JPS5838445A - Spark source mass spectrograph - Google Patents

Spark source mass spectrograph

Info

Publication number
JPS5838445A
JPS5838445A JP13546281A JP13546281A JPS5838445A JP S5838445 A JPS5838445 A JP S5838445A JP 13546281 A JP13546281 A JP 13546281A JP 13546281 A JP13546281 A JP 13546281A JP S5838445 A JPS5838445 A JP S5838445A
Authority
JP
Japan
Prior art keywords
sample
discharge
chamber
ultraviolet
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13546281A
Other languages
Japanese (ja)
Inventor
Yoshiaki Okajima
岡島 義昭
Shigeyoshi Kawazoe
川副 重義
Susumu Koyama
進 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13546281A priority Critical patent/JPS5838445A/en
Publication of JPS5838445A publication Critical patent/JPS5838445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/18Ion sources; Ion guns using spark ionisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To aim at dispensing with pre-treatment of samples and yet improving analyzing sensitivity, by setting up an ultraviolet-ray radiator part applying ultraviolet rays to a sample electrode, while making spark discharge possible between insulator samples and ionizing the surface of each sample. CONSTITUTION:An ultraviolet-ray generator part 4 is located at the side of an ionization chamber 3 so as to spread out the radiating rays overall a sample 1. In addition, the ulatraviolet-ray generator part 4 is provided with a discharge chamber 5 and an intermediate chamber 6, and this discharge chamber 5 is provided with an inflow part 7 of gas for discharge and an exhaust port 7. To keep up the desired pressure inside the discharge cahmber 5, a needle valve 9 is installed in the inflow port 7. On the other hand, the intermediate chamber 6 is interconnected to the ionization chamber 3 via a circular slit 16 and the ultraviolet-ray generator part 4 is possible to be attached or detached at need, with the ionization chamber 3 and a flange 18. With this, if ultraviolet rays are radiated on the surface of each sample, atomic corpuscles nearby the surfaces are ionized so that pre-treatment of samples is no longer required and spark discharge can be achieved between electrodes.

Description

【発明の詳細な説明】 本発明はスパーク・ソース質量分析装置に係り、特に試
料に紫外線を照射し、絶縁物試料の分析を可能にしたス
パーク・ソース質量分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spark source mass spectrometer, and more particularly to a spark source mass spectrometer that irradiates a sample with ultraviolet rays and makes it possible to analyze an insulator sample.

スパーク・ソース質量分析法は高真空下で試料自体を電
極とし、試料電極間でスパーク放電を発生すせ、得られ
るマススペクトルを分析する方法であり、一般に金属、
半導体などの微量不純物の分析に適用されている。
Spark source mass spectrometry is a method in which the sample itself is used as an electrode under high vacuum, a spark discharge is generated between the sample electrodes, and the resulting mass spectrum is analyzed.
It is applied to the analysis of trace impurities in semiconductors, etc.

試料がガラス、セラミックスのような絶縁物の場合には
、試料自体を電極としてもスパーク放電は発生しない。
If the sample is an insulating material such as glass or ceramics, spark discharge will not occur even if the sample itself is used as an electrode.

そのため、試料が絶縁物の場合には、試料を粉砕して炭
素粉末と混合して成形し電極とする方法、試料表面に金
属を蒸着する方法、あるいは試料を金属の箔で被覆する
方法などによりスパーク放電を可能にしている。
Therefore, when the sample is an insulator, methods such as crushing the sample and mixing it with carbon powder and forming it into an electrode, vapor depositing metal on the sample surface, or coating the sample with metal foil, etc. This enables spark discharge.

ところがこれらの方法に用いられる炭素粉末、金属蒸着
膜、金属箔などには、しばしば不純物が含まれる。スパ
ーク・ソース質量分析法は非常に高感度の分析が可能で
あり、これら試料以外の物質量に含まれる不純物による
影響が太きい。また、これら物質自体のスペクトルが目
的元素のスペクトルと重なる場合もある。
However, the carbon powder, metal deposited film, metal foil, etc. used in these methods often contain impurities. Spark source mass spectrometry allows very highly sensitive analysis, and is greatly influenced by impurities contained in the amount of substances other than these samples. Moreover, the spectrum of these substances themselves may overlap with the spectrum of the target element.

本発明の目的は、不純物混入の原因となる試料以外の物
質を用いることなく、絶縁物試料ノスパーク放電を可能
にするスパーク・ソース質量分析装置を提供することに
ある。
An object of the present invention is to provide a spark source mass spectrometer that enables no-spark discharge of an insulating sample without using any substance other than the sample that causes impurity contamination.

本発明では、絶縁物試料間でスパーク放電を可能にする
ために、試料表面を電離させてイオン化させる。
In the present invention, the sample surface is ionized and ionized in order to enable spark discharge between the insulator samples.

ガラス、セラミックスなどを構成する物質は酸化物の状
態にある。酸素と金属原子などとの結合を切断するため
の解離エネルギーは10eV以下であり、解離して生成
した金属原子のイオン化エネルギーも10eV以下であ
る。このため、試料表面に10eV以上のエネルギーを
持つ光を照射すれば表面がイオン化し、スパーク放電が
可能になる。
The substances that make up glass, ceramics, etc. are in the state of oxides. The dissociation energy for breaking the bond between oxygen and metal atoms is 10 eV or less, and the ionization energy of the dissociated metal atoms is also 10 eV or less. Therefore, if the sample surface is irradiated with light having an energy of 10 eV or more, the surface will be ionized and spark discharge will become possible.

以下、本発明の実施例を第1図および第2図により説明
する。第1図はイオン化室部の側面図、第2図は第1図
の紫外線発生部付近の断面図である。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a side view of the ionization chamber, and FIG. 2 is a sectional view of the vicinity of the ultraviolet ray generating section in FIG.

ガラス、セラミックスがどの絶縁物試料(1)をプラス
側の電極支持具(2)に取り付け、マイナス側の電極支
持具(2勺には高純度の金属線(1勺を取り付け、イオ
ン化室(3)に導入し、10”5Paまで排気する。
Attach the insulator sample (1), such as glass or ceramics, to the positive side electrode support (2), attach one high-purity metal wire to the negative side electrode support (2), and place it in the ionization chamber (3). ) and evacuated to 10"5Pa.

紫外線発生部(4)は放射された光が試料(1)全体に
照射されるようにイオン化室(3)の側部に配置されて
いる。紫外線発生部は放電室(5)と中間室(6)とを
備えている。放電室(5)には放電用ガスの流入口(力
と真空ポンプに接続する排気口(8)が設けられている
。放電室内を所定の圧力に維持するため、ガス流入口(
7)にニードルパルプ(9)が設けられている。
The ultraviolet light generating section (4) is arranged on the side of the ionization chamber (3) so that the entire sample (1) is irradiated with the emitted light. The ultraviolet ray generating section includes a discharge chamber (5) and an intermediate chamber (6). The discharge chamber (5) is provided with an inlet (8) for discharging gas and an exhaust port (8) connected to a vacuum pump.
7) is provided with needle pulp (9).

放電極である陰極(10)は針状であり、これに対向す
る接地極αυは円形平板で中央部に光路となる孔(12
)を有する。これらの放電極は絶縁材(13)、 (1
4)、 (15)により支持され、固定される。絶縁材
(14)は円筒状の放電室を形成しており、この内部で
紫外線の発生をともなう放電が行なわれる。そのため、
放電極に印加される電界は針状陰極00)の先端に集中
し、グロー放電で得られる放射光の密度は非常に高い。
The cathode (10), which is a discharge electrode, is needle-shaped, and the ground electrode αυ opposite to this is a circular flat plate with a hole (12) in the center that serves as an optical path.
). These discharge electrodes are made of insulating material (13), (1
4), supported and fixed by (15). The insulating material (14) forms a cylindrical discharge chamber, and a discharge accompanied by the generation of ultraviolet rays takes place inside this chamber. Therefore,
The electric field applied to the discharge electrode is concentrated at the tip of the needle cathode 00), and the density of the emitted light obtained by glow discharge is extremely high.

中間室(6)は円形スリットα6)を介してイオン化室
(3)に通じている。中間室(6)は放電室(5)に流
したガスがイオン空室(3)の真空度を悪くするのを防
止するために設けられており、排気口(17)を通して
真空ポンプに接続している。紫外線発生部(4)はイオ
ン化室(3)とフランジα樽で取り付け、取りはずしが
可能である。
The intermediate chamber (6) communicates with the ionization chamber (3) via a circular slit α6). The intermediate chamber (6) is provided to prevent the gas flowing into the discharge chamber (5) from worsening the degree of vacuum in the ion chamber (3), and is connected to a vacuum pump through an exhaust port (17). ing. The ultraviolet generating part (4) can be attached and removed using the ionization chamber (3) and the flange α barrel.

放電室(5)で放射された紫外光は接地極(1υの中央
部の穴(I2、中間室(6)とイオン化室の間のスリッ
ト06)を通って試料(1)に照射される。照射される
光のエネルギーは放電室に流すガスの種類により変えら
れる。ガラス、セラミックスなどの絶縁物で、酸化物の
酸素と他の元素との結合を切断し、酸素以外の元素をイ
オン化させるエネルギーは10e■以下である。例えば
、放電ガスとしてヘリウムを用いた場合、放射された光
のエネルギーは約20〜23eV、水素を用いた場合は
約10〜13eVである。したがって、これらの光を絶
縁物表面に照射すれば、表面近傍の原子がイオン化され
るので、試料の前処理をすることなく、対極との間でス
パーク放電することができる。
The ultraviolet light emitted in the discharge chamber (5) is irradiated onto the sample (1) through the ground electrode (1υ central hole (I2, slit 06 between the intermediate chamber (6) and the ionization chamber). The energy of the irradiated light can be changed depending on the type of gas flowing into the discharge chamber.The energy that breaks the bonds between oxygen in oxides and other elements in insulators such as glass and ceramics, and ionizes elements other than oxygen. For example, when helium is used as the discharge gas, the energy of the emitted light is about 20 to 23 eV, and when hydrogen is used, it is about 10 to 13 eV. When the object surface is irradiated, atoms near the surface are ionized, so a spark discharge can be generated between the sample and the counter electrode without pretreatment.

紫外線発生部としては、封入型放電管をイオン化室内部
に配置したものでもよい。その場合、照射される光のエ
ネルギーは放電管から光を取り出すだめの窓材に依存し
、例えば、窓材にフッ化リチウムを用いれば、取り出し
得る光のエネルギーは約11eVまでであるが、ガラス
およびセラミックスなどの絶縁物の表面近傍のイオン化
が可能で、スパーク放電を可能にする。
The ultraviolet ray generating section may be one in which a sealed discharge tube is placed inside the ionization chamber. In that case, the energy of the emitted light depends on the window material used to extract the light from the discharge tube. For example, if lithium fluoride is used as the window material, the energy of the light that can be extracted is up to about 11 eV, but the glass It is also possible to ionize near the surface of insulators such as ceramics, making spark discharge possible.

本発明によれば、試料を粉砕して炭素粉末などの導電性
粉末と混合して成形するとか、試料表面に導電性物質を
蒸着するとか、試料を導電性の箔で被覆するなどの試料
の前処理の必要がなくなるとともに、これら前処理によ
る汚染物質の混入を避けることができ、絶縁物試料の分
析が簡略になる。また、ブランク値を下げることができ
るので、分析感度向上がはかれる。
According to the present invention, the sample can be prepared by pulverizing the sample, mixing it with conductive powder such as carbon powder, and molding the sample, depositing a conductive substance on the sample surface, or covering the sample with conductive foil. This eliminates the need for pretreatment, and avoids the contamination of contaminants caused by these pretreatments, simplifying the analysis of insulator samples. Furthermore, since the blank value can be lowered, analysis sensitivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は紫外線光源部を装備したイオン化室の側面図、
第2図は第1図の紫外線発生部付近の概略断面図である
Figure 1 is a side view of the ionization chamber equipped with an ultraviolet light source.
FIG. 2 is a schematic cross-sectional view of the vicinity of the ultraviolet ray generating portion in FIG. 1.

Claims (1)

【特許請求の範囲】 1、イオン化室内の試料極と対極との間に電圧を印加し
てスパーク放電によりイオンを生成させ、得うレるマス
スペクトルを測定するスパ p・ソース質量分析装置に
おいて、上記試料極に対して紫外線を照射する紫外線発
生部を設けたことを特徴とするスパーク・ソース質量分
析装置。 2、特許請求の範囲第1項記載のスパーク・ソース質量
分析装置において、上記紫外線発生部は放射される光が
上記イオン化室内の上記試料極全体に照射されるように
配置されていることを特徴とするスパーク・ソース質量
分析装置。 3、特許請求の範囲第1項記載のスパーク・ソース質量
分析装置において、上記紫外線発生部は10eV以上の
エネルギーを持つ光を放射できるものであることを特徴
とするスパーク・ソース質量分析装置。
[Claims] 1. In a spa p-source mass spectrometer that applies a voltage between a sample electrode and a counter electrode in an ionization chamber to generate ions by spark discharge and measure the resulting mass spectrum, A spark source mass spectrometer characterized by being provided with an ultraviolet generating section that irradiates the sample pole with ultraviolet rays. 2. The spark source mass spectrometer according to claim 1, wherein the ultraviolet light generating section is arranged so that the emitted light irradiates the entire sample pole in the ionization chamber. Spark source mass spectrometer. 3. The spark source mass spectrometer according to claim 1, wherein the ultraviolet light generating section is capable of emitting light having an energy of 10 eV or more.
JP13546281A 1981-08-31 1981-08-31 Spark source mass spectrograph Pending JPS5838445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13546281A JPS5838445A (en) 1981-08-31 1981-08-31 Spark source mass spectrograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13546281A JPS5838445A (en) 1981-08-31 1981-08-31 Spark source mass spectrograph

Publications (1)

Publication Number Publication Date
JPS5838445A true JPS5838445A (en) 1983-03-05

Family

ID=15152273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13546281A Pending JPS5838445A (en) 1981-08-31 1981-08-31 Spark source mass spectrograph

Country Status (1)

Country Link
JP (1) JPS5838445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186543A (en) * 1988-01-13 1989-07-26 Nec Corp Polymer molecular structure analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186543A (en) * 1988-01-13 1989-07-26 Nec Corp Polymer molecular structure analyzer

Similar Documents

Publication Publication Date Title
Dibeler et al. Mass Spectrometric Study of Photoionization. I. Apparatus and Initial Observations on Acetylene, Acetylene-d2, Benzene, and Benzene-d6
Falick et al. Ion source for liquid matrix secondary ionization mass spectrometry
JPS5935347A (en) Ion generator
JPH04313050A (en) Glow discharge spectrometer and glow discharge spectrochemical analysis method
JP3500323B2 (en) Ionizer used for cycloid mass spectrometer
Medhe Ionization techniques in mass spectrometry: a review
US20090272896A1 (en) Pulsed ultraviolet ion source
GB2315154A (en) Electron capture detector
Vasile et al. Mass-spectrometric ion sampling from reactive plasmas I. Apparatus for argon and reactive discharges
WO2007102204A1 (en) Mass analyzer
GB1326051A (en) Elemental analyzing apparatus
CA1118913A (en) Method and apparatus for the elemental analysis of solids
JP5581477B2 (en) Sampling method and sampling apparatus using plasma
JPH0748371B2 (en) Ionization method and apparatus for high pressure mass spectrometry
JPS5838445A (en) Spark source mass spectrograph
Su et al. Study of a pulsed glow discharge ion source for time-of-flight mass spectrometry
JP2000067806A (en) Atmospheric pressure ion source
JPS5832200Y2 (en) ion source device
RU2117939C1 (en) Spectrometer of ionic mobility
CN113808909B (en) Photoelectron inhibition ionization source device
JPS617556A (en) Mass spectrometer for secondary ions
JP2000106127A (en) Atmospheric pressure ion source
JPH02154143A (en) Apparatus for analyzing trace element by high-frequency plasma
JPS5943646Y2 (en) Direct chemical ion source for mass spectrometers
Newman et al. Organic mass spectrometry and control of fragmentation using a fast flow glow discharge ion source