JPS617556A - Mass spectrometer for secondary ions - Google Patents

Mass spectrometer for secondary ions

Info

Publication number
JPS617556A
JPS617556A JP60115303A JP11530385A JPS617556A JP S617556 A JPS617556 A JP S617556A JP 60115303 A JP60115303 A JP 60115303A JP 11530385 A JP11530385 A JP 11530385A JP S617556 A JPS617556 A JP S617556A
Authority
JP
Japan
Prior art keywords
ions
mass spectrometer
belt
alkali metal
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60115303A
Other languages
Japanese (ja)
Other versions
JPH0351253B2 (en
Inventor
Hideki Kanbara
秀記 神原
Hiroshi Hirose
広瀬 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60115303A priority Critical patent/JPS617556A/en
Publication of JPS617556A publication Critical patent/JPS617556A/en
Publication of JPH0351253B2 publication Critical patent/JPH0351253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To simplify the structure of the ion source and save the labor of adding an alkali metal salt prior to subjecting a highly polar substance to mass spectrometry by using alkali metal ions produced by surface ionization as primary ions. CONSTITUTION:A surface ionization source 6 is prepared, for example, by applying an alkali salt to a tungsten ribbon. It is set in a primary-ion-producing part 2. When the tungsten ribbon is heated by a power supply 9 to ionize the alkali salt in the surface of the tungsten ribbon, alkali metal ions are discharged from the tungsten ribbon. These alkali metal ions are then drawn by electrodes 7 before striking the sample applied to a belt 1 to eliminate ions from the surface of the sample. Secondary ions discharged from the belt 1 pass through electrodes 4 before being introduced into a mass spectrometric part 3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体りClマドグラ7 (Liquid Ch
romato−graph;以下LCと略記する。)と
質量分析計(Mass Spectrometer;以
下MSと略記する。)を結びつけた複合装置いわゆるL
C/MS及び二次イオン質量分析計(5econdar
y Ion Mass Spectrometer;以
下SIMSと略記する。)のイオン源に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to liquid Ch
romato-graph; hereinafter abbreviated as LC. ) and a mass spectrometer (hereinafter abbreviated as MS).
C/MS and secondary ion mass spectrometer (5econdar
y Ion Mass Spectrometer; hereinafter abbreviated as SIMS. ) regarding the ion source.

〔発明の背景〕[Background of the invention]

例えば生体から抽出した物質の分析は、まずLCで各成
分に分離することから始まるが、現在LCには万能で高
感度の検出器がない。そこでMSとLCの結合が種々試
みられている〔例えば、P、 J、 Arpino a
nd G、 Guiochon、 Anal、 Che
m、 、 51゜683 A (1979)参照〕。
For example, the analysis of substances extracted from living organisms begins with the separation of each component using LC, but LC currently lacks a versatile and highly sensitive detector. Therefore, various attempts have been made to combine MS and LC [for example, P., J., Arpino a.
nd G, Guiochon, Anal, Che
m, 51°683 A (1979)].

このようなLC/MS装置での重要な技術課題は、如何
に効率良く溶媒を除去するか、および難揮発性で熱的に
不安定な物質を如何にイオン化するかの二点である。特
に溶媒の除去はイオン源を汚染から守り長寿命に保つ観
点からも重要である。溶媒除去の点で最もすぐれている
手法は移動ベルトを用いるもの〔例えば、米国特許40
55987号参照〕で、幾つかの会社から市販品もでて
いる。すなわち、この手法(ベルト導入法)ではLC溶
出液を、金属あるいは高分子でできたベルト(あるいは
ワイヤ)上に塗布し、溶媒を乾燥除去して難揮発性成分
をベルト(あるいはワイヤ)上に保持する。このベルト
は狭い間隙を通して大気圧部から差動排気でMS内に導
入されており、表面に付着した物質を連続的に大気圧下
から高真空下のイオン化室へ輸送できる。イオン化室に
導入された試料は加熱により気化した後、電子衝撃、化
学イオン化法、あるいはイオン衝撃によりイオン化され
、質量分析される。
Two important technical issues in such an LC/MS apparatus are how to efficiently remove the solvent and how to ionize a hardly volatile and thermally unstable substance. In particular, removing the solvent is important from the viewpoint of protecting the ion source from contamination and maintaining its long life. The best method for solvent removal is the use of a moving belt [for example, U.S. Pat.
No. 55987], and commercial products are also available from several companies. In other words, in this method (belt introduction method), the LC eluate is applied onto a belt (or wire) made of metal or polymer, the solvent is removed by drying, and the less volatile components are transferred onto the belt (or wire). Hold. This belt is introduced into the MS by differential pumping from the atmospheric pressure section through a narrow gap, and can continuously transport substances attached to the surface from the atmospheric pressure to the ionization chamber under high vacuum. A sample introduced into the ionization chamber is vaporized by heating, then ionized by electron bombardment, chemical ionization, or ion bombardment, and subjected to mass spectrometry.

上記イオン化法のうち、イオン衝撃によるイオン化法〔
例えば、A、 Benninghoven et al
、 、 ApplPhys、、 11.35 (i97
6)、 −An、al、 Chem、、50.1180
(1978)参照〕が難揮発性あるいは熱的に不安定な
物質の分析に適している。LCで扱う試料の多くは難揮
発性であり、熱的にも不安定なことが多く、加熱を要す
る他のイオン化法では、イオン化に先立って試料の熱分
解が起り十分な情報が得られないことが多いからである
Among the above ionization methods, ionization method by ion bombardment [
For example, A. Benninghoven et al.
, , ApplPhys, , 11.35 (i97
6), -An,al,Chem,,50.1180
(1978)] is suitable for the analysis of poorly volatile or thermally unstable substances. Many of the samples handled by LC are difficult to volatile and often thermally unstable, and with other ionization methods that require heating, thermal decomposition of the sample occurs prior to ionization, making it difficult to obtain sufficient information. This is because there are many things.

固体表面に付着した有機物をSIMSによって分析する
場合には9、一次イオンのエネルギーを1〜5 keV
と下げて固体表面近傍の情報を得るのであるが、固体表
面に試料に加えて油拡散ポンプ油あるいはその他に起因
する炭化水素などが付着するとバックグラウンドとして
スペクトルに現われるので都合が悪い。そこで上記の分
析を行なう場合には10−8〜10〜9TOrrの高真
空が用いられていた。
When analyzing organic matter attached to a solid surface by SIMS9, the energy of the primary ion is set to 1 to 5 keV.
This method is used to obtain information near the solid surface, but it is inconvenient if, in addition to the sample, oil diffusion pump oil or other hydrocarbons adhere to the solid surface, which will appear as background in the spectrum. Therefore, when performing the above analysis, a high vacuum of 10-8 to 10-9 TOrr was used.

この有機物を対象としたSIMSと移動ベルトによるL
C/MSインタフェースを結びつけた時にも、イオン照
射室あるいは質量分析部の真空度を高く保つこ°とが望
ましい。真空度低下の原因としては、移動ベルトを差動
排気で導入する際のガス流入と、一次イオン(主として
Ar+)生成のために一次イオン源に導入する気体(主
としてAr)のイオン照射室流入などがある。通常一次
イオン源はイオン照射室とは別のポンプで排気されるが
不充分なことが多い。
L using SIMS and moving belt targeting this organic matter
Even when the C/MS interface is connected, it is desirable to maintain a high degree of vacuum in the ion irradiation chamber or mass spectrometer. The causes of the decrease in vacuum level include the inflow of gas when the moving belt is introduced by differential pumping, and the inflow of gas (mainly Ar) into the ion irradiation chamber to be introduced into the primary ion source to generate primary ions (mainly Ar+). There is. Normally, the primary ion source is evacuated by a pump separate from the ion irradiation chamber, but this is often insufficient.

このようにLC/SIMSでは如何に真空度を高く保つ
かが一つの重要な点である。
Thus, one important point in LC/SIMS is how to maintain a high degree of vacuum.

また、金属(移動ベルト)表面に多量の有機物試料が塗
布されている場合、Ar+を一次イオンとして用いると
チャージアップなどにより二次イオンが観測されなくな
ることがある。
Further, when a large amount of organic sample is applied to the surface of the metal (moving belt), if Ar+ is used as the primary ion, secondary ions may not be observed due to charge-up or the like.

壊れやすい化合物(例えば糖類など)をSl、MS4で
イオン化しようとすると、分子イオンあるいはH+が付
加した分子イオンが生成しても、すぐに壊れて多くのフ
ラグメントイオンを与えてしまうことがある。このよう
な場合でもアルカリ金属イオンなどと有機化合物は安定
なりラスターを生成スルコとが多い〔例えば、U、 G
iessmann and F。
When trying to ionize fragile compounds (such as sugars) with Sl or MS4, even if a molecular ion or an H+-added molecular ion is generated, it may break down immediately and give many fragment ions. Even in such cases, alkali metal ions and organic compounds are stable and often generate raster [for example, U, G
iessmann and F.

W、ROllgen 、Org、 Mass Spec
trom、 11.1094 (1976)参照〕。そ
こで従来は試料中にあるいはベルト上にアルカリ金属あ
るいはその塩を加えるなどが行なわれていた。
W, ROllgen, Org, Mass Spec
trom, 11.1094 (1976)]. Conventionally, therefore, an alkali metal or its salt was added to the sample or onto the belt.

〔発明の目的〕[Purpose of the invention]

本発明はこのようなLC/SIMSの難点を解決すると
共に、アルカリ金属塩付加などの手間を省くためになさ
れたものである。
The present invention has been made in order to solve such difficulties in LC/SIMS and to save the labor of adding an alkali metal salt.

〔発明の概要・実施例〕 これを実現するために本発明では、表面電離によるアル
カリ金属イオンを一次イオンとして採用している。
[Summary of the Invention/Embodiments] In order to achieve this, the present invention employs alkali metal ions generated by surface ionization as primary ions.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明によるベルト導入SIMSの要部構成を
説明するための模式図である。図において、1は試料導
入用ベルト、2は一次イオン発生部(イオン源)、3は
質量分析部、4は二次イオンを取出し質量分析部3へ導
入するための電極類で、4′は対向電極、4”はレンズ
兼偏向電極、4″′はアーススリット、5はヒータステ
ム、6は表面イオン化源、7は一次イオンを引出してイ
オン衝撃を行なわせるための電極類で、7′はイオンの
引出し電極、7#はレンズ兼偏向電極、7′はアースス
リット、8はハーメチック7ランジ、9は電源である。
FIG. 1 is a schematic diagram for explaining the main part configuration of a belt-introduced SIMS according to the present invention. In the figure, 1 is a sample introduction belt, 2 is a primary ion generator (ion source), 3 is a mass spectrometer, 4 is an electrode for extracting secondary ions and introduced into the mass spectrometer 3, and 4' is a The counter electrode, 4" is a lens and deflection electrode, 4"' is a ground slit, 5 is a heater stem, 6 is a surface ionization source, 7 is an electrode for extracting primary ions and performing ion bombardment, and 7' is an ion bombardment. 7# is a lens/deflection electrode, 7' is a ground slit, 8 is a hermetic 7 flange, and 9 is a power source.

表面イオン化源6は例え1iタングステンリボン(線)
上にアルカリ塩を塗布したもので、一次イオン発生部に
セットされている。電源9によりタングステンリボン(
線)を加熱し、アルカリ塩を表面電離すると、アルカリ
金属がイオン(例えばLi”、 Na+、 K+など)
となり放出される。電極7で引出されたイオンは1〜5
 keVのエネルギーでベルトl上に塗布された試料を
衝撃し、その一部をイオンとして表面から脱離させる。
The surface ionization source 6 is, for example, a 1i tungsten ribbon (wire).
It has an alkali salt coated on top and is set in the primary ion generator. The tungsten ribbon (
When the alkali salt is surface ionized by heating a
and is released. The ions extracted by the electrode 7 are 1 to 5
The sample coated on the belt l is bombarded with energy of keV, and a portion of it is desorbed from the surface as ions.

ベルト上から放出された二次イオンは電極4を通過して
質量分析部3へ導入される。
Secondary ions emitted from the belt pass through the electrode 4 and are introduced into the mass spectrometer 3.

なお、一定量のアルカリ金属イオンを表面電離により得
るために、タングステンリボンは定電流電源あるいはエ
ミッショレギュレータ付電源で加熱される。アルカリ塩
をタングステンリボン上に必要に応じて供給するために
、表面イオン化源6部分を脱着できるよう構成すること
も可能である。
Note that in order to obtain a certain amount of alkali metal ions by surface ionization, the tungsten ribbon is heated with a constant current power source or a power source with an emission regulator. It is also possible to configure the surface ionization source 6 portion to be detachable in order to supply the alkali salt onto the tungsten ribbon as needed.

すなわち、表面電離用のタングステンリボン(レニウム
等地の金属を用いることもできる)は脱着が容易な直接
導入プローブに取り付け、リボンの交換、アルカリ土類
金属リボン上への補給を容易に行なえるよう構成すれば
よい。
That is, the tungsten ribbon for surface ionization (a metal based on rhenium or the like can also be used) is attached to a direct introduction probe that is easy to attach and detach, so that the ribbon can be easily replaced and replenished onto the alkaline earth metal ribbon. Just configure it.

本発明では、一次イオンとして金属イオンを用いている
ので、その導電性のために、前述のチャージアップによ
るトラブルは起りにくい利点を持つ。また、糖などのよ
うに極性の強い物質では、分子イオンあるいはプロトン
化分子イオンよりも、ナトリウムの様なアルカリ金属イ
オンの付着した分子イオン(M+Na)+の方がイオン
として安定であり、アルカリ金属が共存する場合には、
このイオン種が高感度で観測される。このような(M+
Na)+を観測することは、その分子量を知る上で重要
であり、本発明によるアルカリ金属イオンを照射する方
法では、アリカリ金属のベルト上への補給が自動的に行
なわれるので都合が良い。
In the present invention, since metal ions are used as primary ions, the above-mentioned trouble due to charge-up is less likely to occur due to their conductivity. In addition, for strongly polar substances such as sugars, the molecular ion (M+Na)+ to which an alkali metal ion such as sodium is attached is more stable as an ion than the molecular ion or protonated molecular ion. If they coexist,
This ion species can be observed with high sensitivity. Like this (M+
Observing Na)+ is important in knowing its molecular weight, and the method of irradiating with alkali metal ions according to the present invention is convenient because the alkali metal is automatically replenished onto the belt.

なお、アルカリ金属イオン源として表面電離を用いる方
法の他に、大電流の得られる高温金属炉などを用いるこ
とも考えられるが、装置が大掛りになり好ましくない。
In addition to the method of using surface ionization as an alkali metal ion source, it is also possible to use a high-temperature metal furnace or the like that can obtain a large current, but this is not preferable because the apparatus becomes large-scale.

本発明の目的で必要となる一次イオン量は、10−7〜
1O−9Aであり、表面電離で得られるイオン量で十分
である。
The amount of primary ions required for the purpose of the present invention is 10-7~
1O-9A, and the amount of ions obtained by surface ionization is sufficient.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば一次イオンの生成
にガスを必要としないため、差動排気等のシステムが不
要であり、イオン源自身の構成も非常に簡単になる。特
にSIMSにおいては、イオン衝撃部の真空度が良いこ
とが望ましいので、これは大きな利点となる。また、極
性の強い物質を測定する場合に、前もってアルカリ金属
塩を加えなくても、(M十Na)+などが高効率で生成
し、分子量を知る上で都合が良いのも大きな利点である
As described above, according to the present invention, no gas is required to generate primary ions, so a system such as differential pumping is not required, and the configuration of the ion source itself is extremely simple. Particularly in SIMS, it is desirable that the ion bombardment section has a good degree of vacuum, so this is a great advantage. Another great advantage is that when measuring highly polar substances, (M+Na)+ can be generated with high efficiency without adding an alkali metal salt in advance, making it convenient for determining molecular weight. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるベルト導入SIMSの要部構成を
説明するための模式図である。 ■・・・試料導入用ベルト 2・・・一次イオン発生部(イオン源)3・・・質量分
析部 4・・・電極類 5・・・ヒータステム 6・・・表面イオン化源 7・・・電極類 8・・・ハーメチックフランジ 9・・・電源
FIG. 1 is a schematic diagram for explaining the main part configuration of a belt-introduced SIMS according to the present invention. ■...Sample introduction belt 2...Primary ion generator (ion source) 3...Mass spectrometer 4...Electrodes 5...Heater stem 6...Surface ionization source 7...Electrode Category 8... Hermetic flange 9... Power supply

Claims (1)

【特許請求の範囲】 1、金属又は絶縁物からなる試料担持体の表面に付着さ
せた有機試料に一次イオンを照射した時に発生する二次
イオンにより該有機試料の質量分析を行なう二次イオン
質量分析計において、該質量分析計の一次イオン発生部
に表面電離でアルカリ金属イオンを発生せしめる手段を
具備せしめてなることを特徴とする二次イオン質量分析
計。 2、特許請求の範囲第1項記載の二次イオン質量分析計
において、前記試料担持体は少なくとも前記質量分析計
の一次イオン照射部から離れた第1の位置から該一次イ
オン照射部となる第2の位置まで移動可能なベルトであ
り、かつ、前記有機試料はクロマトグラフから溶出した
溶媒を含む該有機試料液として前記第1の位置に供給さ
れた後、前記ベルトの移動により前記溶媒を含まぬ有機
試料として前記第2の位置に供給されるようになってい
ることを特徴とする二次イオン質量分析計。
[Claims] 1. Secondary ion mass analysis of an organic sample using secondary ions generated when primary ions are irradiated onto an organic sample attached to the surface of a sample carrier made of a metal or an insulator. 1. A secondary ion mass spectrometer, characterized in that the primary ion generation section of the mass spectrometer is equipped with means for generating alkali metal ions through surface ionization. 2. In the secondary ion mass spectrometer according to claim 1, the sample carrier moves from at least a first position away from the primary ion irradiation part of the mass spectrometer to a first position which becomes the primary ion irradiation part. The belt is movable up to a second position, and after the organic sample is supplied to the first position as the organic sample liquid containing the solvent eluted from the chromatograph, the belt moves to the first position, and after the organic sample is supplied to the first position as the organic sample liquid containing the solvent eluted from the chromatograph, the belt moves to the first position. A secondary ion mass spectrometer, characterized in that the secondary ion mass spectrometer is supplied to the second position as an organic sample.
JP60115303A 1985-05-30 1985-05-30 Mass spectrometer for secondary ions Granted JPS617556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115303A JPS617556A (en) 1985-05-30 1985-05-30 Mass spectrometer for secondary ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115303A JPS617556A (en) 1985-05-30 1985-05-30 Mass spectrometer for secondary ions

Publications (2)

Publication Number Publication Date
JPS617556A true JPS617556A (en) 1986-01-14
JPH0351253B2 JPH0351253B2 (en) 1991-08-06

Family

ID=14659289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115303A Granted JPS617556A (en) 1985-05-30 1985-05-30 Mass spectrometer for secondary ions

Country Status (1)

Country Link
JP (1) JPS617556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001452A1 (en) * 1985-08-29 1987-03-12 Hitachi, Ltd. Mass spectroscope
JPH01255147A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method for high pressure mass analysis
JPH01255146A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method and device for high pressure mass analysis
WO2007139425A1 (en) * 2006-05-29 2007-12-06 Blashenkov Nikolai Mikhailovic Tape ioniser for the ion source of a mass-spectrometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364089A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Solid ion source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364089A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Solid ion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001452A1 (en) * 1985-08-29 1987-03-12 Hitachi, Ltd. Mass spectroscope
JPH01255147A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method for high pressure mass analysis
JPH01255146A (en) * 1988-04-02 1989-10-12 Kokuritsu Kogai Kenkyusho Ionizing method and device for high pressure mass analysis
WO2007139425A1 (en) * 2006-05-29 2007-12-06 Blashenkov Nikolai Mikhailovic Tape ioniser for the ion source of a mass-spectrometer

Also Published As

Publication number Publication date
JPH0351253B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
Nudnova et al. Active capillary plasma source for ambient mass spectrometry
US7820965B2 (en) Apparatus for detecting chemical substances and method therefor
US4178507A (en) Ionization of organic substances on conveyor means in mass spectrometer
US7442921B2 (en) Protein profiles with atmospheric pressure ionization
GB2239985A (en) Method and apparatus for surface analysis
US5969349A (en) Ion mobility spectrometer
Medhe Ionization techniques in mass spectrometry: a review
US20060273254A1 (en) Method and apparatus for ionization via interaction with metastable species
Bookmeyer et al. Single‐Photon‐Induced Post‐Ionization to Boost Ion Yields in MALDI Mass Spectrometry Imaging
JPH0611485A (en) Method and device for sensing of neutral active seed
JP3300602B2 (en) Atmospheric pressure ionization ion trap mass spectrometry method and apparatus
Kuo et al. Generation of electrospray from a solution predeposited on optical fibers coiled with a platinum wire
US20220037142A1 (en) Desorption ion source with dopant-gas assisted ionization
Lockyer et al. Multiphoton ionization mass spectrometry of small biomolecules with nanosecond and femtosecond laser pulses
JPS617556A (en) Mass spectrometer for secondary ions
Pan et al. The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry
Ring et al. A comparative study of a liquid and a solid matrix in matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and collision cross section measurements
Li et al. Molecular ion yield enhancement in static secondary ion mass spectrometry by soft landing of protonated water clusters
Barber et al. Fast atom bombardment mass spectrometry (FAB). Negative-ion spectra of some simple monosaccharides
JPH0542101B2 (en)
JP6607770B2 (en) Ionization method, ionizer, and mass spectrometer
JP2004028585A (en) Measuring method of gas generated from explosives and measuring device of gas generated from explosives
Fujiwara et al. Effects of a proton‐conducting ionic liquid on secondary ion formation in time‐of‐flight secondary ion mass spectrometry
Shishido Matrix‐enhanced secondary ion mass spectrometry: Effects of aliphatic carboxylic acid matrices on the sensitivity enhancement of biological phospholipids
JPH02115761A (en) Method and apparatus for mass spectrometric analysis of organic compound