

Blades for high temperature rotating bodies

Info

Publication number
JPS5838601B2
JPS5838601B2 JP52134090A JP13409077A JPS5838601B2 JP S5838601 B2 JPS5838601 B2 JP S5838601B2 JP 52134090 A JP52134090 A JP 52134090A JP 13409077 A JP13409077 A JP 13409077A JP S5838601 B2 JPS5838601 B2 JP S5838601B2
Authority
JP
Japan
Prior art keywords
coated
ceramics
layer
heat
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52134090A
Other languages
Japanese (ja)
Other versions
JPS5467818A (en
Inventor
貞四郎 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52134090A priority Critical patent/JPS5838601B2/en
Publication of JPS5467818A publication Critical patent/JPS5467818A/en
Publication of JPS5838601B2 publication Critical patent/JPS5838601B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は高温ガス中で長時間の使用に耐える回転体用翼
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blade for a rotating body that can withstand long-term use in high-temperature gas.

高温で使用される回転体具としては、これまでに耐熱合
金具が使用されてきたが、翼実体の温度が800℃を超
えるような場合は、材料が強度および耐酸化、耐食性の
点から長時間の使用に耐えないという欠点があった。
Until now, heat-resistant alloy fittings have been used for rotating parts used at high temperatures, but when the temperature of the blade body exceeds 800°C, it is necessary to use long materials in terms of strength, oxidation resistance, and corrosion resistance. It had the disadvantage of not being able to withstand the use of time.

そのため、このような場合にはガスタービンでは空冷翼
が用いられ翼を内部から冷却して翼自体の温度を下げる
努力がなされているが、ガス温度が1,000℃よりさ
らに高くなるような場合は多量の冷却空気を必要とする
ため効率が低下し、効率向上のためにガス温度を高くし
たことの意味が無くなって本質的な改善策とはいえなか
った。
Therefore, in such cases, air-cooled blades are used in gas turbines and efforts are made to cool the blades from within to lower the temperature of the blades themselves. However, if the gas temperature rises even higher than 1,000℃ Since this method requires a large amount of cooling air, the efficiency decreases, and there is no point in increasing the gas temperature to improve efficiency, so it cannot be said to be an essential improvement measure.

なお適当な空冷を行っても翼自体の温度が850℃以上
にならざるを得ないような場合には、高温でも十分なり
リープ強度およびクリープ破断強度が得られるように、
コロンビウム等の高融点金属の合金やセラミックスで製
作した翼が使われていた。
In addition, in cases where the temperature of the blade itself cannot but reach 850°C or higher even with appropriate air cooling, the blade should be made so that even high temperatures are sufficient to obtain sufficient leap strength and creep rupture strength.
Wings made of ceramics and alloys of high-melting metals such as columbium were used.

しかし高融点金属の合金といえども高温ガス中の酸化、
腐食に耐えられず、また高融点金属は非常に高価である
という欠点をまぬかれず、一方セラミックス翼は靭性、
延性に乏しく衝撃力に耐えないため回転体具としては信
頼性に乏しいという欠点を有していた。
However, even with high-melting point metal alloys, oxidation in high-temperature gas,
Ceramic blades suffer from the disadvantages of not being able to withstand corrosion, and high-melting point metals are very expensive, while ceramic blades are tough,
Since it has poor ductility and cannot withstand impact force, it has the disadvantage of being poor in reliability as a rotating body.

そこで本発明者は高温ガス中で長時間の使用に耐えつる
高温回転体用翼を提供せんと鋭意研究の結果、セラミッ
クスで製作した翼は、その表面に延性のある金属層を被
覆することによって、セラミックスの衝撃に対する脆性
を防止することができるが、該被覆金属層は1ooo℃
以上の高温ガスに対して耐酸化性、耐食性を有すること
ができないので、その表面に更にセラミックス層を被覆
すればその欠陥が防止できることを知り、その知見に基
いて本発明を完成した。
Therefore, the inventor of the present invention conducted intensive research to provide a blade for a high-temperature rotating body that can withstand long-term use in high-temperature gas, and found that a blade made of ceramics was created by coating the surface with a ductile metal layer. , it is possible to prevent the brittleness of ceramics against impact, but the coating metal layer has a temperature of 100℃
Since it cannot have oxidation resistance and corrosion resistance against the above-mentioned high-temperature gases, it was found that the defects could be prevented by further coating the surface with a ceramic layer, and based on this knowledge, the present invention was completed.

すなわち本発明はセラミックスで製作した翼体と、セラ
ミックスと耐熱金属との混合物からなり上記具体の表面
に被覆した第1の中間層と、該第1の中間層の表面に被
覆した耐熱金属の薄層と、セラミックスと耐熱金属との
混合物からなり上記耐熱金属の薄層の表面に被覆した第
2の中間層と、該第2の中間層の表面に被覆したセラミ
ック層とからなることを特徴とする高温回転体用翼を要
旨とするものであって、ガスタービンの回転翼として特
に適するものである。
That is, the present invention provides a blade body made of ceramics, a first intermediate layer made of a mixture of ceramics and a heat-resistant metal and coated on the surface of the above concrete, and a thin layer of heat-resistant metal coated on the surface of the first intermediate layer. a second intermediate layer made of a mixture of ceramics and a heat-resistant metal and coated on the surface of the thin layer of the heat-resistant metal; and a ceramic layer coated on the surface of the second intermediate layer. The object of the present invention is to provide a blade for a high-temperature rotating body, which is particularly suitable as a rotor blade for a gas turbine.

Si3N4あるいはSiC等のセラミックスで製造した
翼の表面にコロンビウム、タンタル、タングステンある
いはモリブデンおよびこれらの金属のそれぞれの合金の
ように融点が高く熱膨張弾数が金属としては小さくセラ
ミックスのそれに近い値を有する耐熱金属材料で被覆を
行う。
The surface of the blade is made of ceramics such as Si3N4 or SiC, which has a high melting point such as columbium, tantalum, tungsten, or molybdenum, and alloys of these metals, and has a coefficient of thermal expansion that is small compared to metals and close to that of ceramics. Cover with heat-resistant metal material.

セラミックス材の脆い破壊は、その表面に他物体が衝撃
的に接触し、表面から亀裂が発生することによる。
Brittle fractures of ceramic materials occur when other objects come into impactful contact with the surface of the ceramic material, causing cracks to form on the surface.

またセラミックスは延性が小さいため、他物体に接して
曲がり応力が作用した場合、表面で大きくなる応力を変
形にて緩和できず、そのまま破壊に到ることがある。
Furthermore, since ceramics have low ductility, when bending stress is applied to another object, the stress that increases on the surface cannot be alleviated by deformation, which may lead to destruction.

これらの場合に表面に密着した延性のある金属層の存在
はセラミックスの脆い破壊の防止に極めて有効である。
In these cases, the presence of a ductile metal layer in close contact with the surface is extremely effective in preventing brittle fracture of the ceramic.

しかし、表面に覆われた金属は1,000℃以上の高温
ガスに対して十分な耐酸化性、耐食性を有することがで
きないのでその表面をさらにセラミックスの薄層で被覆
する必要がある。
However, since the metal covered on the surface cannot have sufficient oxidation resistance and corrosion resistance against high-temperature gases of 1,000° C. or higher, it is necessary to further coat the surface with a thin layer of ceramic.

以下、添付図面を参照しながら本発明を更に詳細に説明
する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

先ずセラミックス翼1を耐熱金属で被覆する場合は、セ
ラミックス表面にそのままあるいは表面をメタライズし
た上にセラミックスと耐熱金属との混合物からなる0、
1〜0.2 mm厚さの第1の中間層2を被覆し、これ
に耐熱金属またはそれらの合金層3を0.2〜0.5關
の厚さに被覆する。
First, when the ceramic blade 1 is coated with a heat-resistant metal, the surface of the ceramic is coated as it is or the surface is metallized and coated with 0, which is made of a mixture of ceramic and heat-resistant metal.
A first intermediate layer 2 with a thickness of 1 to 0.2 mm is coated, and a layer 3 of refractory metals or alloys thereof is coated thereon with a thickness of 0.2 to 0.5 mm.

さらにこの上にセラミックスを被覆するには直接ではな
く、耐熱金属およびセラミックスの混合物からなる0、
1〜0.2關厚さの第2の中間層4を被覆し、その上に
セラミックス層5を0.2〜0.5朋の厚さに被覆する
Furthermore, in order to coat ceramics on top of this, it is not necessary to coat it directly, but to coat it with a mixture of heat-resistant metal and ceramics.
A second intermediate layer 4 having a thickness of 1 to 0.2 mm is coated, and a ceramic layer 5 is coated thereon to a thickness of 0.2 to 0.5 mm.

このように中間層2,4をおくことにより、層内の熱膨
張係数の差を緩和し使用中の熱応力を小さくシ、また耐
熱金属層とセラミックス層の接着力を高めることができ
る。
By providing the intermediate layers 2 and 4 in this way, it is possible to alleviate the difference in thermal expansion coefficients between the layers, reduce thermal stress during use, and increase the adhesive strength between the heat-resistant metal layer and the ceramic layer.

これらの被覆は粉末の塗布あるいは溶射によって行い、
適正な高温で焼結(例えばS i3 N4の場合は真空
または不活性ガス中1,700’C〜1,800℃で2
〜3時間)することによりそれぞれの層の強度と層間の
接着力を高めることができる。
These coatings are applied by powder application or thermal spraying.
Sintering at a suitable high temperature (e.g. for Si3N4, sintering at 1,700'C to 1,800'C in vacuum or inert gas)
(~3 hours) to increase the strength of each layer and the adhesion between layers.

なお、第1の中間層2、第2の中間層4及び最外層のセ
ラミックス層5の材料は翼本体1のセラミックスと同一
であっても又異種のものであってもよい。
The materials of the first intermediate layer 2, the second intermediate layer 4, and the outermost ceramic layer 5 may be the same as the ceramic of the blade body 1, or may be different materials.

実施例 ホットプレス法で製造したS ia N4焼結体(外径
15朋、内径5mrlL1長さ50關の中空円筒)表面
をコロンビウム粉末にS t 3 N4粉末を混合した
中間層(0,1ms厚さ)で被覆し、次にその上をコロ
ンビウム粉末の溶射により0.4 mm厚さのコロンビ
ウム金属層で被覆し、次に再び前記の混合粉末で0.1
mrn厚さに被覆し、さらにS t 3 N4粉末で
0.4關厚さに被覆した。
EXAMPLE The surface of the Sia N4 sintered body (a hollow cylinder with an outer diameter of 15 mm, an inner diameter of 5 mrl, and a length of 50 mm) manufactured by the hot press method was coated with an intermediate layer (0.1 ms thick) of a mixture of columbium powder and S t 3 N4 powder. ), then coated with a 0.4 mm thick layer of columbium metal by thermal spraying of columbium powder, and then again coated with 0.1 mm of the above mixed powder.
It was coated to a thickness of mrn, and further coated to a thickness of 0.4 mrn with S t 3 N4 powder.

これを真空中で1,700℃〜1,800℃、3時間焼
結した試片は、ガスバーナにより1,300’Cまで加
熱し、空気流で室温まで急冷する加熱冷却の繰返しにも
表面の亀裂、剥離等の発生が無く十分耐久性のあること
が示された。
The specimens were sintered in a vacuum at 1,700°C to 1,800°C for 3 hours, and the surface remained even after repeated heating and cooling, in which they were heated to 1,300'C with a gas burner and rapidly cooled to room temperature with an air flow. It was shown that there was no occurrence of cracks, peeling, etc., and that it was sufficiently durable.

また、コロンビウムの代りにタンタルを使用しても同様
な結果が得られた。
Similar results were also obtained when tantalum was used instead of columbium.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の高温回転体用具の構成を示す概念図
(横断面図)である。
The accompanying drawing is a conceptual diagram (cross-sectional view) showing the structure of the high-temperature rotating body tool of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミックスで製作した翼体と、セラミックスと耐
熱金属との混合物からなり上記翼体の表面に被覆した第
1の中間層と、該第1の中間層の表面に被覆した耐熱金
属の薄層と、セラミックスと耐熱金属との混合物からな
り上記耐熱金属の薄層の表面に被覆した第2の中間層と
、該第2の中間層の表面に被覆したセラミックス層とか
らなることを特徴とする高温回転体用翼。
1. A blade body made of ceramics, a first intermediate layer made of a mixture of ceramics and a heat-resistant metal and coated on the surface of the blade body, and a thin layer of heat-resistant metal coated on the surface of the first intermediate layer. , a second intermediate layer made of a mixture of ceramics and a heat-resistant metal and coated on the surface of the thin layer of the heat-resistant metal; and a ceramic layer coated on the surface of the second intermediate layer. Wings for rotating bodies.
JP52134090A 1977-11-10 1977-11-10 Blades for high temperature rotating bodies Expired JPS5838601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52134090A JPS5838601B2 (en) 1977-11-10 1977-11-10 Blades for high temperature rotating bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52134090A JPS5838601B2 (en) 1977-11-10 1977-11-10 Blades for high temperature rotating bodies

Publications (2)

Publication Number Publication Date
JPS5467818A JPS5467818A (en) 1979-05-31
JPS5838601B2 true JPS5838601B2 (en) 1983-08-24

Family

ID=15120180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52134090A Expired JPS5838601B2 (en) 1977-11-10 1977-11-10 Blades for high temperature rotating bodies

Country Status (1)

Country Link
JP (1) JPS5838601B2 (en)

Also Published As

Publication number Publication date
JPS5467818A (en) 1979-05-31

Similar Documents

Publication Publication Date Title
JP4166977B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
RU2147624C1 (en) Protective layer for protecting part against corrosion, oxidation, and thermal overloading, and method of preparation thereof
US3975165A (en) Graded metal-to-ceramic structure for high temperature abradable seal applications and a method of producing said
JPH01279781A (en) Ceramic coated heat resistant member
JP2002167636A (en) Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat
JP4031631B2 (en) Thermal barrier coating material, gas turbine member and gas turbine
JPH0251978B2 (en)
EP0992614A1 (en) Coatings for turbine components
JP4166978B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
JPS6359996B2 (en)
JP2001329358A (en) Heat-insulated member, its manufacturing method, turbine blade, and gas turbine
JPS5838601B2 (en) Blades for high temperature rotating bodies
JPS61174385A (en) Ceramic-coated fire resistant member and its production
JPS62211387A (en) Production of ceramic coated heat resistant member
JP3261457B2 (en) High temperature oxidation resistant alloy material and method for producing the same
JP3001857B1 (en) Heat generation material mainly composed of MoSi2 having an electrode part excellent in low-temperature oxidation resistance
JPS63290254A (en) Thermally sprayed film combining heat resistance with wear resistance
Leyens et al. Transformation and oxidation of a sputtered low-expansion Ni-Cr-Al-Ti-Si bond coating for thermal barrier systems
JPS62211390A (en) Ceramic coated heat resistant member and its production
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JPS591321B2 (en) Blades for high temperature rotating bodies
JP2868893B2 (en) Metal wire reinforced heat-resistant ceramic composite
JP2926886B2 (en) Composite material and method for producing the same
Restall The development and testing of protective coatings on F48 and SU16 niobium alloys
JPS6215739A (en) Rotary anode for x-rays tube