JPS5837483A - Waste heat recovery device for preventing corrosion due to sulfur oxide - Google Patents

Waste heat recovery device for preventing corrosion due to sulfur oxide

Info

Publication number
JPS5837483A
JPS5837483A JP56135897A JP13589781A JPS5837483A JP S5837483 A JPS5837483 A JP S5837483A JP 56135897 A JP56135897 A JP 56135897A JP 13589781 A JP13589781 A JP 13589781A JP S5837483 A JPS5837483 A JP S5837483A
Authority
JP
Japan
Prior art keywords
heat
temperature
sulfur oxide
heat pipe
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135897A
Other languages
Japanese (ja)
Inventor
Takashi Nakamoto
中本 隆司
Hitoyo Nakayama
仲山 一十四
Kozo Taneda
種田 耕蔵
Mitsuo Oshiro
大代 三夫
Shigetoshi Takasu
高須 重利
Masao Kurihara
栗原 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Suzuki Metal Industry Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Suzuki Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd, Suzuki Metal Industry Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP56135897A priority Critical patent/JPS5837483A/en
Publication of JPS5837483A publication Critical patent/JPS5837483A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

PURPOSE:To prevent the occurrence of corrosion, by utilizing a variable conductance heat pipe, and keeping the surface temperature on the heat absorbing side of the heat pipe at a dew point temperature or higher of the sulfur oxide SOx at all times. CONSTITUTION:A continuous wick is provided from a heat absorbing part 32 to a gas reservoir 31 in the vaiable conductance heat pipe 3. Even though a burned exhaust gas temperature Tg is decreased less than the dew point temperature of the sulfur oxide SOx, the surface temperature of the heat absorbing part 32 is kept at the dew point temperature or more of the sulfur oxide SOx by a high temperature water in a water supplying and heating part 1. Therefore, the corrosion at the starting of the operation can be prevented.

Description

【発明の詳細な説明】 本実−は、ヒートパイプを用いた廃熱回収装置、より詳
しくは、ヒートパイプの吸熱側伝熱面等が燃焼排ガス中
の硫黄酸化物SOx Kよって腐蝕されるの、を防止す
るようにした廃熱回収装置Kfllする・ヒートパイプ
の優れた熱伝導特性と恒温特性に着目して、近年、ヒー
トパイプが廃熱回収装置に広く使用されるよう和なって
き九〇しかしながら、負荷変動を伴うようなボイラー、
あるいは焼却炉等の排熱回収にヒートパイプを使用した
場合KFi、燃焼排ガス温度の変動に応じてヒートパイ
プの吸熱側伝熱コイル表面温度も変動するため、燃焼排
ガス温度如何によっては、ヒートパイプの表面温度が硫
黄酸化物80xの露点温度以下になり、ガス中に含有す
る硫黄酸化物80xが伝熱コイル表面に結露して硫酸と
なシ、その結果、ヒートパイプの表面が腐蝕してコイル
の目詰シ等が生じ、その耐用性を著しく減じるといった
問題が発生する。また、この排熱回収装置の過吸熱作用
によって燃焼排ガス温度が低下しすぎた場合には、後方
の煙道あるいは煙突内部が上述したと同様に腐−すると
いり九問題も生じる・ このような問題を解消するために1排熱回収装置出偶の
ガス温度あるいはヒートパイプの吸熱側表面温度を検出
し、この検出々力によって給水加熱部への給水量を制御
して、燃焼排ガス温度に応じ大我熱作用を行わせようと
する装置の提案もなされているが、このための制御装置
が必要となるため装置がいたずらに複雑化するといった
別の面での不都合も生じてくる〇 本発明は、かかる問題点に鑑み、受熱源の温度変動に関
わシなく吸熱部の温度を一定に保ち得る可変コンダクタ
ンスヒートパイプを利用することによって、ヒートパイ
プの吸熱側表面温度を常に硫黄酸化物80xの露点温度
以上に保ち、もって、その腐蝕を未然に阻止するととも
K、燃焼排ガス温度KEじた吸熱作用を行わせて、煙道
などを硫黄酸化物80x Kよる腐蝕から保護し得る簡
単な排熱回収装置を提供することを目的とするものであ
るO そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する・ 第1図は、本発明が適用される給水加熱設備の概要を示
す図であり、人はボイラー41から煙央に到る燃焼排ガ
スダクト42の経路内に設は九廃熱回収装置で、燃熱排
ガスの熱エネルギを受けとる受熱部2と、ボイラー41
への給水系統中に設けた加圧液体容器をなす給水加熱部
1とによって構成されており、この給水加熱部1の給水
側には、給水ポンプP1を介して給水タンク5から伸び
る給水管6が接続し、また、この給水側にはボイラー給
水用のポンプ馬を介してボイラー41へと伸びる給水管
7が接続している021は給水加熱部1と受熱部2を区
画しているステンレス鋼等の耐蝕性に富んだ金属からな
る隔壁で、ここには、給水加熱部1と受熱部2にそれぞ
れ、放熱部と吸熱部をのぞませた後述する多数の可変コ
ンダクタンスビートパイプ3.!I・・・が強固に固定
されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery device using a heat pipe, more specifically, a heat transfer surface on the heat absorption side of the heat pipe, which is corroded by sulfur oxides SOx K in the combustion exhaust gas.・In recent years, heat pipes have come to be widely used in waste heat recovery devices, focusing on the excellent thermal conductivity and constant temperature characteristics of heat pipes. However, boilers that are subject to load fluctuations,
Alternatively, if a heat pipe is used to recover exhaust heat from an incinerator, etc., the surface temperature of the heat transfer coil on the heat absorption side of the heat pipe will also change depending on the fluctuation of the combustion exhaust gas temperature, so depending on the combustion exhaust gas temperature, the heat pipe When the surface temperature falls below the dew point temperature of sulfur oxide 80x, the sulfur oxide 80x contained in the gas condenses on the surface of the heat transfer coil and becomes sulfuric acid, resulting in corrosion of the surface of the heat pipe and damage to the coil. This causes problems such as clogging and the like, which significantly reduces its durability. In addition, if the temperature of the combustion exhaust gas drops too much due to the excessive heat absorption effect of this exhaust heat recovery device, the inside of the rear flue or chimney will rot in the same way as described above, causing problems such as these. In order to solve this problem, the temperature of the gas at the outlet of the exhaust heat recovery device or the surface temperature of the heat pipe on the heat absorption side is detected, and the amount of water supplied to the feed water heating section is controlled by this detection power, increasing the amount of water according to the temperature of the combustion exhaust gas. There have been proposals for devices that attempt to perform the self-heating effect, but this requires a control device, which causes other problems such as unnecessarily complicating the device. In view of this problem, by using a variable conductance heat pipe that can keep the temperature of the heat absorption part constant regardless of temperature fluctuations of the heat receiving source, the surface temperature of the heat absorption side of the heat pipe is always kept at the dew point of sulfur oxide 80x. A simple waste heat recovery method that prevents corrosion by maintaining the temperature above K, and protects the flue etc. from corrosion caused by sulfur oxides by performing an endothermic action at the combustion exhaust gas temperature KE. Therefore, the details of the present invention will be explained below based on illustrated embodiments. Figure 1 shows an outline of a feed water heating equipment to which the present invention is applied. In this figure, nine waste heat recovery devices are installed in the path of the flue gas duct 42 from the boiler 41 to the chimney, and the heat receiving part 2 that receives the thermal energy of the flue gas and the boiler 41 are installed.
A water supply heating section 1, which is a pressurized liquid container provided in a water supply system, is provided on the water supply side of the water supply heating section 1, and a water supply pipe 6 extending from a water supply tank 5 via a water supply pump P1. is connected to the water supply side, and a water supply pipe 7 extending to the boiler 41 via a pump horse for boiler water supply is connected to this water supply side. This is a partition wall made of a highly corrosion-resistant metal such as, for example, a large number of variable conductance beat pipes 3, which will be described later, with heat radiating parts and heat absorbing parts visible in the feed water heating part 1 and the heat receiving part 2, respectively. ! I... is firmly fixed.

カお、必要に応じては、上記した給水タンク5の下部に
、負荷側回路を経て凝縮したボイラー41の蒸気を導入
するド“レン導入口を設け、高温ドレンによる給水予熱
も併用される。
Additionally, if necessary, a drain inlet is provided at the lower part of the water supply tank 5 to introduce condensed steam from the boiler 41 through the load side circuit, and the high temperature drain is also used to preheat the supply water.

第2図(イ)は、上述した装置に使用される可変コンダ
クタンスヒートパイプ5の原理図であって、このヒート
パイプ3は判知の如くその放熱端にガス溜め51を有し
、また、その内部には、このヒートパイプ3を常に@黄
酸化物80xの露点温度以上(燃焼排ガス中に含まれる
硫黄酸化物5OxO量によっても相違するが、一般的に
は140℃以上)に維持するに必要な量(圧力)の、例
えばアルゴンガスのよう電歪活性な非凝縮性ガスGが動
作流体りとともに封入されている0すなわち、一般にこ
の種の可変コンダクタンスヒートパイプ3の吸熱部52
 K熱流が生じると、この吸熱部S2から放熱$55へ
向かう動作流体りの蒸気rltI/c押されて排凝縮性
ガスGが放熱部55に吹きよせられることになるが、そ
の際の蒸気LvとガスGとの間に形成される理論上の境
界面B8が、硫黄酸化物80xの露点温度附近、つtJ
)140℃前後の温度領域において、受熱部2と給水加
熱部1を区画する隔壁21附近に位置するよう表置(圧
力)の非凝縮ガスGをこの可変コンダクタンスヒートパ
イプS中に封入したものである。
FIG. 2(a) is a principle diagram of the variable conductance heat pipe 5 used in the above-mentioned device, and as is well known, this heat pipe 3 has a gas reservoir 51 at its heat dissipation end. Inside, there is a heat pipe necessary to maintain the heat pipe 3 always above the dew point temperature of @yellow oxide 80x (this varies depending on the amount of sulfur oxide 5OxO contained in the combustion exhaust gas, but generally above 140°C). In other words, in general, the heat absorption part 52 of this type of variable conductance heat pipe 3 is sealed with an electrostrictive active non-condensable gas G such as argon gas at a certain amount (pressure) together with the working fluid.
When the K heat flow occurs, the steam rltI/c of the working fluid flowing from the heat absorption part S2 toward the heat radiation $55 is pushed and the exhaust condensable gas G is blown towards the heat radiation part 55, but the steam Lv at that time The theoretical interface B8 formed between the
) A non-condensable gas G is sealed in this variable conductance heat pipe S so that it is located near the partition wall 21 that partitions the heat receiving part 2 and the feed water heating part 1 in a temperature range of around 140°C. be.

次に、上述した実施例の作動にりいて説明すると、ボイ
ラー41をその定格出力に近い状態で作動させる通常の
使用状態のもとにおいては、受熱部2内を流れる燃焼排
ガスの温度Tgは十分に高いため、可変コンダクタンス
ヒートパイプ3内の蒸気圧は十分に高くなって、封入さ
れた非凝縮性ガスGの圧力がこれと均衡する位置までこ
れを放熱部33儒に押しやる。この結果、第2図(イ)
に示したように1両者間の理論上の境界面BSは吸水加
熱部1内に深く入)込み、ここに動作流体りの凝縮部が
形成されて、吸水加熱部1内を流れる水に燃焼排ガスの
熱を供給するととKなる。すなわち、隔壁21からこの
理論上の境界面Batでの部分が放熱有効長く第2図←
))となり、この長さが長くなるほど放熱量が増加し、
また、この長さが短く表るほど放熱量が減少すること・
となって均衡するから、ヒートパイプ5の吸熱部320
表面温度は常に硫黄酸化物80xの露点温度附近を維持
して吸水加熱郁1内の水を加熱し続ける・夜間等K>い
て、ボイラー41の負荷を低下させると、燃焼排ガス温
度Tgもこれとともに下降する。特に受熱部2において
は、吸熱作用に晒されゐ結果、その温度降下はさらに進
み、受熱部2の出側においては硫黄酸化物80xの露点
温度に近い温度Ktで低下する。この状態では、ヒート
パイプ5内の蒸気圧が低下するため非凝縮性ガスGの圧
力は相対的に高まり、理論上の境界面B8は第2図←)
に示〈如く、給水加熱部1の底面附近にまで降下し、放
熱有効長が0となってこれ以上の給水加熱作用を停止す
る。しかしながら、この場合においてもヒートパイプ5
自身は燃焼排ガスの熱を受けてそのtま140℃の水準
を維持するため、その表面に硫黄酸化物80xが凝縮す
るといった事態は発生しない。
Next, to explain the operation of the above-mentioned embodiment, under normal usage conditions in which the boiler 41 is operated at a state close to its rated output, the temperature Tg of the combustion exhaust gas flowing inside the heat receiving section 2 is sufficient. As a result, the vapor pressure within the variable conductance heat pipe 3 becomes sufficiently high and pushes it to the heat radiation section 33 to a position where the pressure of the enclosed non-condensable gas G is balanced. As a result, Figure 2 (a)
As shown in Figure 1, the theoretical interface BS between the two goes deep into the water absorption heating section 1, where a condensation section of the working fluid is formed, and the water flowing inside the water absorption heating section 1 is combusted. When exhaust gas heat is supplied, it becomes K. In other words, the part from the partition wall 21 to this theoretical interface Bat is effective for heat dissipation and is long (see Fig. 2).
)), and as this length increases, the amount of heat dissipation increases,
Also, the shorter the length, the less heat dissipated.
Therefore, the heat absorption part 320 of the heat pipe 5
The surface temperature is always maintained near the dew point temperature of sulfur oxide 80x, and the water in the water absorption heating unit 1 is continued to be heated.When the load on the boiler 41 is lowered at night, etc., the combustion exhaust gas temperature Tg also decreases. descend. Particularly in the heat receiving section 2, as a result of being exposed to the heat absorption action, the temperature decreases further, and at the outlet side of the heat receiving section 2, the temperature decreases to a temperature Kt close to the dew point temperature of the sulfur oxide 80x. In this state, the vapor pressure inside the heat pipe 5 decreases, so the pressure of the non-condensable gas G increases relatively, and the theoretical boundary surface B8 is shown in Fig. 2 (←)
As shown in Fig. 1, the heat dissipation temperature drops to near the bottom of the feed water heating section 1, and the effective heat radiation length becomes 0, stopping further feed water heating action. However, even in this case, the heat pipe 5
Since the fuel itself receives heat from the combustion exhaust gas and maintains the temperature at 140° C., no sulfur oxide 80x condenses on its surface.

他方、給水加熱部1内に、例えば70℃を越える水が供
給されるような場合には、給水出側において100℃を
越えることKなるが、加圧液体容器をなすこの給水加熱
部1内には、給水ポンプP。
On the other hand, if water with a temperature exceeding 70°C is supplied into the feedwater heating unit 1, the temperature will exceed 100°C on the feedwater outlet side, but the temperature inside this feedwater heating unit 1, which forms a pressurized liquid container, will exceed 100°C. There is a water pump P.

の締切圧が作用している丸め、回収した熱を蒸気として
大気中に放出することなくボイラー給水の昇温として全
て利用することができ、かつ、バランスタンク尋の必要
もなくなる。また、この可変コンダクタンスヒートパイ
プ3内に、吸熱部52からガス溜め/31にかけて連続
的なウィックを設けた場合には、燃焼排ガス温度Tgが
例え硫黄酸化物SOxの露点温度以下に低下した場合で
も、給水加熱部1内における高温水により、吸熱部32
の表面温度を硫黄酸化物80xの露点温度以上に維持す
ることかで−るため、作動立上りにおいての腐蝕を回避
することができる。
The collected heat can be used to raise the temperature of boiler feed water without being released into the atmosphere as steam, and there is no need for a balance tank. In addition, if a continuous wick is provided in the variable conductance heat pipe 3 from the heat absorption part 52 to the gas reservoir/31, even if the combustion exhaust gas temperature Tg falls below the dew point temperature of sulfur oxide SOx. , due to the high temperature water in the feed water heating section 1, the heat absorption section 32
By maintaining the surface temperature of the sulfur oxide 80x above the dew point temperature of the sulfur oxide 80x, corrosion during startup can be avoided.

第5図に示した実施例は、給水加熱部1に、気水分離器
12、安全弁16を備えてなる高圧蒸気発生用のドラム
11を設けたもので、生成蒸気をC重油の加熱等、ボイ
ラ41の補機用に利用できるよう構成したもので、図中
符号14は給水口、15は液面針を示している。
In the embodiment shown in FIG. 5, the feed water heating unit 1 is provided with a drum 11 for generating high pressure steam, which is equipped with a steam separator 12 and a safety valve 16, and the generated steam is used to heat C heavy oil, etc. It is constructed so that it can be used as an auxiliary device for the boiler 41, and in the figure, reference numeral 14 indicates a water inlet, and 15 indicates a liquid level needle.

なお、以上は、ガ″:・ス溜めslを有する一般的な可
変コンダクタンスヒートパイプの例で本発明を説明した
が、第1図に見られるようにガス溜めを有しない可変コ
ンダクタンスヒートパイプヲ用イることもでき、これに
よ転層論的な境界面BSの軸方向の変動を少くして、燃
焼排ガス温度の脈動に対して亀可及的に安定した放熱作
用を発揮させることができる・ま九、吸熱部320表面
温度を硫黄酸化物80xの露点温度以上に維持させるた
めに必!!表ヒートパイプ3内の非凝縮性ガスGの封入
圧は比較的高いため、ここに通常の空気を封入しても、
化学及能等による圧力増減を無視することができ、ヒー
トパイプの製造コストの低減と、劣化の防止を同時に期
することができる0以上の説明から明らかなように本発
明によれば、廃熱回収装置に使用されるヒートパイプに
、可変コンダクタンスヒートパイプ、つます制御型ヒー
トパイプを使用し、この内部に、ヒートパイプの表面温
度と硫黄酸化物の露点温度を基準とした温度領域内に維
持し得るようか量の非凝縮性ガスを動作流体とともに封
入し九ので、ヒートパイプの受熱源が、例えば負荷変動
の大きなボイラーや焼却炉等からの燃焼排ガスのように
、大きな温度変動をきたすようなものであっても、ヒー
トパイプの吸熱側表面温度はこれと無関係に常時基準温
度附近KIm持されて、その表面の吸熱フィン等が燃焼
排ガス中の硫黄酸化物80x Kよって腐蝕を受けると
いった事態を阻止して、その半永久的な使用を確立する
ことができる。tえ、この基準温度を境にして燃焼排ガ
ス側から給水側への熱搬送をオン・オフすることが可能
となるから、−過吸熱作用によって燃焼排ガス温度を低
下させ過ぎるのを防止でき、受熱部後方の煙道あるいは
煙突等を硫黄酸化物80x Kよる腐蝕作用から保護す
ることが可能となる・しかも、廃熱回収側に加圧液体容
器を用いたため、回収熱を蒸気として大気中に放出させ
ることなく効果的に回収できるばかりでなく、燃焼排ガ
ス温度が基準温度以下に低下した場合においても、ヒー
トパイプの受熱部表面を高温に維持して作動立上シにお
ける腐蝕を未然に防止することが可能となる。
The present invention has been explained above using an example of a general variable conductance heat pipe having a gas reservoir SL, but as shown in FIG. This makes it possible to reduce axial fluctuations in the bed-layer boundary surface BS and to exert a heat dissipation effect as stable as possible against fluctuations in combustion exhaust gas temperature.・Ninth, in order to maintain the surface temperature of the heat absorption part 320 above the dew point temperature of the sulfur oxide 80 Even if air is enclosed,
According to the present invention, it is possible to ignore pressure increases and decreases due to chemical effects, etc., and it is possible to simultaneously reduce the manufacturing cost of heat pipes and prevent deterioration. A variable conductance heat pipe or a tube-controlled heat pipe is used for the heat pipe used in the recovery device, and the internal temperature is maintained within a temperature range based on the surface temperature of the heat pipe and the dew point temperature of the sulfur oxide. Since the amount of non-condensable gas is sealed together with the working fluid, the heat receiving source of the heat pipe is not subject to large temperature fluctuations, such as flue gas from a boiler or incinerator with large load fluctuations. Even if the heat pipe is heat-absorbing, the surface temperature on the heat-absorbing side is always kept close to the reference temperature regardless of this, and the heat-absorbing fins on the surface are corroded by 80x K of sulfur oxide in the combustion exhaust gas. can be prevented and its semi-permanent use established. In addition, it is possible to turn on and off the heat transfer from the combustion exhaust gas side to the water supply side based on this reference temperature, which prevents the combustion exhaust gas temperature from lowering too much due to excessive heat absorption, and reduces heat reception. This makes it possible to protect the flue or chimney behind the unit from the corrosive effects of 80x K sulfur oxide.Moreover, since a pressurized liquid container is used on the waste heat recovery side, the recovered heat is released into the atmosphere as steam. Not only can the combustion exhaust gas be effectively recovered without causing damage, but even if the combustion exhaust gas temperature drops below the standard temperature, the surface of the heat receiving part of the heat pipe can be maintained at a high temperature to prevent corrosion at the start-up stage. becomes possible.

4、追加の関係 本発明は、本願出願人の出願に係る特願昭56−400
04号の発明を原発用とし、該原発用の構成に欠くこと
ができない事項の主要部を構成忙欠くことので自ない事
項の主要部とする発明であって、原発用と同一の目的を
達成するものである・
4. Additional relations The present invention is based on the patent application filed in 1986-400 by the applicant.
The invention of No. 04 is applied to a nuclear power plant, and the invention is an invention in which the main part of the matter that is essential to the configuration for the nuclear power plant is the main part of the matter that is not available due to the busy schedule, and achieves the same purpose as the one for the nuclear power plant. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1!llIは、本発明装置が適用された給水加熱設備
の概畳を示す図、第2図(イ)は、本発明に適用されル
可変コンダクタンスヒートパイプの原−理を説明する図
、同図←)は、同ヒートパイプ内の圧力関係を示す図、
第6図は、本発明の他の実施例を示す装置の概要図であ
る・ 1・・・給水加熱部、11・・・ドラム、2・・・受熱
部、S・・・可変コンダクタンスヒートパイプ、!S1
・・・ガス溜め、52・・・吸熱部、53・・・放熱部
、41・・・ボイラー、L・・・動作流体、G・・・非
凝縮性ガス、B8・・・通論上の境界面〇 出願人 雪印乳業株式会社 鈴木金属工業株式会社 代理人弁理士酉川慶治 敏処嘴効長 第3回 [−一一一一一一]
1st! Figure 2(a) is a diagram illustrating the principle of the variable conductance heat pipe applied to the present invention. ) is a diagram showing the pressure relationship inside the heat pipe,
FIG. 6 is a schematic diagram of an apparatus showing another embodiment of the present invention. 1. Water supply heating section, 11. Drum, 2. Heat receiving section, S. Variable conductance heat pipe. ,! S1
... Gas reservoir, 52 ... Heat absorption part, 53 ... Heat radiation part, 41 ... Boiler, L ... Working fluid, G ... Non-condensable gas, B8 ... Boundary in general theory Face〇 Applicant: Snow Brand Milk Products Co., Ltd. Suzuki Metal Industry Co., Ltd. Representative Patent Attorney Keiji Torikawa Tsuyoshi Tsukuyoshi 3rd [-111111]

Claims (1)

【特許請求の範囲】 t 少(とも硫黄酸化物の露点温度以上の温度で作動す
るような量の非凝縮性ガスを動作流体とと4に内Sに封
入してなる複数のヒートパイプを、該と−トパイプの吸
熱部と放熱部がそれぞれ燃焼排ガス流路内と、加圧液体
容器内に位置するように配設し九ことを特徴とする硫黄
酸化物による腐蝕を防止すゐ廃熱回収装置。 2 上記加圧液体容器が、ボイラー給水系統に組込まれ
九加圧液体容器である特許請求の範囲第1項記載の硫黄
酸化物による腐蝕を防止する廃熱■板装置・ 五 上記加圧液体容器が、高圧蒸気発生用の蒸気ドラム
である特許請求の範囲第1項記載の硫黄鹸化物による腐
蝕を防止する廃熱回収装置。
[Scope of Claims] A plurality of heat pipes each having a working fluid and a non-condensable gas sealed in an amount such that the heat pipe operates at a temperature equal to or higher than the dew point temperature of sulfur oxide. Waste heat recovery for preventing corrosion caused by sulfur oxides, characterized in that the heat absorption part and the heat radiation part of the top pipe are located in the combustion exhaust gas flow path and in the pressurized liquid container, respectively. 2. A waste heat plate device for preventing corrosion caused by sulfur oxides according to claim 1, wherein the pressurized liquid container is a pressurized liquid container that is incorporated into a boiler water supply system. The waste heat recovery device for preventing corrosion caused by saponified sulfur as claimed in claim 1, wherein the liquid container is a steam drum for generating high-pressure steam.
JP56135897A 1981-08-29 1981-08-29 Waste heat recovery device for preventing corrosion due to sulfur oxide Pending JPS5837483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135897A JPS5837483A (en) 1981-08-29 1981-08-29 Waste heat recovery device for preventing corrosion due to sulfur oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135897A JPS5837483A (en) 1981-08-29 1981-08-29 Waste heat recovery device for preventing corrosion due to sulfur oxide

Publications (1)

Publication Number Publication Date
JPS5837483A true JPS5837483A (en) 1983-03-04

Family

ID=15162366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135897A Pending JPS5837483A (en) 1981-08-29 1981-08-29 Waste heat recovery device for preventing corrosion due to sulfur oxide

Country Status (1)

Country Link
JP (1) JPS5837483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175265U (en) * 1988-05-30 1989-12-13
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175265U (en) * 1988-05-30 1989-12-13
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US9476583B2 (en) Recovery system of waste heat from flue gas
KR100691029B1 (en) Hot-water supply system having dual pipe
TW201319499A (en) System for improving utilization grade of waste heat of flue gas
US6269754B1 (en) Steam generator for superheated steam for incineration plants with corrosive flue gases
JP2000220411A (en) Thermal power plant
JPS5837483A (en) Waste heat recovery device for preventing corrosion due to sulfur oxide
CN202485507U (en) Boiler flue gas waste heat recovery device
CN209876971U (en) Steam air preheating device and system
JP2000146299A (en) Latent heat recovery mechanism
US7005866B2 (en) Apparatus and process for detecting condensation in a heat exchanger
KR101662474B1 (en) Condensate preheater for a waste-heat steam generator
JPS5939678B2 (en) hot water boiler
CN206755219U (en) A kind of low temperature SCR denitration and flue gas take off white device
KR19980073721A (en) Heat exchanger for waste gas waste heat recovery using water fluidized bed
JP3783122B2 (en) Smoke removal equipment
CN207661791U (en) Etch-proof residual heat from boiler fume recovery system
JPS6314161Y2 (en)
JP3232562U (en) Boiler waste heat recovery device
JPH0445641B2 (en)
JPH0114502B2 (en)
JPS599834B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
JP2002267154A (en) Boiler device
JP6573285B2 (en) Decompression boiler, binary power generation system including the decompression boiler, and incineration facility including the binary power generation system
JPS6327601B2 (en)
KR830000604Y1 (en) Boiler Steam Boiler