JPS5838398A - Pump apparatus - Google Patents

Pump apparatus

Info

Publication number
JPS5838398A
JPS5838398A JP56135131A JP13513181A JPS5838398A JP S5838398 A JPS5838398 A JP S5838398A JP 56135131 A JP56135131 A JP 56135131A JP 13513181 A JP13513181 A JP 13513181A JP S5838398 A JPS5838398 A JP S5838398A
Authority
JP
Japan
Prior art keywords
valve
pump
pumps
reactor
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135131A
Other languages
Japanese (ja)
Inventor
Toru Karasawa
唐沢 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56135131A priority Critical patent/JPS5838398A/en
Publication of JPS5838398A publication Critical patent/JPS5838398A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0072Installation or systems with two or more pumps, wherein the flow path through the stages can be changed, e.g. series-parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To enable to supply fluid with an increased pump head or flow rate as the case demands, by employing a combination of a first valve means interposed between the suction side of one pump and the discharge side of another pump and a second valve means interposed between the first valve means and a place to which the fluid is to be supplied. CONSTITUTION:When the reactor pressure is lowered through condensation of steam in a pressure vessel 2 of a nuclear reactor while supplying cooling water to the pressure vessel 2 under a high pump head through series operation of a plurality of pumps arranged in two systems, globe valves 20, 23 constituting a first ON-OFF valve means are closed while globe valves 21, 22 constituting a second ON-OFF valve means are opened as shown in the drawing. Resultantly, pumps 5, 6 and pumps 7, 8 that have been operated respectively in series to each other are all operated independently from each other, so that an extremely large amount of cooling water can be supplied to the pressure vessel 2 of the nuclear reactor from a condensate storing tank 4 or a suppression pool 3 having four independent water supply sources. By employing such an arrangement, it is enabled to eliminate additional equipment such as high-pressure reactor core spray pumps that have been required in the conventional arrangements.

Description

【発明の詳細な説明】 本発明は揚程あるいは流量を選択的に高めることのでき
るポンプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pump device that can selectively increase head or flow rate.

たとえば沸騰水形原子炉には原子炉系配管破断による冷
却材流出事故にそなえて非常用炉心冷却設備が設けられ
ている。この非常用炉心冷却設備は、第1図で示すよう
に独立的に作動する複数のポンプ装置等よシなる。1は
原子炉格納容器であり、その原子炉格納容器1内上部に
は原子炉圧力容器2が設置されており、多数の燃料集合
体より構成されている炉心(図示せず)を内部に有して
いる。そして上記圧力容器2が、上記複数のポンプ装置
における共通の被供給部となっていて上記原子炉格納容
器1内の下部には、サブレ、ジョンプール3が設けられ
冷却水が充たされている。このサプレッションゾール3
は、前記複数のポンプ装置における共通の流体供給源と
なっている。なお流体供給源として、このサシレッジ、
ングール3以外にも、原子炉格納容器1外に設けられた
復水貯蔵タンク4が使用される。ただしこの復水貯蔵タ
ンク4からは、後述する高圧スプレイポンプ9のみに冷
却水が供給される構成となっている。そして前記、値数
のポンプ装置としては、前記高圧炉心スグレイポンプ9
を含むもの、低圧炉心スプレィデンジ5を含むもの、お
よび低圧注入Iング6゜7.8tl−含むものがそれぞ
れ存在し、それぞれのポンプ装置は互に独立した配管系
を有し、共通の被供給部である原子炉圧力容器2内に冷
却水を供給している。また上記高圧炉心スプレィデンジ
9を含むポンプ装置および低圧炉心スプレィデンジ5を
含むポンプ装置は、それぞれの配管終端に、炉心スプレ
ィ・譬−ジャ14を有している。この炉心スプレィ/9
−ジャは前記原子炉圧力容器2内の炉心(図示せず)上
部に設置され、直接炉心に冷却水を注入することができ
るようになっている。さらに原子炉圧力容器2からター
ビンへ蒸気を移送する主蒸気管13には複数の自動逃し
弁15(1個のみ示す)が接続されている。そしてこれ
らの逃し弁15も前記複数のポンプ装置と共に非常用炉
心冷却設備の構成部となっている。そしてこの自動逃し
弁15は、冷却材流出事故時、前記高圧炉心スジレイ4
ンプ9の後備系としての働きをなす。つまり前記複数の
自動逃し弁15が、それぞれ時間差をもって開弁じ原子
炉圧力容器2内の蒸気を逃がし、炉圧を低下させる鋤き
をするものである。tた、前記低圧スプレィデンジ5と
低圧注入ポン′f6、低圧注入ポン17°7と低圧注入
Iンゾ8および高圧炉心スプレィデンジ9は、それぞれ
共通の非常用ディーゼル発電機1θ、11゜12を駆動
源としている。
For example, boiling water nuclear reactors are equipped with emergency core cooling equipment in case of a coolant spill accident due to a rupture in the reactor system piping. This emergency core cooling equipment consists of a plurality of independently operating pump devices, etc., as shown in FIG. 1 is a reactor containment vessel, and a reactor pressure vessel 2 is installed in the upper part of the reactor containment vessel 1, and has a reactor core (not shown) made up of a large number of fuel assemblies inside. are doing. The pressure vessel 2 serves as a common supply part for the plurality of pump devices, and a sabre and John pool 3 is provided in the lower part of the reactor containment vessel 1 and is filled with cooling water. . This suppression sol 3
serves as a common fluid supply source for the plurality of pump devices. As a fluid supply source, this sacilage,
In addition to the tank 3, a condensate storage tank 4 provided outside the reactor containment vessel 1 is used. However, from this condensate storage tank 4, cooling water is supplied only to a high-pressure spray pump 9, which will be described later. As the above-mentioned pump device, the above-mentioned high pressure core Sgray pump 9
There are three types: one that includes a low-pressure core spray range 5, and one that includes a low-pressure injection I-ring 6° 7.8 tl, and each pump device has an independent piping system and a common supply part. Cooling water is supplied into the reactor pressure vessel 2. Further, the pump device including the high pressure core spray range 9 and the pump device including the low pressure core spray range 5 have a core spray jar 14 at the end of each pipe. This core spray/9
- The reactor is installed above the reactor core (not shown) in the reactor pressure vessel 2, so that cooling water can be directly injected into the reactor core. Furthermore, a plurality of automatic relief valves 15 (only one is shown) are connected to the main steam pipe 13 that transfers steam from the reactor pressure vessel 2 to the turbine. These relief valves 15 also constitute a component of the emergency core cooling equipment together with the plurality of pump devices. In the event of a coolant spill accident, this automatic relief valve 15 is configured to
It functions as a backup system for pump 9. In other words, the plurality of automatic relief valves 15 are opened at different times to release steam in the reactor pressure vessel 2, thereby lowering the reactor pressure. In addition, the low pressure spray range 5, the low pressure injection pump 'f6, the low pressure injection pump 17°7, the low pressure injection inlet 8, and the high pressure core spray range 9 are driven by common emergency diesel generators 1θ, 11°12, respectively. It is said that

以上のような構成を成している非常用炉心冷却設備にお
いて、例えば中小破断事故による冷却材の流出事故が生
じ原子炉圧力容器2内の圧力が上昇し、痢記原子炉圧力
容器2内の冷却材の水位が一定の限界レベルまで低下し
てしまったとする。高圧炉心スプレィポンプ9はただち
に起動し、流体供給源であるザゾレッシ、ンゾール3あ
るいは復水貯蔵タンク4からの冷却水を炉圧に打ち勝つ
程度の高揚程で原子炉圧力容器2内に供給し炉心スゲレ
イスパーツヤ14を介してスジレイする。そして蒸気を
凝縮させ炉圧を低下させる。ここで前記高圧炉心スプレ
ィ/フグ9がなんらかの原因で動作しなかった場合には
、必要数の自動逃し弁15が開弁じ、原子炉圧力容器2
内の蒸気をサグレジ、ンプール3に逃がし、前記原子炉
圧力容器2内の圧力を低下させる。そして、炉圧を低下
させた時点で1前記高圧炉心スグレイポ/グ9に加えて
他の低圧注入ポンプe、1.8および低′圧炉心スゾレ
イポ/プ5も動作し、大流量の冷却水を原子炉圧力容器
2内に供給する。この時原子炉圧力容器2内の圧力は低
下しているので、低圧系ポンプでも冷却水の供給が可能
となるのでおる。
In the emergency core cooling equipment configured as described above, for example, a coolant leakage accident due to a small or medium rupture accident causes the pressure inside the reactor pressure vessel 2 to rise, and the pressure inside the reactor pressure vessel 2 increases. Suppose that the coolant water level has dropped to a certain critical level. The high-pressure core spray pump 9 starts immediately and supplies cooling water from the fluid supply source Zazoreshi, Nzor 3 or the condensate storage tank 4 into the reactor pressure vessel 2 at a high enough head to overcome the reactor pressure. The streaks are transmitted via the race part toy 14. The steam is then condensed to lower the furnace pressure. Here, if the high-pressure core spray/puffer 9 does not operate for some reason, the required number of automatic relief valves 15 are opened, and the reactor pressure vessel 2
The steam inside the reactor pressure vessel 2 is released to the reactor pressure vessel 3 to reduce the pressure inside the reactor pressure vessel 2. When the reactor pressure is lowered, in addition to the high-pressure core injection pump 9, the other low-pressure injection pumps e and 1.8 and the low-pressure core injection pump 5 also operate to pump out a large flow of cooling water. Supplied into the reactor pressure vessel 2. At this time, since the pressure inside the reactor pressure vessel 2 has decreased, it becomes possible to supply cooling water even with a low-pressure system pump.

しかしながら以上のような従来の非常用炉心冷却設備に
は中小破断による冷却材流出事故に対する高圧炉心スプ
レィデンジ9は1系統し力)なく、もしこの1系統が何
らかの原因で故障した場合には、自動逃し弁15によっ
て原子炉圧力容器2内の蒸気を逃がし炉圧を低下させな
ければならないのである。また上記高圧炉心スプレィデ
ンジ9は、高揚程を必要とする為に、きわめて大形の多
段立形電動渦巻ポンプを使用しなければ女らないが、こ
の多段立形電動渦巻−ンゾは、きわめて高価であり、か
つ大形であり、耐震設計上も好ましくない、また据付工
事およびメンテナンスにおいても多大な困難を賛する。
However, the conventional emergency core cooling equipment as described above does not have a single high-pressure core spray system (9) to protect against coolant spill accidents caused by small or medium-sized fractures, and if one system fails for some reason, automatic relief is provided. The valve 15 must be used to release the steam in the reactor pressure vessel 2 and lower the reactor pressure. In addition, since the high-pressure core spray range 9 requires a high head, it is only possible to use an extremely large multi-stage vertical electric volute pump, but this multi-stage vertical electric volute pump is extremely expensive. It is also large in size, which is not desirable in terms of earthquake-resistant design, and it also poses great difficulties in installation work and maintenance.

沈2図は、その据付工事の状況を示したものである。上
記高圧炉心スプレィデンジとしての多段立形電動渦巻ポ
ンf9が据付けられる階の天井には、搬入用の開口部1
6が有シ、さらにその上階の天井には、つり揚げ用の電
動ホイスト17がある。多段立形電動渦巻ポンプ9は、
上記電動ホイスト17によって上階のフロアより開口部
16を通して、その下の階のフロアに搬入されることに
なる。そして、そのフロアのマット18にビット19を
設け、そこに、前記多段立形電動渦巻ポンプ9のケーシ
ング部を埋め込まなければならない。これらの作業は非
常に困難であシ危険を伴うものでsb、土木、建築工事
にかける負担も大きなものになる。また非常用ディーゼ
ル発電機12等付帯設備も大規模なものとなシ、これら
の付帯設備を含めるときわめて大きな据付面積を必要と
する。そしてこの高圧炉心スゾレイボンプ9設備には、
さらにその設備自身の冷却および除熱をするための冷却
設備等も必要となり、これらの冷却設備等もまた、非常
に高価なものになってしまうという不具合があった。
Figure 2 shows the status of the installation work. There is an opening 1 in the ceiling of the floor where the multi-stage vertical electric swirl pump f9 as the high-pressure core spray range is installed.
There is an electric hoist 17 for lifting on the ceiling of the upper floor. The multi-stage vertical electric centrifugal pump 9 is
The electric hoist 17 carries the product from the upper floor through the opening 16 to the floor below. Then, a bit 19 must be provided on the mat 18 of the floor, and the casing portion of the multistage vertical electric centrifugal pump 9 must be embedded therein. These operations are extremely difficult and dangerous, and place a heavy burden on the construction work, civil engineering, and construction work. Further, the emergency diesel generator 12 and other auxiliary equipment are also large-scale, and when these auxiliary equipment are included, an extremely large installation area is required. And this high pressure core Ssolley Bomb 9 equipment,
Furthermore, cooling equipment for cooling and removing heat from the equipment itself is required, and these cooling equipment also have the disadvantage of being extremely expensive.

本発明は以上の点に鑑みてなされたものでその目的とす
るところは、大形ポンプを不用にして装置全体のコスト
ダウンをはかり、耐震設計上においてはその安全性の向
上をはかシ、土木建築にかける負担を軽減させ小規模の
装置で高揚程あるいは大流量の流体を選択的に供給する
ことを可能にし、沸騰水形原子炉の非常用炉心冷却設備
に適合した場合には、予備電源としてのディーゼル発電
機等付帯設備を小規模のもので済ませることができ、据
付工事メンテナンス等の容易化をも図シ得るポンプ装置
を提供することにある。
The present invention has been made in view of the above points, and its purpose is to reduce the cost of the entire device by eliminating the need for a large pump, and to improve the safety of the seismic design. It reduces the burden on civil engineering and construction, makes it possible to selectively supply high head or large flow fluids with small-scale equipment, and can be used as a backup if it is compatible with the emergency core cooling equipment of boiling water reactors. It is an object of the present invention to provide a pump device that can use small-scale auxiliary equipment such as a diesel generator as a power source, and also facilitates installation work and maintenance.

すなわち本発明に係るポンプ装置は、流体供給源よシ共
通の被供給部へ高揚程あるいは大流量の流体を選択的に
供給する複数の独立した供給配管ごとにそれぞれポンプ
を介挿し、相異なるポンプの吸込側と吐出側に第1の開
閉弁を介挿し、その第1の開閉弁と前記被供給部との間
に第2の開閉弁を介挿し、上記第1の開閉弁と前記被供
給部との間に逆止弁を介挿して、前記第1の開閉弁を原
子炉圧力容器2内の圧力高で開弁、低で閉弁とし、逆に
第2の開閉弁は圧力像で開弁、圧力筒で閉弁となるよう
にインターロックして構成されるものである。
That is, in the pump device according to the present invention, a pump is inserted into each of a plurality of independent supply pipes for selectively supplying fluid at a high head or a large flow rate from a fluid supply source to a common supplied part, and different pumps are connected to each other. A first on-off valve is inserted between the suction side and the discharge side, a second on-off valve is inserted between the first on-off valve and the supplied part, and the first on-off valve and the supplied part are interposed between the first on-off valve and the supplied part. A check valve is inserted between the reactor pressure vessel 2 and the first on-off valve to open when the pressure inside the reactor pressure vessel 2 is high and close when the pressure is low, and conversely, the second on-off valve is opened when the pressure inside the reactor pressure vessel 2 is low. It is constructed by interlocking so that the valve is open and the pressure cylinder is closed.

以上のように構成することにより、前記第1および第2
の開閉弁の開閉によって前記枚数のポンプを直列あるい
はそれぞれ独立的に運転することができ、必要に応じて
揚程または流量のいずれかを選択的に高めることができ
る。そしでそれによって大形ポンプの不用化および付帯
設備の小規模化あるいは削減が可能となり、据付スペー
スの縮小化、工事およびメンテナンスの容易化、ひいて
は装置全体のコストダウンおよび安全性の向上を図るこ
とができるものである。
By configuring as above, the first and second
The number of pumps can be operated in series or independently by opening and closing the on-off valves, and either the head or the flow rate can be selectively increased as required. This makes it possible to eliminate the need for large pumps and downsize or reduce the size of ancillary equipment, thereby reducing the installation space, making construction and maintenance easier, and ultimately reducing the cost and improving the safety of the entire device. It is something that can be done.

以下第3図、第4図、第5図を参照して本発明の実施例
について説明する。なお、第1図と同一部分には同一符
号を付して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3, 4, and 5. Note that the same parts as in FIG. 1 will be described with the same reference numerals.

第3図において1は原子炉格納容器であり、その原子炉
圧力容器1内上部には、流体の被供給部としての原子炉
圧力容器2が設置されておシ多数の燃料集合体より構成
されている炉心(図示せず)を内部に有している。上記
原子炉格納容器1内の下部にはサグレ、シ、ンプール3
が設けられ、冷却水が充たされている。このサデレ、?
/1ングール3は原子炉格納容器l外部に設置されてい
る復水貯蔵タンク4と共に、複数のポンプ装置における
流体供給源となっている。また上記複数のdelf装置
としては低圧炉心スゾレイIング5を含むポンプ装置と
低圧注入ポンプ6.7.8を含むポンプ装置がちシそれ
ぞれ1台のポンプの流量−揚程特性は第5図の曲線26
で示すものである。そして上記4台のポンプ5,6,7
.8はそれぞれ流体供給源から被供給部の間に独立した
配管26,27゜28.29を有していると同時にポン
プ5の吸込側とポンプ6の吐出側との間には第1の開閉
弁であるグローブ弁20が接続されておりそのグローブ
弁20と流体の被供給部である原子炉圧力容器2との間
には第2の開閉弁であるグローブ弁21が介挿されてい
る。そして前記グローブ弁20と流体の供給源との間に
は前記配管26中に逆止弁21が介挿されている6同様
にポンプ8の吸込側とボンf7の吐出側は第1の開閉弁
であるグローブ弁23を有する配管で接続されており、
そのグローブ弁23と流体被供給部である原子炉圧力容
器2との間には第2の開閉弁であるグローブ弁22が介
挿されている。
In Fig. 3, 1 is a reactor containment vessel, and in the upper part of the reactor pressure vessel 1, a reactor pressure vessel 2 is installed as a part to which fluid is supplied, and is composed of a large number of fuel assemblies. It has an internal reactor core (not shown). At the bottom of the reactor containment vessel 1, there is a sagre, a simple pool 3.
is installed and filled with cooling water. This Sadere?
The /1 pump 3, together with a condensate storage tank 4 installed outside the reactor containment vessel l, serves as a fluid supply source for a plurality of pump devices. In addition, the above-mentioned plurality of delf devices include a pump device including the low-pressure core Szoray I ring 5 and a pump device including the low-pressure injection pump 6.7.8.The flow rate-head characteristic of each pump is the curve 26 in FIG.
This is shown in . And the above four pumps 5, 6, 7
.. 8 has independent piping 26, 27, 28, 29 between the fluid supply source and the supplied part, and at the same time, there is a first opening/closing pipe between the suction side of the pump 5 and the discharge side of the pump 6. A globe valve 20, which is a valve, is connected, and a globe valve 21, which is a second opening/closing valve, is inserted between the globe valve 20 and the reactor pressure vessel 2, which is a part to which fluid is supplied. A check valve 21 is inserted in the pipe 26 between the globe valve 20 and the fluid supply source. Similarly, a first on-off valve is connected to the suction side of the pump 8 and the discharge side of the pump f7. It is connected by piping having a globe valve 23,
A globe valve 22, which is a second on-off valve, is inserted between the globe valve 23 and the reactor pressure vessel 2, which is a fluid supplied part.

そして前記開閉弁23と流体被供給部との間には前記配
管29中に逆止弁25が介挿されている。前記グローブ
弁20と21との間および23と22との間にはグロー
ブ弁20が開のときにはグローブ弁2ノは閉、逆にグロ
ーブ弁20が閉のときはグローブ弁2ノは開となるよう
インター口、りされている。そして23と22も同様に
インターロックされている。膚だ、ポンプ5および8の
有する独立した配管2.\61,27の終端には、炉心
スゲレノクージャ14が接続されている。そして主蒸気
管13には自動逃し弁15が接続されている0次に本実
施例の動作について説明する。いま原子炉圧力容器2内
で破断事故が生じ上記原子炉圧力容器2内の冷却水が流
出し、圧力が上昇したとする。ポンプ5,6゜1.8は
ただちに起動する。その時第1の開閉弁であるグローブ
弁20.23は開弁しておシ、第2の開閉弁であるグ四
−!弁21.22は閉弁している。つまシポンゾ6,5
およびポンプ1.8はそれぞれ開閉弁;20,2Bを介
して、直列運転となシその時の流量−揚程特性は第5図
の曲線21で示すものである。そして供給源であるサブ
レッジ、ンプール3からの冷却水を被供給部である原子
炉圧力容器2内へ炉内の圧力に打ち勝つ程度の高揚程で
供給し、炉心スジレイパージャ14を介してスゲレイし
、原子炉圧力容器2内の蒸気を凝縮させ炉圧を低下させ
る。このとき、逆止弁24および25は逆流を防ぐ働き
をするものである。この場合インタ5゜6および7,8
がそれぞれ従来の高圧炉心スゲレイ4ンゾ9の役割をな
す事になシ、高圧スグレイポング9に相当する装置が2
系統設けられたことになる。したがってどちらか一方の
系統が万−何らかの原因で作動しない事態が生じても他
方の系統で、従来の高圧スプレィポンプ9と同様の働き
をなすことができるものである。
A check valve 25 is inserted into the piping 29 between the on-off valve 23 and the fluid supplied portion. Between the globe valves 20 and 21 and between 23 and 22, when the globe valve 20 is open, the globe valve 2 is closed, and conversely, when the globe valve 20 is closed, the globe valve 2 is open. It looks like the interface has been removed. And 23 and 22 are similarly interlocked. 2. Independent piping for pumps 5 and 8. The core Sugereno Cooler 14 is connected to the terminal ends of \61 and 27. The operation of this embodiment, in which the automatic relief valve 15 is connected to the main steam pipe 13, will now be described. Assume that a rupture accident occurs in the reactor pressure vessel 2, the cooling water in the reactor pressure vessel 2 flows out, and the pressure rises. Pump 5,6°1.8 starts immediately. At that time, the first on-off valve, the globe valve 20.23, is opened, and the second on-off valve, the second on-off valve, is opened. Valves 21,22 are closed. Tsuma Shiponzo 6,5
The pumps 1.8 and 1.8 are operated in series via on-off valves 20 and 2B, respectively.The flow rate-head characteristic at this time is shown by the curve 21 in FIG. Then, the cooling water from the subledge and pool 3, which is the supply source, is supplied into the reactor pressure vessel 2, which is the supplied part, at a high enough pressure to overcome the pressure inside the reactor, and the cooling water is passed through the core streak purger 14 to cause slag. , condenses the steam in the reactor pressure vessel 2 and lowers the reactor pressure. At this time, the check valves 24 and 25 function to prevent backflow. In this case, the interfaces 5゜6 and 7,8
The devices that correspond to the conventional high-pressure core Sugerei 4 and 9 will each play the role of the conventional high-pressure core Sugerei 4 and 9.
This means that a system has been established. Therefore, even if one of the systems does not operate for some reason, the other system can perform the same function as the conventional high-pressure spray pump 9.

以上のように前記2系統の直列運4バによって高揚程の
冷却水を原子炉圧力容器2内へ供給し、原子炉圧力容器
2内で蒸気が凝縮し炉圧が低下すると、第4図のように
第1の開閉弁であるグローブ弁20および23は閉弁し
、第2の開閉弁であるグローブ弁21および22f′i
開弁する。
As described above, high-head cooling water is supplied into the reactor pressure vessel 2 by the two series-operated four-bar systems, and when the steam condenses in the reactor pressure vessel 2 and the reactor pressure decreases, as shown in Fig. 4. As shown in FIG.
Open the valve.

したがって今まで直列運転しでいたポンプ5と6および
ポンプ2と8は、それぞれ独立的な運動となシ、全体と
しての流蓋−揚程特性は第5図の曲線28で示すものと
なる。そしてそれぞれ独立した4系統で供給淵、である
サブレッジ。
Therefore, pumps 5 and 6 and pumps 2 and 8, which have been operated in series up to now, operate independently, and the overall flow head-lift characteristic becomes as shown by curve 28 in FIG. 5. And there is a subledge, which is a supply abyss with four independent systems.

ングール3あるいは復水貯蔵タンク4から被供給部でお
る原子炉圧力容器2へきわめて大流量の冷却水を供給す
る。
A very large amount of cooling water is supplied from the reactor pressure vessel 2, which is the supplied part, from the reactor tank 3 or the condensate storage tank 4.

以上のように上記実施例の構成になると第1の開閉弁2
0.23を開弁し、第2の開閉弁21゜22を閉弁する
ことによってポンプ5,6およびポンシフ、IIはそれ
ぞれ直列運転となり、原子炉圧力容器2内へ高揚程の冷
却水を供給することができ、従来設置されていた高圧炉
心スゲレイポンプ9およびその駆動源となるディーゼル
発電機12その他の付帯設備を削減することができる。
As described above, when the configuration of the above embodiment is adopted, the first on-off valve 2
By opening the valves 0.23 and closing the second on-off valves 21 and 22, the pumps 5 and 6 and pumps II are operated in series, supplying high-head cooling water into the reactor pressure vessel 2. This makes it possible to eliminate the conventionally installed high-pressure core sedge pump 9, diesel generator 12 serving as its driving source, and other incidental equipment.

また高圧スグレイポング9に相当する設備を2系統得る
ことができる為゛に、設備としての安全性が向上するこ
とになる。そして第1の開閉弁20.23を閉弁し、第
2の開閉弁11.22を開弁することによりてそれぞれ
独立した4系統の運転となシ、大流量の流体を原子炉圧
力容器2内に供給することができる。
Furthermore, since two systems of equipment corresponding to the high-pressure Sgreipong 9 can be obtained, the safety of the equipment is improved. Then, by closing the first on-off valve 20.23 and opening the second on-off valve 11.22, each of the four systems can be operated independently, and a large flow of fluid is transferred to the reactor pressure vessel 2. can be supplied within

なお、本実施例はIンプ4台を使用して2台ずつ1組と
した場合について説明したが、使用されるすべてのポン
プを含めて単一の装置を構成してもよい。すなわち、第
6図は4台のポンプ33,34,35.36をすべて単
一の装置内に組込んだ例を示したものでポンプ33の吸
込側とポンプ34の吐出側とは第1の開閉弁であるグロ
ーブ弁37を有する配管によって接続されており、その
グローブ弁37と被供給846との間には第2の開閉弁
であるグローブ弁40が介挿されている。またグローブ
弁37と流体供給源4rとの間には配管48中に逆止弁
43が介挿されている。以下同様にボンf34とIンf
315との間には第1の開閉弁であるグローブ弁JJ1
そのグローブ弁38と被供給部460間には第2の開閉
弁であるグローブ弁41、グローブ弁38と流体供給源
42の間には配管49中に逆止弁40がそれぞれ介挿さ
れている。
In this embodiment, a case has been described in which four I pumps are used to form a set of two pumps, but a single device may be configured including all the pumps used. That is, FIG. 6 shows an example in which four pumps 33, 34, 35, and 36 are all incorporated into a single device, and the suction side of pump 33 and the discharge side of pump 34 are connected to the first They are connected by a pipe having a globe valve 37, which is an on-off valve, and a globe valve 40, which is a second on-off valve, is inserted between the globe valve 37 and the supplied object 846. Further, a check valve 43 is inserted in a pipe 48 between the globe valve 37 and the fluid supply source 4r. Similarly, Bonn f34 and Inf
315, there is a globe valve JJ1 which is the first on-off valve.
A globe valve 41 serving as a second on-off valve is inserted between the globe valve 38 and the supplied portion 460, and a check valve 40 is inserted in a pipe 49 between the globe valve 38 and the fluid supply source 42. .

また4ング35とポンプ36の間には第1の開閉弁でお
るグローブ弁39、そのグローブ弁39と被供給部46
0間には第2の開閉弁であるグローゾ弁42がグローブ
弁39と流体供給源47の間には配管50中に逆止弁4
5がそれぞれ介挿されている。
Also, between the fourth ring 35 and the pump 36, there is a globe valve 39, which is a first on-off valve, and the globe valve 39 and the supplied part 46.
Between the globe valve 39 and the fluid supply source 47, there is a check valve 4 in the piping 50.
5 are inserted respectively.

以上のような構成によると、例えば第1の開閉弁37,
38.39を開弁して第2の開閉弁である開閉弁40,
41.42を閉弁すれば、前記4ンプ33.34,35
.36は直列運転となり前記実施例よりもさらに高揚程
の流体を供給源41から被供給部46へ供給することが
できる。逆に前記第1の開閉弁37.38.39を閉弁
し、第2の開閉弁40,41.42を開弁ずれば4台の
ポンプ33.34,35.36はそれぞれ独立して運転
することになり前記実施例と同様に大流量の流体と流体
供給源47から被供給部46へ供給することができるの
である。
According to the above configuration, for example, the first on-off valve 37,
38. 39 is opened and the on-off valve 40, which is the second on-off valve,
If valves 41 and 42 are closed, the four pumps 33, 34, and 35
.. 36 is operated in series, and fluid at a higher level than in the previous embodiment can be supplied from the supply source 41 to the supplied portion 46. Conversely, if the first on-off valve 37, 38, 39 is closed and the second on-off valve 40, 41.42 is opened, the four pumps 33, 34, 35, 36 can be operated independently. As a result, a large flow of fluid can be supplied from the fluid supply source 47 to the supplied portion 46 as in the previous embodiment.

また総ての開閉弁を順次開弁あるいは閉弁して使用する
こともできる。例えば第1の開閉弁3r、39を開弁と
して開閉弁38は閉弁とする。そして第2の開閉弁40
.42を閉弁とし開閉弁41を開弁とする。この時ボン
7’、?4と33および?ンプ36と35の2台1組の
直列運転となり、2系統で供給源47から被供給部46
に流体は供給されることになるのである。
Further, all the on-off valves can be opened or closed in sequence. For example, the first on-off valves 3r and 39 are opened, and the on-off valve 38 is closed. and a second on-off valve 40
.. 42 is closed and on-off valve 41 is opened. At this time Bon 7'? 4 and 33 and? The two pumps 36 and 35 are operated in series, and the supply source 47 is connected to the supplied part 46 in two systems.
Fluid will be supplied to.

このように第1の開閉弁である開閉弁37.38゜39
と第2の開閉弁である開閉弁40,41゜42の開閉を
適宜組合せることによって揚程および流量の組合せを種
々変化させることができるのである。ただし、それぞれ
対応する第1および第2の開閉弁たとえば開閉弁37と
開閉弁40が同時に開弁あるいは閉弁することはなく、
一方が開弁しているときは他方は閉弁するようインター
ロックされているものとする。
In this way, the first on-off valve, the on-off valve 37.38°39
By appropriately combining the opening and closing of the on-off valves 40, 41 and 42, which are the second on-off valves, various combinations of head and flow rate can be changed. However, the corresponding first and second on-off valves, for example on-off valve 37 and on-off valve 40, are not opened or closed at the same time,
It is assumed that the valve is interlocked so that when one valve is open, the other valve is closed.

以上詳述したように本発明のポンプ装置によれば流体供
給源より共通の被供給部へ高揚程あるいは大流量の流体
を選択的に供給する複数の独立した供給配管ごとにポン
プ°を介挿し、相異なるポンプの吸込側と吐出側との間
に第1の開閉弁を介挿し、その第1の開閉弁と前記被供
給部との間に第2の開閉−弁を介挿し、上記第1の開閉
弁と流体供給源との間に逆止弁を介挿して構成されるも
のであり、第1の開閉弁および第2の開閉弁の開閉の組
合せによって必要に応じて揚程またはat各高め所費の
流体を流体供給源から被供給部へ供給することができる
ものである。そしてそれによって大形ポンプの不用化お
よび付帯設備の小規模化あるいは削減が可能となり装置
据付スペースの縮小化、工事およびメンテナンスの容易
化ひいては装置全体のコストダウンおよび安全性の向上
を図ることができるものである。
As detailed above, according to the pump device of the present invention, a pump is inserted in each of a plurality of independent supply pipes that selectively supply high head or large flow fluid from a fluid supply source to a common supplied part. , a first on-off valve is inserted between the suction side and the discharge side of the different pumps, a second on-off valve is inserted between the first on-off valve and the supplied part, and the first on-off valve is inserted between the first on-off valve and the supplied part. A check valve is inserted between the first on-off valve and the fluid supply source, and the head or at each can be adjusted as necessary by the combination of opening and closing of the first on-off valve and the second on-off valve. It is possible to supply expensive fluid from a fluid supply source to a supplied part. This makes it possible to eliminate the need for large pumps and downsize or reduce the size of ancillary equipment, thereby reducing equipment installation space, facilitating construction and maintenance, and ultimately reducing costs and improving safety of the entire equipment. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水形原子炉の非常用炉心冷却設備の従来例
を示す系統図、第2図は高圧炉心スプレィポンプの据付
状況を示す概略正面図、第3図ないし第5図は本発明の
一実施例を示すもので、第3図および第4図は系統図、
第5図は流量−揚程特性を示す線図、第6図は、本発明
の他の実施例を示す系統図である。 2・・・原子炉圧力容器(被供給部)3・・・サプレッ
ションゾール(流体供給源′A4・・・復水貯蔵タンク
(流体供給源)、5・・・低圧炉心スプレィポンプ、6
.7.8・・・低圧注入ポンプ、20.23・・・グロ
ーブ弁(第1の開閉弁’)、21.2:z・・・グロー
ブ弁(第2の開閉弁)、24.25・・・逆止弁。 出願人代理人  弁理士 鈴 江 武 彦、第5図 500   1000   500  2000  2
500−一一→−釦t(m”/h) 第6111 ム6
Fig. 1 is a system diagram showing a conventional example of emergency core cooling equipment for a boiling water reactor, Fig. 2 is a schematic front view showing the installation status of a high-pressure core spray pump, and Figs. 3 to 5 are in accordance with the present invention. 3 and 4 are system diagrams,
FIG. 5 is a diagram showing flow rate-head characteristics, and FIG. 6 is a system diagram showing another embodiment of the present invention. 2... Reactor pressure vessel (supplied part) 3... Suppression sol (fluid supply source 'A4... Condensate storage tank (fluid supply source), 5... Low pressure core spray pump, 6
.. 7.8...Low pressure injection pump, 20.23...Globe valve (first on-off valve'), 21.2:z...Globe valve (second on-off valve), 24.25... ·non-return valve. Applicant's agent Patent attorney Takehiko Suzue, Figure 5 500 1000 500 2000 2
500-11 →-button t (m”/h) No. 6111 Mu6

Claims (2)

【特許請求の範囲】[Claims] (1)流体供給源より共通の被供給部−高揚程あるい舎
ま大流量の流体を選択的に供給する複数の独立した供給
配管と、この各配管ごとにそれぞれ介挿された複数台の
ポンプと相異なるタンクの吸込側と吐出側との間にそれ
ぞれ介挿された第1の開閉弁と、その各第1の開閉弁と
前記被供給部との間にそれぞれ介挿された第2の開閉弁
と、上記各第1の開閉弁と流体供給源との間にそれぞれ
介挿された逆止弁とを具備したことを特徴とするポンプ
装置。
(1) A plurality of independent supply pipes that selectively supply fluid at a high flow rate to a common supplied part from a fluid supply source to a high-head or large-flow shelter, and a plurality of supply pipes inserted in each of these pipes. a first on-off valve inserted between the pump and the suction side and a discharge side of different tanks; and a second on-off valve inserted between each of the first on-off valves and the supplied portion. A pump device comprising: an on-off valve; and a check valve inserted between each of the first on-off valves and a fluid supply source.
(2)前記4/グを偶数台として2台ずつ1組とした特
許請求の範囲第1項記載のポンプ装置。
(2) The pump device according to claim 1, in which the number of 4/g units is an even number, and each set includes two units.
JP56135131A 1981-08-28 1981-08-28 Pump apparatus Pending JPS5838398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135131A JPS5838398A (en) 1981-08-28 1981-08-28 Pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135131A JPS5838398A (en) 1981-08-28 1981-08-28 Pump apparatus

Publications (1)

Publication Number Publication Date
JPS5838398A true JPS5838398A (en) 1983-03-05

Family

ID=15144529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135131A Pending JPS5838398A (en) 1981-08-28 1981-08-28 Pump apparatus

Country Status (1)

Country Link
JP (1) JPS5838398A (en)

Similar Documents

Publication Publication Date Title
US20020101951A1 (en) Boiling water reactor nuclear power plant
CN103383865B (en) For the passive emergency feedwater supply system of nuclear reactor
US4080256A (en) Nuclear reactor apparatus
JP6716479B2 (en) Emergency core cooling system and boiling water nuclear power plant using the same
US9905320B2 (en) Separate type safety injection tank and integral type reactor having the same
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
EP3101658A1 (en) Reactor system with a lead-cooled fast reactor
RU96113059A (en) NUCLEAR REACTOR CONTAINING A SPARE COOLING SYSTEM AND METHOD OF COOLING
KR101364646B1 (en) Passive safety system using small safe guard vessel and integral reactor having the same
US20140016733A1 (en) Passive safety injection system using safety injection tank
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
CN103413583B (en) Emergency water injection system for nuclear power plant
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
US20040240601A1 (en) Forced cooling circular deep & minus; water pond type heat supply nuclear reactor with natural circulation
JPH0283494A (en) Apparatus and method for injecting liquid into high temperature and high pressure container
CN205541969U (en) Active protection system of PWR non - and pressure differential valve of relying on oneself
JPS5838398A (en) Pump apparatus
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
JP2012230032A (en) Cooling device for reactor containment vessel
KR100810964B1 (en) Nuclear reactor plant
KR102249809B1 (en) Long-term cooling system in nuclear plant and method using the same
CN113661547B (en) Nuclear power plant serious accident handling safety system and control method thereof
US6026138A (en) Method and device for safeguarding the discharge of residual heat from a reactor of a nuclear power station
JP2000019285A (en) Reactor heat removal system
FI130325B (en) Long-term heat removal system from a containment